MATHEMATICS (PRELIMINARY COURSE)

2010 Assessment Task 2

General instructions

- Working time -1 period.
- Commence each new question on a new sheet.
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- Board approved calculators may be used.
- All necessary working should be shown in every question.
- Attempt all questions.
- 11M2A - Mr Lowe
\# PAGES USED:
\qquad

Marker's use only.

QUESTION	$\boxed{1}$	$[2$	$\boxed{3}$	$\boxed{4}$	5	Total	$\%$
MARKS	$\overline{6}$	$\overline{15}$	$\overline{9}$	$\overline{12}$	$\overline{11}$	$\overline{53}$	

Question 1
(6 Marks)
Commence a NEW page.
Marks
(a) Find the value of $\tan 26^{\circ}$ correct to 3 decimal places.
(b) Find the size of the acute angle A in degrees and minutes (to the nearest minute)
for $\sin A=\frac{5}{8}$.
(c) Why would an error be generated when $\cos ^{-1}\left(\frac{8.4}{7.6}\right)$ is entered on the calculator?
(d) Find the exact value of the following expressions:
i. $\sin 45^{\circ}$.

1
ii. $\cos 30^{\circ}$.
iii. $\cot 210^{\circ}$.

Question 2 (15 Marks)
Commence a NEW page.
(a) Solve for $0 \leq \theta<360^{\circ}$:
i. $\sin \theta=\frac{1}{2}$.
ii. $\cos 2 \theta=\frac{\sqrt{3}}{2}$.
iii. $\tan ^{2} \theta=1$.
iv. $2 \cos ^{2} \theta-\cos \theta=0$.
(b) For the curve $y=2 \sin 3 \theta$,
i. State the period.
ii. State the amplitude.
iii. Sketch the curve for $0^{\circ} \leq \theta \leq 360^{\circ}$.

Question 3 (9 Marks)
Commence a NEW page.
(a) For $A(2,4), B(5,6)$, find the
i. gradient of $A B$.
ii. midpoint of $A B$.
iii. distance between the points.
iv. equation of $A B$.
(b) Given the line $2 x-3 y=4$,
i. Express in gradient-intercept form.
ii. State the gradient.
iii. Find the angle the line makes with the positive x axis, correct to the nearest 1 minute.

Question 4 (12 Marks) Commence a NEW page.
(a) In $\triangle A B C, \sin B=\frac{4}{5}, a=6$ and $b=9$. Find $\sin A$ as the simplest exact value.
(b) Two sides of a triangular field are 60 m and 50 m with the included angle being 140°. By sketching a diagram, calculate correct to 3 decimal places:
i. the length of the third side.
ii. the area of the field.
(c) A rocket launched vertically from L is observed from A. Soon after the launch when at position M its angle of elevation is 25°. After it climbs 4000 m to position N, its angle of elevation is 66°.

NOT TO SCALE

i. Find $\angle A N L$ and $\angle N A M$.
ii. Use the sine rule to find $A M$.
iii. Find how far the observer is from the launch pad correct to the nearest metre.
Question 5 (11 Marks)
Commence a NEW page.
Marks
(a) Simplify $\cos ^{3} \theta+\cos \theta \sin ^{2} \theta$.
(b) If $\tan \alpha=-\frac{5}{12}$ and $0^{\circ} \leq \alpha \leq 360^{\circ}$, find the exact value of $\sin \alpha$.
(c) Prove $\frac{1}{1-\cos \theta}+\frac{1}{1+\cos \theta}=2 \operatorname{cosec}^{2} \theta$.
(d) Two cars leave point A at the same time. One car averages $80 \mathrm{~km} / \mathrm{h}$ along a straight road in the direction $025^{\circ} \mathrm{T}$. The other car averages $90 \mathrm{~km} / \mathrm{h}$ along a straight road in the direction $135^{\circ} \mathrm{T}$. How far apart (to the nearest kilometre) are they after 3 hours?

End of paper.

Suggested Solutions

Question 1

(a) (1 mark)

$$
\tan 26^{\circ}=0.488 \text { (3 d.p.) }
$$

(b) (1 mark)

$$
A=\sin ^{-1} \frac{5}{8}=38^{\circ} 41^{\prime}
$$

(c) (1 mark)

As $-1 \leq \cos \theta \leq 1$, and from the expression, $\cos \theta>1$, which is out of range.
(d) i. (1 mark)

$$
\sin 45^{\circ}=\frac{1}{\sqrt{2}}
$$

ii. (1 mark)

$$
\cos 30^{\circ}=\frac{\sqrt{3}}{2}
$$

iii. (1 mark)

$$
\begin{aligned}
\cot 210^{\circ} & =\frac{1}{\tan \left(180^{\circ}+30^{\circ}\right)} \\
& =\frac{1}{\tan 30^{\circ}}=\frac{1}{\frac{1}{\sqrt{3}}} \\
& =\sqrt{3}
\end{aligned}
$$

Question 2

(a) i. (2 marks)

$$
\begin{gathered}
\sin \theta=\frac{1}{2} \\
\theta=30^{\circ}, 150^{\circ}
\end{gathered}
$$

ii. (3 marks)

$$
\begin{gathered}
0^{\circ} \leq \theta<360^{\circ} \\
\therefore 0^{\circ} \leq 2 \theta<720^{\circ} \\
\cos 2 \theta=\frac{\sqrt{3}}{2} \\
2 \theta=30^{\circ}, 330^{\circ}, 390^{\circ}, 690^{\circ} \\
\therefore \theta=15^{\circ}, 165^{\circ}, 195^{\circ}, 345^{\circ}
\end{gathered}
$$

iii. (3 marks)

$$
\begin{gathered}
\tan ^{2} \theta=1 \\
\tan \theta= \pm 1 \\
\therefore \theta=45^{\circ}, 135^{\circ}, 225^{\circ}, 315^{\circ}
\end{gathered}
$$

iv. (3 marks)

$$
2 \cos ^{2} \theta-\cos \theta=0
$$

$$
\cos \theta(2 \cos \theta-1)=0
$$

$$
\begin{array}{rl|r}
\cos \theta & =0 & \cos \theta=\frac{1}{2} \\
\therefore \theta & =90^{\circ}, 270^{\circ} & \therefore \theta=60^{\circ}, 300^{\circ}
\end{array}
$$

$$
\therefore \theta=60^{\circ}, 90^{\circ}, 270^{\circ}, 300^{\circ}
$$

(b) i. (1 mark)

$$
T=\frac{360^{\circ}}{3}=120^{\circ}
$$

ii. (1 mark)

$$
a=2
$$

iii. (2 marks)

Question 3

(a) i. (1 mark)

$$
\begin{aligned}
& A(2,4) \quad B(5,6) \\
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& \quad=\frac{6-4}{5-2}=\frac{2}{3}
\end{aligned}
$$

ii. (2 marks)

$$
\begin{aligned}
(x, y) & =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& =\left(\frac{5+2}{2}, \frac{6+4}{2}\right) \\
& =\left(\frac{7}{2}, 5\right)
\end{aligned}
$$

iii. (1 mark)

$$
\begin{aligned}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(5-2)^{2}+(6-4)^{2}} \\
& =\sqrt{3^{2}+2^{2}}=\sqrt{13}
\end{aligned}
$$

iv. (2 marks)

$$
\begin{gathered}
\frac{y-y_{1}}{x-x_{1}}=m \\
\frac{y-6}{x-5}=\frac{2}{3} \\
\times(x-5) \\
y-\underset{+6}{6}=\frac{2}{3} x-\frac{10}{3} \\
y=\frac{2}{3} x+\frac{8}{3}
\end{gathered}
$$

(b) i. (1 mark)

$$
\begin{gathered}
2 x-\underset{-3 y}{3 y}=\underset{-3 y}{4} \\
3 y=2 x-4 \\
y=\frac{2}{3} x-\frac{4}{3}
\end{gathered}
$$

ii. (1 mark)

$$
m=\frac{2}{3}
$$

iii. (1 mark)

$$
\begin{aligned}
& m=\tan \theta \\
& \tan \theta=\frac{2}{3} \\
\therefore \theta= & \tan ^{-1} \frac{2}{3} \\
= & 33.69^{\circ}=33^{\circ} 41^{\prime}
\end{aligned}
$$

Question 4

(a) (2 marks)

$$
\frac{\sin A}{\underset{\times 6}{6}}=\frac{\sin B}{9} \times 6
$$

$$
\begin{aligned}
\sin A & =\frac{\grave{\phi}^{2} \times \frac{4}{5}}{\phi^{3}}=\frac{8}{5} \times \frac{1}{3} \\
& =\frac{8}{15}
\end{aligned}
$$

(b) i. (2 marks)

Using the cosine rule,

$$
\begin{aligned}
x^{2} & =60^{2}+50^{2}-2 \times 60 \times 50 \times \cos 140^{\circ} \\
& =10696.267 \cdots \\
x & =103.423 \mathrm{~m}
\end{aligned}
$$

ii. (2 marks)

$$
\begin{aligned}
A & =\frac{1}{2} a b \sin C \\
& =\frac{1}{2} \times 60 \times 50 \times \sin 140^{\circ} \\
& =964.181 \mathrm{~m}^{2}
\end{aligned}
$$

(c) i. (2 marks)

$$
\begin{aligned}
& \angle A N L=90^{\circ}-66^{\circ}=24^{\circ} \\
& \angle N A M=66^{\circ}-25^{\circ}=41^{\circ}
\end{aligned}
$$

ii. (2 marks)

$$
\begin{aligned}
& \frac{A M}{\substack{\sin 24^{\circ}}}=\frac{4000}{\times \times \sin 24^{\circ}} \frac{4 \sin ^{\circ} 24^{\circ}}{\sin 44^{\circ}} \\
& \begin{aligned}
& A M=\frac{4000 \sin 24^{\circ}}{\sin 41^{\circ}} \\
&=2479.88 \mathrm{~m}
\end{aligned}
\end{aligned}
$$

iii. (2 marks)

$$
\begin{aligned}
& \frac{x}{A M}=\cos 25^{\circ} \\
x & =A M \cos 25^{\circ} \\
& =\frac{4000 \sin 24^{\circ}}{\sin 41^{\circ}} \times \cos 25^{\circ} \\
= & 2247.53 \mathrm{~m} \\
= & 2248 \mathrm{~m} \text { (nearest metre) }
\end{aligned}
$$

Question 5

(a) (2 marks)

$$
\begin{aligned}
& \cos ^{3} \theta+\cos \theta \sin ^{2} \theta \\
= & \cos \theta\left(\cos ^{2} \theta+{\overrightarrow{\left.\sin ^{2} \theta\right)}}^{1}\right. \\
= & \cos \theta
\end{aligned}
$$

(b) (3 marks)
$\checkmark \quad[1]$ for locating α in the 2 nd or 4th quadrants
$\checkmark \quad$ [1] for finding correctly the hypotenuse in the corresponding \triangle
$\checkmark \quad$ [1] for final correct answer
Alternatively, $[-1]$ for each mistake.

$$
\tan \alpha=-\frac{5}{12}
$$

$\therefore \alpha$ is in the second or fourth quadrants

$$
\begin{gathered}
\therefore x=\sqrt{12^{2}+5^{2}}=13 \\
\therefore \sin \alpha= \pm \frac{5}{13}
\end{gathered}
$$

(c) (3 marks)

$$
\frac{1}{1-\cos \theta}+\frac{1}{1+\cos \theta}
$$

$$
\begin{aligned}
& =\frac{(1+\cos \theta)+(1-\cos \theta)}{(1-\cos \theta)(1+\cos \theta)} \\
& =\frac{2}{1-\cos ^{2} \theta} \\
& =\frac{2}{\sin ^{2} \theta} \\
& =2 \operatorname{cosec}^{2} \theta
\end{aligned}
$$

(d) (3 marks)
\checkmark [1] for diagram
$\checkmark \quad$ [1] for attempt to use cosine rule
\checkmark [1] for final correct answer

Apply the cosine rule to the triangle,

$$
x^{2}=240^{2}+270^{2}-2 \times 240 \times 270 \times \cos 110^{\circ}
$$

$$
=174825.81 \cdots
$$

$x=418.12 \mathrm{~km}$

