Question 1 (23 Marks) Start this question on a new page.
Marks
a) Calculate correct to 2 decimal places

$$
5^{\frac{3}{2}} \times 8^{\frac{4}{5}} \times 3^{2}
$$

b) Evaluate and express your answer using scientific notation

$$
\frac{3 \times 10^{7}-2 \times 10^{6}}{4 \times 10^{3}+2 \times 10^{3}}
$$

c) Simplify
(i) $3 x y^{2} \times-4 x^{2}$

1

$$
\text { (ii) } \frac{a^{3} b^{7}}{a^{2}\left(b^{3}\right)^{3}}
$$

d) Evaluate $|-2|+|-5|$
e) Express 0.04 as a simplified fraction
f) Harry and Sally paid $\$ 315.00$ for a meal at a restaurant. This included a $12 \frac{1}{2} \%$ tip. What was the cost of the meal without the tip?
g) Expand and simplify completely
(i) $3 x(x-7)-4 x(x-7) \quad 2$
(ii) $4(2 x+1)^{2}$
h) Factorise completely
(i) $27 x^{3}-8 y^{3} \quad 1$
(ii) $3 x^{2}+16 x+20 \quad 1$
(iii) $\left(6 x^{2}-6\right)+\left(12 x^{2}-36 x-48\right) \quad 3$

Question 1 continued

i) Simplify as a single fraction in its simplest form:

$$
\text { (i) } \frac{5 x+3}{4}-\frac{2 x-3}{5}
$$

2

3

Question 2 (21 marks) Start this question on a new page.
a) Simplify completely

$$
\sqrt{48}-\sqrt{44}+\sqrt{75}
$$

b) Simplify with a rational denominator

$$
\frac{\sqrt{5}+2}{\sqrt{5}-3}
$$

c) Solve $2 x^{2}-8 x+5=0$ leaving your answer as an exact value in its simplest form.
d) Solve the following simultaneous equations: $\begin{aligned} 6 x+3 y & =0 \\ 7 x-4 y & =-5\end{aligned}$
e) Find x if $4^{3-x}=8^{x}$
f) If $A=P(1+r)^{n}$, find r if: $\mathrm{A}=3345, \mathrm{P}=2500$ and $\mathrm{n}=4$

Answer correct to 2 decimal places

Question 2 continued

Marks

g) Solve the following:

$$
|2 x-5|=7
$$

h) Solve and graph on the number line
(i) $2 \leq 4(x-2)<8 \quad 3$
(ii) $|3 x-2| \leq 5$

Question 3 (28 marks) Start this question on a new page.
a) Sketch each of the following curves on a separate diagram.

Clearly show all important features, including x and y intercepts, asymptotes, maximum and minimum values where necessary.
(i) $y=x^{2}+3$
(ii) $x^{2}+y^{2}=25$
(iii) $y=3^{x}$
(iv) $y=|x-4|$
(v) $y=\frac{5}{x-3}$
b) State the domain and range of
(i) $y=\sqrt{4-x^{2}}$
(ii) $y=4^{x}$
c) Using the graphs from part (a) determine whether the following graphs are functions or relations:
(i) $y=x^{2}+3$
(ii) $x^{2}+y^{2}=25$

Question 3 continued

d) Sketch the following piecemeal function:

$$
f(x)=\left\{\begin{array}{lc}
3 & x \geq 5 \\
-x & 0 \leq x<5 \\
x+5 & x<0
\end{array}\right.
$$

e) Determine whether the function $f(x)=x^{4}-3 x^{2}+2$ is odd, even or neither.
f) Given $f(x)=x^{3}+7 x+5$, find $f(-1)$
g) Given $g(x)=x^{2}-6 \quad$ find values for x for which $g(x)=3$
h) Shade the region on the number plane where $y \geq x^{2}-2$ and $y>6+3 x$

1 hold simultaneously. Indicate any points of intersection.
a) 531.09
b) $\frac{14000}{3} \quad 1$ mark for each or 2 for correct final answer $=4.667 \times 10^{3}$
c)
(i) $-12 x^{3} y^{2}$
1
(ii) $\frac{a}{b^{2}}$
d) 7
e) $\frac{2}{45}$
f) $315=112.5 \% \quad 1 \mathrm{mark}$
2.8=1\%
$280=100 \%$ cost without tip is $\$ 280$
g) Expand and simplify completely
(i) $\begin{aligned} & 3 x^{2}-21 x-4 x^{2}+28 x \\ & =-x^{2}+7 x \text { or } 7 x-x^{2}\end{aligned} \quad 1$ mark correct expansion $\quad 2$
(ii) $4\left(4 x^{2}+4 x+1\right) \quad 1$ mark correct expansion
$16 x^{2}+16 x+4$
h) Factorise completely
(i) $(3 x-2 y)\left(9 x^{2}+6 x y+4 y^{2}\right)$
(ii) $(x+2)(3 x+10)$

Question 1 continued

$$
\begin{array}{ll}
\frac{5 x+3}{4}-\frac{2 x-3}{5} & \\
\frac{5(5 x+3)-4(2 x-3)}{20} & \\
=\frac{25 x+15-8 x+12}{20} & 1 \text { mark correct exp ansion } \\
=\frac{17 x+27}{20} & 1 \text { mark }
\end{array}
$$

$$
\text { (i) } \begin{array}{ll}
\frac{(x-13)(x-1)}{(x+2)(x+3)} \times \frac{(x+3)^{2}}{(x-1)^{2}} & 2 \text { mark factori } \sin g \\
=\frac{(x-13)(x+3)}{(x+2)(x-1)} & 1 \text { mark simplifying }
\end{array}
$$

Question 2 (21 marks) Start this question on a new page.
a)

$$
\begin{array}{ll}
4 \sqrt{3}-2 \sqrt{11}+5 \sqrt{3} & 1 \text { mark simplifying } \\
=\$ \sqrt{3}-2 \sqrt{11} & 1 \text { mark collecting like terms } \\
9 &
\end{array}
$$

b)

$$
\begin{array}{ll}
\frac{\sqrt{5}+2}{\sqrt{5}-3} \times \frac{\sqrt{5}+3}{\sqrt{5}+3} & \\
=\frac{5+3 \sqrt{5}+2 \sqrt{5}+6}{5-9} & 1 \text { mark } \\
=\frac{11+5 \sqrt{5}}{-4} & 1 \text { mark }
\end{array}
$$

SOLUTIONS

c)

$$
\begin{array}{ll}
2 x^{2}-8 x+5=0 \\
\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} & \\
=\frac{8 \pm \sqrt{8^{2}-4.2 .5}}{2.2} & 1 \text { mark } \\
=\frac{8 \pm \sqrt{24}}{4} & \\
=\frac{8 \pm 2 \sqrt{6}}{4} & \\
=\frac{4 \pm \sqrt{6}}{2} & 1 \text { mark }
\end{array}
$$

d)
$6 x+3 y=0$
$7 x-4 y=-5$ (2) $\times 3$
$24 x+12 y=0$
$21 x-12 y=-15 \ldots \ldots(4)$
1 mark
$45 x \ldots \ldots=-15 \ldots \ldots(3+4)$
$x=\frac{-1}{3}$
subs with eqn 1
$6 \frac{1}{3}+3 y=0$
$3 y=-2$
$y=\frac{\dot{\dagger} 2^{\prime}}{3}$
$x=\frac{1}{3}$ and $y=\frac{+2}{3} \quad 1$ mark each

$$
2^{2(3-x)}=2^{3 x}
$$

$6-2 x=3 x \quad 1$ mark
e) $\begin{aligned} 6 & =5 x \\ x & =\frac{6}{5} \quad 1 \mathrm{mark}\end{aligned}$

$$
\begin{array}{ll}
3345=2500(1+r)^{4} & 1 \text { subst } \\
1.338=(1+r)^{4} &
\end{array}
$$

f) $\sqrt[4]{1.338}=1+r$
$1.075508949=1+r$

$$
r=0.075508949
$$

$$
r=0.76(2 d . p) \quad 1 \text { mark }
$$

0.08 .
g) $\quad|2 x-5|=7$

$$
\begin{array}{ll}
2 x-5=7 & -(2 x-5)=7 \\
2 x=12 & -2 x+5=7 \\
x=6 & -2 x=2 \\
& x=-1 \\
\hline & |2 \times-1-5|=7
\end{array}
$$

h) Solve and graph on the number line
(i) $2 \leq 4(x-2)<8$
$2 \leq 4 x-8<8$
$10 \leq 4 x<16 \quad 1$ mark each value
$\frac{5}{2} \leq x<4$

1 mark correct graph of solutions given

Year 11 Mathematics
SOLUTIONS
(ii)

$$
\begin{array}{lc}
3 x-2 \leq 5 & -3 x+2 \leq 5 \\
3 x \leq 7 & \text { or }-3 x \leq 3 \\
x \leq \frac{7}{3} & x \geq-1
\end{array}
$$

Check values: $\left|3\left(\frac{7}{3}\right)-2\right| \leq 5 \mathrm{ok} \quad|3(-1)-2| \leq 50 \mathrm{ok} \quad 1$ mark each

Question 3 (28 marks) Start this question on a new page.
a) 2 marks for each graph

Clearly show all important features, including x and y intercepts, asymptotes, maximum and minimum values where necessary.
(i) $y=x^{2}+3 \quad$ max turning point at $(0,3)=y$ int.

(ii) $x^{2}+y^{2}=25 \quad x \operatorname{int}(-5,0)$ and $(0,-5) \quad y \operatorname{int}(0,-5)$ and $(0,5)$

(iii) $y=3^{x} \quad y$ int $(0,1)$

(iv) $y=|x-4| \quad x$ int $(4,0)$ and $y \operatorname{int}(0,4)$

Page 6 of 9
(v) $y=\frac{5}{x-3}$
vert ass ($x=3$)

b) State the domain and range of
(i) Domain: $-2 \leq x \leq 2$ Range: $0 \leq y \leq 2$

1 mark each
(ii) Domain: all real $x \quad$ Range: $\operatorname{HAa} y>0 \quad 1$ mark each
c) Using the graphs from part (a) determine whether the following graphs are functions or relations:
(i) function
(ii) relation
d) Sketch the following piecemeal function:
$f(x)=\left\{\begin{array}{ll}3 & x \geq 5 \\ -x & 0 \leq x<5 \\ x+5 & x<0\end{array} \quad 1\right.$ for each graph and 1 for correct limits

e)

$$
\begin{array}{ll}
& f(-x)=(-x)^{4}-3(-x)^{2}+2 \\
f(-x)=x^{4}-3 x^{2}+2 \quad 1 \text { mark } \\
f(x)=f(-x) \quad \text { Even } \quad 1 \text { mark } \\
f) & \\
f(-1)=(-1)^{3}+7(-1)+5 \\
f(-1)=-3
\end{array}
$$

$$
g(x)=3=x^{2}-6
$$

g) $x^{2}=9$
h) Shade the region on the number plane where $y \geq x^{2}-2$ and $y>6+3 x$
points of intersection $\quad x=1.701 \quad y=0.8953$

1 for each graph 1 for shading L for point of intersection

