\qquad
\qquad

NEWINGTON COLLEGE

2014

Assessment 2

Year 11 Mathematics (2 Unit)

General Instructions:

- Date of task - Wednesday $28^{\text {th }}$ May (Wk 16B)
- Working time - 45 mins
- Weighting -15%
- Board-approved calculators may be used.
- Attempt all questions, start each question in a new booklet.
- Show all relevant mathematical reasoning and/or calculations.

Total marks - 39

Question / Outcome	Real Functions	Trigonometry	
Q1 Multiple choice	$/ 2$	$/ 3$	
Q2	$/ 3$	$/ 8$	
Q3	$/ 7$	$/ 4$	
Q4	$/ 7$	$/ 5$	
Total	$/ 19$	$/ 20$	

Outcomes to be assessed:

P3 performs routine arithmetic and algebraic manipulation involving surds, simple rational expressions and trigonometric identities

Question 1 (5 marks) - Answer on the multiple choice answer sheet.

(a) The domain of the function $y=\sqrt{4-x^{2}}$ is defined as
A $-4 \leq y \leq 4$
B $\quad-2 \leq x \leq 2$
C $\quad-2 \leq y \leq 2$
D $\quad-4 \leq x \leq 4$
(b) Given $\cos \theta=-\frac{3}{5}$ and $\sin \theta<0$, the ratio for $\tan \theta=$
A $\frac{4}{5}$
B $-\frac{4}{3}$
C $-\frac{4}{5}$
D $\frac{4}{3}$
(c) The exact value of $\sin 225^{\circ}$ is
A $-\frac{1}{\sqrt{2}}$
B $\frac{1}{\sqrt{2}}$
C $\sqrt{2}$
D $\quad-\sqrt{2}$
(d) The coordinates of the centre and the length of the radius of the circle $(x-4)^{2}+y^{2}=36$ are
A Centre $(-4,0)$, radius $=6$
B Centre $(4,1)$, radius $=6$
C Centre $(4,0)$, radius $=36$
D Centre $(4,0)$, radius $=6$
(e) The graph of $y=\tan x$ in the domain $0^{\circ} \leq x \leq 360^{\circ}$ has asymptotes at
A $x=90^{\circ}$ and $x=270^{\circ}$
B $\quad x=180^{\circ}$
C $\quad x=360^{\circ}$
D $\quad x=0^{\circ}$ and $x=180^{\circ}$

Question 2 (11 marks) - Start a new booklet

(a) What is the vertex of the parabola $y=-x^{2}+5$?

1
(b) Find the exact value of $\frac{2 \tan 30^{\circ}}{\cos 45^{\circ}}$, leaving your answer with a rational denominator.
(c) Solve the following equations in the domain $0^{0} \leq \theta \leq 360^{\circ}$ (to the nearest minute)
(i) $\sin \theta=\frac{1}{4}$
(ii) $2 \tan \theta+1=0$
(d) Given
evaluate $\quad f\left(\frac{1}{2}\right)-2 f(-3)+f\left(2 \frac{1}{2}\right)$
(e) A plane is flying horizontally at a steady speed, 2 km above the ground.

A town can be seen from the plane 20 km away.
Find the angle of depression of the town from the plane, correct to the nearest degree.

End of Question 2

Question 3 (11 marks) - Start in a new booklet

(a) Find the exact length of the side $A B$ in the triangle $A B C$

(b) Find the exact value of $\operatorname{cosec}\left(-120^{\circ}\right)$

Leave your answer with a rational denominator.
(c) If $f(x)=4 x^{2}-4 x-7$
(i) find $f(k-1)$ in simplest form 2
(ii) find the value(s) of k if $f(k-1)=1$
(d) Sketch the intersection of the regions

$$
y \geq x^{2}+4 \text { and } x+y<6
$$

on your own number plane. All intercepts must be shown.

Question 4 (12 marks) - Start in a new booklet

(a) For the following functions, sketch the graph, showing all intercepts and asymptotes if they exist
(i) $y=\frac{-2}{x-1}$
(ii) $y=(x+2)^{3}$
(iii) $\quad \mathrm{y}=2|x|-4$
(b) State the range of $y=2^{-x}+1$
(c) Maya drove 12 kilometres from home(H) to the beach(B) on a bearing of 254^{0} to pick up her children. She then drove to the supermarket(S), which has a bearing of 344^{0} from her home. The distance between the supermarket and her home is 4.5 kilometres.
(i) Draw a neat diagram representing this information
(ii) Show that the $\angle S H B$ is 90° 1
(iii) Find the bearing of the supermarket from the beach.

Round your answer to the nearest degree.

Year 11 Mathematics Q1 - Multiple Choice Answer Sheet

Completely fill the response oval representing the most correct answer.

Year 11 mathematics Assessment 2014 SOLUTIONS TOTAL 39 MARKS

QLESTIO, 1 - molt.ple choice (5 MARKS)
(a) domain

$$
-2 \leq x \leq 2 \quad B
$$

(b)

$$
\tan \theta=\frac{-4}{-3}
$$

$$
=\frac{4}{3}
$$

D
(c)

$$
\begin{aligned}
\sin 225^{\circ} & =\sin \left(180^{\circ}+45^{\circ}\right) \\
& =-\sin 45^{\circ} \\
& =-\frac{1}{\sqrt{2}}
\end{aligned}
$$

A
(d) Centre $(4,0)$ rodius 6
(e)

Asymptotes at $x=90^{\circ}$

$$
x=270^{\circ}
$$

A
(c)
(i)

$$
\begin{aligned}
& \theta=14^{\circ} 29^{\prime} \quad \text { IsT aus } \\
& \theta=165^{\circ} 31^{\prime} \quad 200 \text { auts }
\end{aligned}
$$

$$
\text { (b) } \begin{aligned}
\sqrt{3}{ }_{2}^{35}=\frac{2 \times \frac{1}{\sqrt{3}}}{\frac{1}{\sqrt{2}}} & =\frac{\frac{2}{\sqrt{3}}}{\frac{1}{\sqrt{2}}} \\
& =\frac{2 \sqrt{2}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \\
& =\frac{2 \sqrt{6}}{3}
\end{aligned}
$$

(c)
(ii)

$$
\begin{aligned}
& \text { (ii) } \begin{aligned}
& 2 \tan \theta=-1 \\
& \tan \theta=-\frac{1}{2} \\
& \text { basic angle: } \theta=26^{\circ} 34^{\prime} \\
& \text { 2nd auad: } \theta=153^{\circ} 26^{\prime} 1 \\
& 4^{\text {th }} \text { Quad: } \theta=333^{\circ} 26^{\prime} \quad 1
\end{aligned}
\end{aligned}
$$

(d)

$$
\begin{aligned}
& \left(1-\left(\frac{1}{2}\right)^{2}\right)-2 \times(1-3)+\left|2 \frac{1}{2}-1\right| \\
= & \frac{3}{4}-8+1^{\frac{1}{2}}=-5 \frac{3}{4} 1
\end{aligned}
$$

(e)

$$
\begin{aligned}
& \theta=5^{\circ} 44^{\prime} 2^{\prime \prime} \\
&=6^{\circ} \text { (10 the } \\
& \text { nepleth } \\
& \text { deepter }
\end{aligned}
$$

QUESTION 3 (II MARKS)
(a)

$$
\begin{aligned}
& \sin 60^{\circ}=\frac{A B}{4} \\
& A B=4 \times \frac{\sqrt{3}}{2} 1 \\
&=2 \sqrt{3} \text { merres } 1
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \operatorname{cosec}\left(-120^{\circ}\right) \\
&= \frac{1}{\sin \left(-120^{\circ}\right)} \\
&= \frac{1}{\sin 240^{\circ}} \\
&=\quad \frac{1}{\sin 60^{\circ}} \\
&=\quad-\frac{1}{\sqrt{3} / 2}=-\frac{2}{\sqrt{3}} 1
\end{aligned}
$$

(c)
(i)

$$
\begin{aligned}
& f(k-1) \\
& =4(k-1)^{2}-4(k-1)-7 \\
& =4\left(k^{2}-2 k+1\right)-4 k+4-7 \\
& =4 k^{2}-8 k+4-4 k-3 \\
& =4 k^{2}-12 k+1 \quad 1
\end{aligned}
$$

(ii) if $f(k-1)=1$,

$$
\begin{array}{rl}
4 k^{2}-12 k+1 & =1 \\
4 k^{2}-12 k & =0 \\
4 k(k-3) & =0 \\
\therefore \quad k=0 \text { or } k & =3 . \\
1 & 1
\end{array}
$$

(d)

QUESTION 4 (12 MARKS)
(a)
(i)

(ii)

(iii)

QUESTION 4 contd
(b) Range $y>1$
(c)
(i)

(ii)

$$
\begin{aligned}
& \angle S H \text { Nothpole }=16^{\circ} \\
& \angle B H \text { smpoLe }=74^{\circ} \\
& \angle S H B=180^{\circ}-74^{\circ}-16^{\circ}=90^{\circ}
\end{aligned}
$$

(iii) From the diagram

Find $\theta: \quad \tan \theta=\frac{4.5}{12}$

$$
\theta=20^{\circ} 33^{\prime} 22^{\prime \prime}
$$

$\angle N B H=74^{\circ}$ (alternate angle)
Bearing : $74^{\circ}-20^{\circ} 33^{\prime} 22^{\prime \prime}$

$$
=53^{\circ} 26^{\prime} 38^{\prime \prime}
$$

$=053^{\circ}$ to the nearest degree

