

NORTH SYDNEY BOYS' HIGH SCHOOL

2008 Preliminary Course Assessment Task 2

MATHEMATICS

General instructions

- Working time 60 minutes.
- Write in the booklet provided.
- Each new question is to be started on a new page.
- Write using blue or black pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question.
- Attempt **all** questions.
- Question are **not** of equal value.
- At the conclusion of the examination, bundle the booklet within this paper and hand to examination supervisors.

Total Marks: 64

Marker's use only.

QUESTION	MARKS
1	/14
2	/28
3	/11
4	/11
Total	/64
Total (%)	/100

NAME:

Questi	ion 1 (14 Marks)	Commence a new page.	Marks	
(a)	Express $0.6\dot{1}$ as a fraction in	fraction in simplest form.		
(b)	A metal cube has volume of	2		
(c)	Factorise $125a^3 - 8b^3$.	2		
(d)	Solve: i. $\frac{x}{2} + 7 = 9.$ ii. $y(2y + 5) = 12.$		2 3	
(e)	Sketch the curve $y = (x+5)$	(4x - 3). Hence or otherwise, solve	3	

 $(x+5)(4x-3) \ge 0$

Question 2 (28 Marks)

q(x) = |1 - x|.

(b)

Commence a **new** page.

- Sketch the following on separate number planes, showing any intercepts with axes or asymptotes.
- State the domain & range for each function.

(a)
$$y = -2x + 5.$$
 4

(c)
$$f(x) = 16 - x^2$$
. 4

(d)
$$f(x) = \sqrt{16 - x^2}$$
. 4

(e)
$$y = 4^{-x}$$
. 4

(f)
$$y = \sqrt{x-1}$$
. 4

(g)
$$y = -\frac{1}{x-2}$$
. 4

2

 $\mathbf{4}$

Question 3 (11 Marks)		rks) Commence a new page.	Marks
(a) S	how whet	ther the following functions are odd, even or neither:	
	i.	$y = x^2 - 1.$	2
	ii.	$y = x^5 - 2x^3.$	2
	iii.	y = 2x + 1.	2
	iv.	y = 2x + 1.	2

(b) Solve the inequality |2x - 1| > 6 and graph the solution on the number line. **3**

Question 4 (11 Marks)		Marks) Commence a new page.	Marks
(a)	Given	$f(x) = x^2 - 3$, evaluate:	
	i.	f(2).	1
	ii.	f(3) - f(0).	1
	iii.	f(a+1)	2
(b)	Sketch	Sketch the following function:	
		$f(x) = \begin{cases} -x & x \ge 2\\ -1 & x < 2 \end{cases}$	
(c)	For the	For the function $y = \frac{x^2 - 4}{x + 2}$	
	i.	Find its domain.	1
	ii.	By simplifying the function, find its range.	1
	iii.	Sketch the function.	2

End of paper.

THIS PAGE IS INTENTIONALLY BLANK.

Solutions

Question 1

(a) (2 marks)

$$x = 0.6\dot{1}$$

$$10x = 6.1\dot{1}$$

$$\therefore 9x = 5.5 \qquad [1]$$

$$x = \frac{55}{90} = \frac{11}{18} \qquad [1]$$

(b) (2 marks)

$$V = 157.464 \text{ m}^3$$

Letting x be the side length of the square,

$$x^{3} = 157.464$$

$$x = \frac{27}{5} \qquad [1]$$

$$SA = 6x^{2}$$

$$= 6 \times \left(\frac{27}{5}\right)^{2}$$

$$= 174.96 \text{ m}^{2} \qquad [1]$$

(c) (2 marks)

$$125a^3 - 8b^3 = \overbrace{(5a-2b)}^{[1]} \overbrace{(25a^2 + 10ab + 4b^2)}^{[1]}$$

(d) i.
$$(2 \text{ marks})$$

$$\frac{\frac{x}{2} + \frac{7}{-7} = 9}{\frac{x}{2} = 2} \quad [1]$$
$$x = 4 \quad [1]$$

ii. (3 marks)

$$x < -5$$

C

$$y = -2x + 5$$

$$[2]$$

$$D = \{x : x \in \mathbb{R}\} \quad [1]$$
$$R = \{y : y \in \mathbb{R}\} \quad [1]$$

 $\frac{5}{2}$

(b) (4 marks)

(2y-3)(y+4) = 0 [1] $\therefore y = \frac{3}{2}, -4 \quad [1]$

$$x < -5$$
 or $x > \frac{3}{4}$ [1]

(c) (4 marks)

$$D = \{x : x \in \mathbb{R}\} [1]$$

$$R = \{y : y \le 16\} [1]$$

(d) (4 marks)

$$D = \{x : -4 \le x \le 4\}$$
 [1]
$$R = \{y : 0 \le y \le 4\}$$
 [1]

(e) (4 marks)

$$D = \{x : x \in \mathbb{R}\} [1]$$

$$R = \{y : y > 0\} [1]$$

$$D = \{x : x \neq 2\} [1]$$

$$R = \{y : y \neq 0\} [1]$$

[2]

Question 3

(a) i. (2 marks)

$$f(x) = x^2 - 1$$

$$f(a) = a^2 - 1$$

$$f(-a) = (-a)^2 - 1f(a) = f(-a)$$

$$= a^2 - 1$$

$$\therefore f(x) = x^2 - 1 \text{ is even.}$$

Alternatively, a sketch will suffice.

ii. (2 marks)

$$f(x) = x^{5} - 2x^{3}$$

$$f(-a) = (-a)^{5} - 2(-a)^{3}$$

$$= -a^{5} + 2a^{3}$$

$$= -(a^{5} - 2a^{3}) = -f(a)$$

$$f(-a) = -f(a)$$

$$\therefore f(x) = x^{5} - 2x^{3} \text{ is odd.}$$

iii. (2 marks)

$$f(x) = 2x + 1$$

$$f(-a) = 2(-a) + 1$$

$$= -2a + 1$$

$$-f(a) = -2a - 1$$

$$f(a) = 2a + 1$$

$$f(a) \neq f(-a) \neq -f(a)$$

$$\therefore f(x) \text{ is neither odd or even}$$

iv. (2 marks)

$$f(x) = |2x| + 1$$

$$f(a) = |2a| + 1$$

$$= 2|a| + 1$$

$$f(-a) = |2(-a)| + 1$$

$$= |-2a| + 1$$

$$= 2|a| + 1$$

$$f(a) = f(-a)$$

$$\therefore f(x) \text{ is even.}$$

Again a graph would suffice. It is the absolute value graph f(x) = |2x| shifted up by 1 unit.

(b) (3 marks)

$$|2x - 1| > 6$$

$$|2x - 1| = \begin{cases} 2x - 1 & \text{if } 2x - 1 > 0\\ -(2x - 1) & \text{if } 2x - 1 < 0 \end{cases} [1]$$

Case 1: 2x - 1 > 0

$$\begin{array}{l} 2x - 1 &> 6 \\ _{+1} &> 7 \\ _{\div 2} &> 7 \\ _{\div 2} &\\ x > \frac{7}{2} \end{array} \quad [1] \end{array}$$

Case 2: 2x - 1 < 0

NORTH SYDNEY BOYS' HIGH SCHOOL

Question 4

(a) i.
$$(1 \text{ mark})$$

$$\begin{split} f(2) &= 2^2 - 3 \\ &= 1 \end{split}$$
ii. (1 mark)

$$f(3) - f(0) = (3^2 - 3) - (0 - 3)$$

= 9

iii. (2 marks)

$$f(a+1) = (a+1)^2 - 3 \qquad [1]$$

= $a^2 + 2a + 1 - 3$
= $a^2 + 2a - 2 \qquad [1]$

(b)
$$(3 \text{ marks})$$

- [1] for sketching f(x) = -x for $x \ge 2$.
- [1] for sketching f(x) = -1 for x < 2.
- [1] for correct open circle & closed circles at x = 2.

ii.

$$D = \{x : x \neq -2\}$$

$$(1 \text{ mark})$$

$$y = \frac{(x-2)(x+2)}{(x+2)}$$
$$= x-2 \qquad x \neq -2$$
$$R = \{y : y \neq -4\}$$

iii. (2 marks)

