Question 1 (10 marks)

Marks

a) For the following functions,
i) Sketch the following showing all the important features.
ii) Find the natural domain and range.
A) $y=|x+1|-1$
B) $y=\frac{2}{x-3}$
b) A function is defined by $f(x)=\left\{\begin{array}{l}x^{2} \text { for, } x \leq-1 \\ x+1 \text { for, } x>-1\end{array}\right.$

Evaluate $f(-2)+2 f(0)-f(3)$.

Question 2 (10 marks) Start this question in a new booklet.

a) Show by 'completing the square' that
$x^{2}+4 x+y^{2}-2 y-4=0$ is a circle, and state its centre and radius.
b) A function is defined as $f(x)=x^{3}-5 x$

Show this function is either even, odd or neither.
c) Find the exact value of
(i) $\tan 240^{\circ}$

1
(ii) $\quad \sin (-45)^{0}$
d) Given that $\tan \theta=\frac{-5}{12}$ and $\sin \theta>0$, find
(i) $\sin \theta$
(ii) $\sec \theta$

Question 3 (10 marks) Start this question in a new booklet.
a) If $\sin \theta=\cos 35^{\circ}$ find θ, if θ is acute.
b) Simplify the following $\cot \theta-\cot \theta \cos ^{2} \theta$
c) Prove $\left(1+\tan ^{2} A\right) \cos ^{2} A=1$
d) Solve the following, for $0^{\circ} \leq \theta \leq 360^{\circ}$
(i) $\tan \theta=\frac{1}{\sqrt{3}}$
(iii) $2 \cos 2 \theta-1=0$

Question 4 (9 marks) Start this question in a new booklet.

a) Prove $\frac{1}{1+\sin x}+\frac{1}{1-\sin x}=2 \sec ^{2} x$
b) From a harbour H , a boat B travelled 20 km on a bearing of 125 degrees . At the same time a yacht Y sailed 25 km , on a bearing of 245 degrees.
(i) Draw a diagram, marking on it all the information supplied.
(ii) Find the distance of the boat B, from the yacht Y.

Give your answer as an exact value.
(ii) Find the bearing of the yacht Y from the boat B .

Give your answer to the nearest degree.

Question 5 (10marks) Start this question on a new page.

The points A, B and C have the co-ordinates $(-2,2),(-1,-5)$ and $(6,-6)$ respectively.
a) Sketch the triangle ABC , on a number plane using a ruler. Make the diagram about $\frac{1}{2}$ page in size.
b) Show the midpoint P of AC has the co-ordinates $(2,-2)$.
c) Calculate the gradient of AC.
d) Find the exact value of the length of side AC. $\mathbf{1}$
e) Show AC and BP are perpendicular. $\mathbf{2}$
f) Find the area of triangle ABC . $\mathbf{2}$
g) Find the equation of the line AC .

End of the Paper

Yearll 2013 mathematies Assessment 2
Questionl (10 marks)
a) (A) (1)
(1i) Domain: als real $x \quad V \quad 1$ mark each
Range: $y \geqslant-1$
(B) $y=\frac{2}{x-3}$
(ii) Domaini-all real $x, x \neq 3$

Range iall real $y, y \neq 0$ Imark each.

b) $f(x)= \begin{cases}x^{2}, & \text { fr } x \leqslant-1 \\ x+1, & \text { for } x>-1\end{cases}$

$$
\begin{aligned}
f(-2) & =-2^{2} \\
& =4 \\
f(0) & =0+1 \\
& =1 \\
f(3) & =3+1 \\
& =4
\end{aligned}
$$

$$
\begin{aligned}
\therefore f(-2)+2 f(0)-f_{(3)} & =4+2 \times 1-4 \vee 2 \\
& =2
\end{aligned}
$$

2013 Yearll Mathematios Assessment 2
Queston 2 (10 marks)
a)

$$
\begin{aligned}
& x^{2}+4 x+y^{2}-2 y-4=0 \\
& x^{2}+4 x+\left(\frac{4}{2}\right)^{2}+y^{2}-2 y+\left(-\frac{2}{2}\right)^{2}=4+5 \\
& (x+2)^{2}+(y-1)^{2}=9
\end{aligned}
$$

i ts a curcle contre $(-2,1)$
and radus 3
b)

$$
\begin{align*}
f(x) & =x^{3}-5 x \\
f(-x) & =(-x)^{3}-5(-x) \\
& =-x^{3}+5 x \tag{Imark}\\
-f(x) & =-\left(x^{3}-5 x\right) \\
& =-x^{2}+5 x \\
\therefore f(-x) & =-f(x)
\end{align*}
$$

$$
=2 \text { mark } s .
$$

$\therefore f(x)$ is an odd function]
c)

$$
\text { (i) } \tan 240^{\circ}=+\tan 60^{\circ}
$$

$$
= \pm \sqrt{3} \quad r \quad 1 \text { mark. }
$$

(iI)

$$
\begin{aligned}
\sin \left(-45^{\circ}\right) & =-\sin 45^{\circ} \\
& =-\frac{1}{\sqrt{2}} \quad \text { Imark }
\end{aligned}
$$

d) $\tan \theta=\frac{-5}{12}, \quad \sin \theta>0$

(1) $\sin \theta=\frac{5}{13} \vee 1$ mark
(II)

$$
\begin{aligned}
& \cos \theta=\frac{-12}{13} \\
& \sec \theta=\frac{-13}{12} r \text { Imank }
\end{aligned}
$$

2013 Yearll Mathemabcs Ass 2 Queation 3 (10 marks)
a) $\sin \theta=\cos 35^{\circ}$

$$
\begin{aligned}
\therefore \theta+35 & =90^{\circ} \\
\theta & =90-35^{\circ}
\end{aligned}
$$

$$
\theta=55^{\circ} \quad, \quad 1 \mathrm{mark}
$$

b) $\cot \theta-\cot \theta \cos ^{2} \theta$

$$
\begin{aligned}
& =\cot \theta\left(1-\cos ^{2} \theta\right) \\
& =\cot \theta\left(\sin ^{2} \theta\right) \\
& =\frac{\cos \theta}{\sin \theta} \times \sin ^{2} \theta \\
& =\cos \theta \sin \theta V
\end{aligned}
$$

2 marks

$$
\text { c) } \begin{aligned}
& \text { Prove }\left(1+\tan ^{2} A\right) \cos ^{2} A=1 \\
& \text { L.H.S. }=\left(1+\tan ^{2} A\right) \cos ^{2} A \\
&= \sec ^{2} A \times \cos ^{2} A \\
&=\frac{1}{\cos ^{2} A} \times \cos ^{2} A \\
&=1 \\
&=\text { RHS. } \\
& \therefore \text { LHS }=\text { RHS } \\
& \therefore\left(1+\tan ^{2} A\right) \cos ^{2} A=1
\end{aligned}
$$

d) (1) $\tan \theta=\frac{1}{\sqrt{3}}$

$$
0 \leq \theta \leq 360^{\circ}
$$

tan is positive in Q1 \& Q3
related angle

$$
\begin{aligned}
\tan \theta & =\frac{1}{\sqrt{3}} \\
\theta & =30^{\circ} \\
\therefore Q 1 \theta & =30^{\circ} \\
Q 3 \theta & =180+30^{\circ}=210^{\circ}
\end{aligned}
$$

$$
\therefore \theta=30^{\circ}, 20^{\circ} \mathrm{V} \quad 2 \text { marks. }
$$

(d) (11)

$$
\begin{array}{cc}
2 \cos 2 \theta-1=0 & 0 \leq \theta \leq 360^{\circ} \\
\cos 2 \theta=\frac{1}{2} & x^{2}
\end{array}
$$

$\operatorname{Let} x=20 \quad 0 \leq 20 . \leq 720^{\circ}$
$\cos x \quad=\frac{1}{2} \quad \therefore \quad 0 \leqslant x \leqslant 720^{\circ}$
\cos is $p o s i n Q 1+Q 4, Q 5+Q 8$
related angle

$$
\cos x=\frac{1}{2}
$$

$$
x=60^{\circ}
$$

$$
\therefore \begin{aligned}
\therefore 1 \quad x & =60^{\circ} \\
04 x & =360-60 \\
& =300^{\circ}
\end{aligned}
$$

$Q 5$

$$
\begin{aligned}
x & =01+360^{\circ} \\
& =360^{\circ}+60^{\circ} \\
& =420^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
Q 8 \quad x & =04+360^{\circ} \\
& =300^{\circ}+360^{\circ} \\
& =660^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
\therefore x & =60^{\circ}, 300^{\circ}, 420^{\circ}, 660^{\circ} \\
2 \theta & =60^{\circ}, 300^{\circ}, 420^{\circ}, 660^{\circ} \\
\theta & =30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}
\end{aligned}
$$

2013 pearl Mathematics Ass 2
Question 4 (9 marks
a) Prove $\frac{1}{1+\sin x}+\frac{1}{1-\sin x}=2 \sec ^{2} x$

$$
\angle H S=\frac{1}{1+\sin x}+\frac{1}{1-\sin x}
$$

$$
=\frac{1(1-\sin x)}{(1+\sin x)(1-\sin x)}+\frac{1(1+\sin x)}{(1-\sin x)(1+\sin x)}
$$

$$
=\frac{(1-\sin x)+(1+\sin x)}{(1+\sin x)(1-\sin x)}
$$

$$
=\frac{2}{1-\sin ^{2} x}
$$

$$
=\frac{2}{\cos ^{2} x}
$$

3 marks

$$
=2 \sec ^{2} x
$$

$$
=\text { RUS. }
$$

$$
\therefore \angle H S=R H S .
$$

$$
\therefore \frac{1}{1+\sin x}+\frac{1}{1-\sin x}=2 \sec ^{2} x
$$

b) (a)

\checkmark Imark all info
(II)

$$
\left.\begin{array}{rl}
d^{2} & =a^{2}+b^{2}-2 a b \cos D \\
& =20^{2}+25^{2}-2 \times 20 \times 25 \times \cos 120^{\circ} \\
d^{2} & =1525 \\
d & =\sqrt{1525} \\
d & =5 \sqrt{61}
\end{array}\right\} \quad 2 \text { marks }
$$

Q4 (b)

(III)

$$
\begin{aligned}
\frac{\sin A}{a} & =\frac{\sin B}{b}=\frac{\sin C}{C} \\
\frac{\sin 120}{\sqrt{1525}} & =\frac{\sin B}{25} \\
\sin B & =\frac{25 \times \sin 120}{\sqrt{1525}} \\
& =0.5544159532 \\
B & =\sin ^{-1}(0.5544159532) \\
B & =33.67049651 \\
B & =34^{\circ}(n . \text { degree })
\end{aligned}
$$

\therefore the bearing of Y from B is

$$
\begin{aligned}
& =360^{\circ}-55^{\circ}-34^{\circ} \\
& =271^{\circ}
\end{aligned}
$$

1) 2013 Yearll Mathemates Ass2

Question 5 (10 marks)
(a)
 Imark.

- muotuse aruler - munt toe large.
(b) Midpoint of AC

$$
\begin{aligned}
P & =\left(\frac{x_{2}+x_{1}}{2}, \frac{y_{2}+y_{1}}{2}\right) \\
& =\left(\frac{-2+6}{2}, \frac{2+-6}{2}\right) \vee \text { Imark } \\
& =\left(\frac{4}{2},-4\right) \\
& =(2,-2)
\end{aligned}
$$

(c) Gradient $A C$

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{-6-2}{6+2} \\
& =\frac{-8}{8}
\end{aligned}
$$

$$
h_{m}=-1
$$

Imadk
(d)

$$
\left.\begin{array}{rl}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(+6+2)^{2}+(-6-2)^{2}} \\
& =\sqrt{64+64} \\
& =\sqrt{128} \\
& =8 \sqrt{2}
\end{array}\right\}
$$

(e)

$$
\begin{aligned}
m_{A C} & =-1 \quad(\text { from } c) \\
m_{B P} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad B(-1,-5) \quad p(2,-2) \\
& =\frac{-2+5}{2+1} \\
& =\frac{3}{3} \\
& =1
\end{aligned}
$$

Now

$$
\begin{aligned}
m_{A C C} \times m_{B B} & =-1 \times 1 \\
& =-1
\end{aligned}
$$

$\therefore A C \perp B P$
2 marks.
(f)

$$
\begin{array}{rlrl}
A & =\frac{1}{2} b h & & \\
& =\frac{1}{2} \times A C \times B P & B P & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\frac{1}{2} \times 8 \sqrt{2} \times \sqrt{18} & & =\sqrt{(2+1)^{2}+(-2+5)^{2}} \\
& =\sqrt{9+9} \\
& =4 \sqrt{36} \quad 1 & & =\sqrt{18} \quad V \\
& =24 \text { unts }^{2} \quad \checkmark 2 \text { manks } &
\end{array}
$$

(g) Ine $A C \quad A(-2,2) \quad m=-1$

$$
\left.\begin{array}{c}
y-y_{1}=m\left(x-x_{1}\right) \\
y-2=-1(x+2) \\
y-2=-x-2 \\
y=-x\} \\
x+y=0
\end{array}\right\}
$$

