

2013

YEAR 11 MATHEMATICS

TERM 2 ASSESSMENT TASK

Date:	7 th June, Period 4
Time allowed:	45 minutes (plus 2 minutes reading time)
Total marks:	35 marks

Directions to Candidates

- Attempt all questions.
- Marks are indicated next to each question.
- All necessary working should be shown.
- Board-approved calculators may be used.
- Begin each question on a new page with your student number clearly written at the top.
- Write in black pen and use black pen for all diagrams

Outcomes

A student:

- **P2** provides reasoning to support conclusions which are appropriate to the context.
- **P3** performs routine arithmetic and algebraic manipulation involving surds, simple rational expressions and identities.
- **P4** chooses and applies appropriate arithmetic, algebraic, graphical and geometrical techniques.
- **P5** understands the concept of a function and the relationship between a function and its graph.

Student Name:_____

Student Number:_____

1. What is the value of *x*?

2. What is the domain and range of the function $f(x) = \sqrt{1 - x^2}$?

- (A) Domain: $0 \le x \le 1$, Range: $-1 \le y \le 1$
- (B) Domain: $-1 \le x \le 1$, Range: $-1 \le y \le 1$
- (C) Domain: $-1 \le x \le 1$, Range: $0 \le y \le 1$
- (D) Domain: $0 \le x \le 1$, Range: $0 \le y \le 1$
- 3. The diagram shows the graph of the function $y = 5x x^2$. Which pair of inequalities specifies the shaded region?

- (A) $y \le 5x x^2 \text{ and } y \le 0.$
- (B) $y \leq 5x x^2$ and $y \geq 0$.
- (C) $y \ge 5x x^2$ and $y \le 0$.
- (D) $y \ge 5x x^2$ and $y \ge 0$.

4. Consider $f(x) = \frac{6}{x}$ and g(x) = 2x + 4.

What are the values for *x* for which f(x) = g(x)?

- (A) x = -1 or x = 3
- (B) x = -3 or x = -1
- (C) x = 1 or x = 3
- (D) x = -3 or x = 1
- 5. In the diagram below, *ABC* is a triangle and *DE* is parallel to *BC*.

Given that AD = 2, BD = 5 and DE = 1.5, what is the value of BC?

(A) 4.00 (B) 5.25 (C) 7.50 (D) 9.33

End of Multiple Choice Questions

Ques	tion 6	(15 marks) START A NEW PAGE	Marks
a)	For th	e function with equation $y = \frac{3}{x+2}$	
	i)	Write down the equations of the asymptotes.	2
	ii)	Sketch the graph of this function showing all necessary features.	2
b)	i)	Find the centre and radius of the circle with the equation $x^{2} + 14x + (y-1)^{2} - 15 = 0$	3
	ii)	Does this circle cross the <i>y</i> -axis? Give reasons for your answer.	1
c)	Sketcl	the graph of $y = x - 4 + 3$	2
d)	The f	unction $f(x)$ is defined as $f(x) = \begin{cases} x^2 + 5, & \text{if } x \ge 0\\ 5 + x, & \text{if } x < 0 \end{cases}$	
	Find:		
	i)	f(-3) + f(2)	1
	ii)	$f(m^2)$	1
e)	i)	Sketch the graphs of $y = 3^x - 1$ and $y = 3$ on one number plane.	2
	п)	Explain why the equation $5 -1 = 3$ has only one solution.	L

Quest	tion 7	(15 marks) START A NEW PAGE	Marks
a)	Find th	ne number of sides of a regular polygon with each interior angle equal to 160°	? 2
b)	The par For the	rabola $y = x^2$ is shifted 2 units to the right and 5 units up. e shifted parabola:	
	i)	state the coordinates of the vertex,	1
	ii)	write down the equation of this parabola,	1
	iii)	sketch the parabola showing all essential features.	1
c)	For wh	ich values of <i>x</i> is $x^2 + 4x - 21 < 0$?	2
d)	Show t	hat $f(x) = \frac{x^3}{x^2 - 4}$ is an odd function.	2
e)	Explai	n how a function is different from a relation.	2

Give an example of a function and a relation, where the relation is not a function.

f) In the diagram below PQRS is parallelogram and PA = BR.

i)	Show that $\triangle PAS \equiv \triangle RBQ$	2
ii)	Hence or otherwise show that AQBS is also a parallelogram.	2

End of paper

Multiple Choice Answer Sheet

	Student Numb	er:		
1	A 🔿	B	С	D 🔿
2	A 🔿	B	С 🔿	D 🔿
3	A 🔿	B 🔿	С 🔿	D 🔿
4	A O	B 〇	С	D 🔿
5	A 🔿	B 🔿	С	D 🔿

M/C	Solution	Marking Criteria
1.	$5y = 90$ (angle sum of triangle is 180°)	$1 - \text{correct answer } \mathbf{B}$
	y = 18	
	$2x = 3 \times 18$ (exterior angle of triangle equals	
	sum of 2 opposite interior angles)	
	2x = 54	
	<i>x</i> = 27	
2.	Upper half of semicircle, with radius one	1 - correct answer
		C
	Domain $-1 \le x \le 1$	
	Range $0 \le y \le 1$	
		1 D
3.	$y \le 5x - x^2$	$1 - \text{correct answer } \mathbf{B}$
	$y = 5x - x^2$	
	A	
	\leftarrow	
	$y \ge 0$	
	$z = \frac{2}{3}$ and $z = 0$	
4	$y \le 5x - x$ and $y \ge 0$	1 correct enquier D
4.	$\frac{0}{x} = 2x + 4, \ x \neq 0$	
	$\frac{x}{2r^2 + 4r} = 6 - 0$	
	$2x^{+} + 4x^{-} = 0 - 0$	
	2(x + 2x - 3) = 0 $2(x + 2)(x - 1) = 0$	
	2(x+3)(x-1) = 0	
	x = -3 or $x = 1$	
5	$\Delta AED \parallel \Delta ACB$ (equiangular)	1 – correct answer R
	BC 7	
	$\frac{20}{15} = \frac{7}{2}$ (corresponding sides in	
	congruent triangles are in same ratio)	
	7	
	$BC = \frac{1}{2} \times 1.5$	
	BC = 5.25	

Year 11 Mathematics Assessment T2 2013 Solutions and Marking Criteria

6.		2 – correct answer
a) i)	x = -2, y = 0	1 – one asymptote correct
a) ii)	y 10 5- 10 5- 5- 5- 10 5- 10 5- 10 5- 10 5- 10 5- 10 5- 10	2 – correct graph, showing asymptotes and y-intercept 1 – correct graph with asymptotes
b) i)	$r^{2} + 14r + (v - 1)^{2} - 15 - 0$	3 – correct solution
, ,	$x^{2} + 14x + (y - 1)^{2} - 15 + 49$	2 – substantially correct
	x + 14x + 49 + (y - 1) = 13 + 49 $(x + 7)^2 + (y - 1)^2 = 64$	solution
	(x + 7) + (y - 1) = 04 Contro (7, 1) Padius r = 8	square or correctly
	Centre $(-7, 1)$, Radius $7 - 8$	concluding centre or radius
		from incorrect calculations
b)	Yes, since the centre is 7 units from the y-axis and the	1- Correct explanation
ii)	radius of the circle is 8 units.	L L
	Can be shown algebraically by substituting $x = 0$	
	and showing that $(y-1)^2 - 15 = 0$ has two solutions,	
	ie y-intercepts.	
c)		2 – correct graph
	10	1 - correct shape, not
		clearly showing intercept
		or vertex.
	5-	
	→ → ×	
	-5 5 10 × x	
	-5 5 10 x	
	-5 5 10 x	
	-5 5 10 x	1 compatization
d) i)	$f(-3) + f(2) = 5 - 3 + 2^{2} + 5$	1 – correct solution
d) i)	$f(-3) + f(2) = 5 - 3 + 2^{2} + 5$ $= 11$	1 – correct solution

c)	$x^2 + 4x - 21 < 0$	2 – correct solution
	(x-3)(x+7) < 0	1 – correct factorisation,
	-10 -10 -10	OR correct solution from their factors
	$\therefore -7 < x < 3$	
d)	$f(-x) = \frac{(-x)^3}{(-x)^2 - 4}$ $= \frac{-x^3}{x^2 - 4}$ $= -\left(\frac{x^3}{x^2 - 4}\right)$ $= -f(x)$ $\therefore f(x) \text{ is an odd function}$	2 – correct solution 1 – correct substitution of (-x) and attempt at simplification
e)	In a function every <i>x</i> -value has only one matching <i>y</i> -value, whereas in a relation an <i>x</i> value can have more than one matching <i>y</i> -value. Possible examples: Function: $y = x$ Relation: $x^2 + y^2 = 4$	 2 – correct explanation and examples 1 – correct explanation or correct examples for function and relation
f) i)	In $\triangle PAS$ and $\triangle RBQ$ PA = RB (given) PS = RQ (opposite sides in parallelogram are equal) $\angle P = \angle R$ (opposite angles in parallelogram are equal) $\therefore \triangle PAS \equiv \triangle RBQ$ (SAS)	 2 – correct proof fully justified 1 – correct proof but not all reasons given or significant attempt at proof
f) ii)	Let $PA = RB = a$ (given) PQ = RS (opposite sides in parallelogram are equal) hence $AQ = PQ - a$ = RS - a = BS AS = BQ (corresponding sides in congruent triangles) $\therefore AQBS$ is a parallelogram (opposite sides are equal)	2 – correct proof fully justified 1 – correct attempt at proof indicated by a correct test for parallelogram OR correct proof not fully justified

Comn	Communication			
6b)i) Clear reasoning based on distance/ graphical or AW algebraic calculation of y-intercepts			AW 1	
6e)ii)	6e) ii) Clear explanation with correct vocabulary.			
7b)iii)	Axes labelled and scale accurate	AW 1		
7c)	Shows graph of parabola	AW 1		
7d)	Shows substitution of $(-x)$	AW 1		
7e)	Clear explanation of function	AW 1		