NEWINGTON COLLEGE

2014 Assessment 2

Year 11 Mathematics (2 Unit)

General Instructions:

- Date of task Wednesday 28th May (Wk 16B) •
- Working time - 45 mins
- Weighting 15%
- Board-approved calculators may be used.
- Attempt all questions, start each question in a new booklet.
- Show all relevant mathematical reasoning and/or calculations.

Total marks - 39

Question / Outcome	Real Functions	Trigonometry	
Q1 Multiple choice	/2	/3	
Q2	/3	/8	
Q3	/7	/4	
Q4	/7	/5	
Total	/19	/20	

Outcomes to be assessed:

- P3 performs routine arithmetic and algebraic manipulation involving surds, simple rational expressions and trigonometric identities
- Ρ4 chooses and applies appropriate arithmetic, algebraic, graphical, trigonometric and geometric techniques

Question 1 (5 marks) - Answer on the multiple choice answer sheet.

(a)	The domain of the function		$y = \sqrt{4 - x^2}$ is defined as		
	Α	$-4 \le y \le 4$		В	$-2 \le x \le 2$
	С	$-2 \le y \le 2$		D	$-4 \le x \le 4$

(b) Given
$$\cos \theta = -\frac{3}{5}$$
 and $\sin \theta < 0$, the ratio for $\tan \theta =$

Α	$\frac{4}{5}$	В	$-\frac{4}{3}$
С	$-\frac{4}{5}$	D	$\frac{4}{3}$

(c) The exact value of $\sin 225^\circ$ is

A
$$-\frac{1}{\sqrt{2}}$$
 B $\frac{1}{\sqrt{2}}$
C $\sqrt{2}$ **D** $-\sqrt{2}$

- (d) The coordinates of the centre and the length of the radius of the circle $(x 4)^2 + y^2 = 36 \text{ are}$
 - A Centre (-4,0), radius = 6 B Centre (4,1), radius = 6
 - **C** Centre (4,0), radius = 36 **D** Centre (4,0), radius = 6

(e) The graph of $y = \tan x$ in the domain $0^0 \le x \le 360^0$ has asymptotes at

- **A** $x = 90^{\circ} and x = 270^{\circ}$ **B** $x = 180^{\circ}$
- **C** $x = 360^{\circ}$ **D** $x = 0^{\circ}$ and $x = 180^{\circ}$

End of Question 1

Question 2 (11 marks) - Start a new booklet

- What is the vertex of the parabola $y = -x^2 + 5$? (a) 1
- $\frac{2 \tan 30^{\circ}}{\cos 45^{\circ}}$, leaving your answer with a rational Find the exact value of 2 (b)

denominator.

- Solve the following equations in the domain $0^0 \le \theta \le 360^0$ (C) 4 (to the nearest minute)
 - $\sin\theta = \frac{1}{4}$ (i)

(ii)
$$2\tan\theta + 1 = 0$$

$$f(x) = \begin{cases} 1 - x & \text{for } x \le 0\\ 1 - x^2 & \text{for } 0 < x < 1\\ |x - 1| & \text{for } x \ge 1 \end{cases}$$

 $f\left(\frac{1}{2}\right) - 2f\left(-3\right) + f\left(2\frac{1}{2}\right)$ evaluate

(e) A plane is flying horizontally at a steady speed, 2 km above the ground. 2 A town can be seen from the plane 20 km away.

Find the angle of depression of the town from the plane, correct to the nearest degree.

End of Question 2

2

Question 3 (11 marks) – Start in a new booklet

(a) Find the exact length of the side AB in the triangle ABC

(b) Find the exact value of
$$\operatorname{cosec}(-120^{\circ})$$
 2

Leave your answer with a rational denominator.

(c) If
$$f(x) = 4x^2 - 4x - 7$$

(i) find $f(k-1)$ in simplest form 2
(ii) find the value(s) of k if $f(k-1) = 1$ 2

 $y \ge x^2 + 4 \quad and \quad x + y < 6$

on your own number plane. All intercepts must be shown.

End of Question 3

Question 4 (12 marks) - Start in a new booklet

(a) For the following functions, sketch the graph, showing all intercepts6 and asymptotes if they exist

(i)
$$y = \frac{-2}{x-1}$$

(ii)
$$y = (x + 2)^3$$

(iii)
$$y = 2|x| - 4$$

(b) State the range of
$$y = 2^{-x} + 1$$
 1

(c) Maya drove 12 kilometres from home(H) to the beach(B) on a bearing of 254° to pick up her children. She then drove to the supermarket(S), which has a bearing of 344° from her home. The distance between the supermarket and her home is 4.5 kilometres.
 (i) Drow a past diagram representing this information

(1)	Draw a neat diagram representing this information	1
(ii)	Show that the $\angle SHB$ is 90°	1
(iii)	Find the bearing of the supermarket from the beach.	3

Round your answer to the nearest degree.

End of Examination

Year 11 Mathematics Q1 – Multiple Choice Answer Sheet

Completely fill the response oval representing the most correct answer.

1	А	\bigcirc	$B \bigcirc$	СО	$D \bigcirc$
2	Α	\bigcirc	$B \bigcirc$	$C \bigcirc$	$D \bigcirc$
3	А	\bigcirc	$B \bigcirc$	СО	$D \bigcirc$
4	А	\bigcirc	вO	$C \bigcirc$	$D \bigcirc$
5	Α	\bigcirc	вO	СО	$D \bigcirc$

YEAR 11 MATHEMATICS ASSESSMENT 2 2014 SOLUTIONS TOTAL 39 MARKS - Moltiple Choice Question 2 (11 MARKS) QUESTION 1 (5 MARKS) (a) vertex (0,5) 1 domain (a) B -2 5x 52 $\frac{2 \times \frac{1}{\sqrt{3}}}{\frac{1}{\sqrt{2}}} = \frac{2}{\sqrt{3}}$ (6) 1 $ton \Theta = -\frac{4}{-3}$ (6) $=\frac{2\sqrt{2}}{\sqrt{3}}\times\frac{\sqrt{3}}{\sqrt{3}}$ = 4 3 = 256<u>_</u> D (c) $\sin 225^{\circ} = \sin(180^{\circ} + 45^{\circ})$ (c) (i) $\Theta = 14^{\circ}29^{1}$ IST QUAD $= - \sin 45^{\circ}$ Q = 165° 31' 200 QUAD = -<u>1</u> JZ A (1) $2 \tan \Theta = -1$ $tan \Theta = -\frac{1}{2}$ (d) centre (4,0) radius 6 basic angle: $\Theta = 26^{\circ}34'$ D $2nd \, Q.d: \, \Theta = \, 153^{\circ}26'$ L 4th Quad: @ = 333°26' 1 (e) $(d) \left(1 - \binom{1}{2}^{2}\right) - 2 \times \left(1 - 3\right) + \left|2^{\frac{1}{2}} - 1\right|$ 210 3603 $\frac{3}{4} - 8 + 1^{\frac{1}{2}} = -5\frac{3}{4}$ ann. Anns-(e) 0 Asymptotes at n=90° 20 km $Sin \Theta = \frac{2}{20}$ L 2 Km 2 = 270° $\Theta = 5^{\circ}44'2''$ = 6° (10 the nearest degree)

$$\begin{array}{c} \hline \bigcirc \square ESTIGD & S \\ \hline \bigcirc \square Sin 60^{\circ} & = & AB \\ \hline AB & = & 4 \times \left(\frac{5}{2} \\ \end{array} & 1 \\ \hline AB & = & 4 \times \left(\frac{5}{2} \\ \end{array} & 1 \\ \hline & = & 2I_{3} \text{ metres} & 1 \\ \hline & = & 2I_{3} \text{ metres} & 1 \\ \hline & & & & \\ \hline & = & 2I_{3} \text{ metres} & 1 \\ \hline & & & & \\ \hline & = & 2I_{3} \text{ metres} & 1 \\ \hline & & & & \\ \hline & &$$

QUESTION 4 Contd (b) Range y > 1 1 (c) (i) N S I 4.5 km H >74 12 km 2 10 в (ii) \angle SHNMPole = 16° ∠ BH STHPOLE = 74° L SHB = 180° - 74° - 16° = 90° t (iii) From the diagram Find Θ : tan $\Theta = 4.5$ 1 12 $\Theta = 20^{\circ} 33' 22''$ 1 L NBH = 74° (alternate angle) Bearing: 74° - 20° 33'22" = 53° 26' 38" = 053° to the nearest depree