

MATHEMATICS (PRELIMINARY COURSE) 2010 Assessment Task 2

General instructions	Class (please \checkmark)
• Working time – 1 period.	\bigcirc 11M2A – Mr Lowe
• Commence each new question on a new sheet.	
• Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.	
• Board approved calculators may be used.	
• All necessary working should be shown in every question.	
• Attempt all questions.	

NAME: # PAGES USED:

Marker's use only.

QUESTION	1	2	3	4	5	Total	%
MARKS	6	15	9	12	11	53	

$\mathbf{Q}\mathbf{u}$	estion	n1 ((6 Marks)	Commence a	, NEW page.	Marks
(a)	Find	the val	lue of $\tan 26^{\circ}$ correc	ct to 3 decimal places	s.	1
(b)	Find for si	the siz $n A = \frac{1}{2}$	e of the acute angle $\frac{5}{8}$.	A in degrees and mi	inutes (to the nearest minute)	1
(c)	Why	would	an error be generat	ed when $\cos^{-1}\left(\frac{8.4}{7.6}\right)$) is entered on the calculator?	1
(d)	Find	the exa	act value of the follo	owing expressions:		
	i.	$\sin 45^\circ$	·			1
	ii.	$\cos 30$	°.			1
	iii.	$\cot 21$	0°.			1

Qu	estio	n 2 (15 Marks)	Commence a NEW page.	Marks
(a)	Solve	e for $0 \le \theta < 360^{\circ}$:		
	i.	$\sin \theta = \frac{1}{2}.$		2
	ii.	$\cos 2\theta = \frac{\sqrt{3}}{2}.$		3
	iii.	$\tan^2 \theta = 1.$		3
	iv.	$2\cos^2\theta - \cos\theta = 0.$		3
(b)	For t	he curve $y = 2\sin 3\theta$,		
	i.	State the period.		1
	ii.	State the amplitude.		1
	iii.	Sketch the curve for $0^{\circ} \leq \theta \leq$	360°.	2

Qu	estior	a 3 (9 Marks)	Commence a NEW page.	Marks
(a)	For 2	A(2,4), B(5,6), find the		
	i.	gradient of AB .		1
	ii.	midpoint of AB .		2
	iii.	distance between the points.		1
	iv.	equation of AB .		2
(b)	Give	n the line $2x - 3y = 4$,		
	i.	Express in gradient-intercept for	rm.	1
	ii.	State the gradient.		1
	iii.	Find the angle the line makes w	ith the positive x axis, correct to the nearest	1

iii. Find the angle the line makes with the positive x axis, correct to the nearest minute.

Qu	estion 4	(12 Marks)	Commence a NEW page.	Marks
(a)	$\mathrm{In} \bigtriangleup AB$	$C, \sin B = \frac{4}{5}, a = 6$	and $b = 9$. Find $\sin A$ as the simplest exact value.	2
(b)	Two side 140°. By	es of a triangular fiel v sketching a diagram	ld are 60 m and 50 m with the included angle bein, calculate correct to 3 decimal places:	ng
	i. th	e length of the third	side.	2
	ii. th	e area of the field.		2

(c) A rocket launched vertically from L is observed from A. Soon after the launch when at position M its angle of elevation is 25°. After it climbs 4 000 m to position N, its angle of elevation is 66°.

NOT TO SCALE

i. Find $\angle ANL$ and $\angle NAM$.2ii. Use the sine rule to find AM.2iii. Find how far the observer is from the launch pad correct to the nearest metre.2

Qu	estion 5	(11 Marks)	Commence a NEW page.	Marks
(a)	Simplify	$\cos^3\theta + \cos\theta\sin^2\theta.$		2
(b)	If $\tan \alpha =$	$=-\frac{5}{12}$ and $0^{\circ} \le \alpha \le 30$	60° , find the exact value of $\sin \alpha$.	2

(c) Prove
$$\frac{1}{1-\cos\theta} + \frac{1}{1+\cos\theta} = 2\operatorname{cosec}^2\theta.$$
 3

(d) Two cars leave point A at the same time. One car averages 80 km/h along a straight road in the direction 025°T. The other car averages 90 km/h along a straight road in the direction 135°T. How far apart (to the nearest kilometre) are they after 3 hours?

End of paper.

Suggested Solutions

Question 1

- (a) (1 mark) $\tan 26^\circ = 0.488 \ (3 \ \rm{d.p.})$
- (b) (1 mark)

$$A = \sin^{-1}\frac{5}{8} = 38^{\circ}41'$$

- (c) (1 mark)As $-1 \leq \cos \theta \leq 1$, and from the expression, $\cos \theta > 1$, which is out of range.
- (d) i. (1 mark)

$$\sin 45^\circ = \frac{1}{\sqrt{2}}$$

ii. (1 mark)

$$\cos 30^\circ = \frac{\sqrt{3}}{2}$$

iii. (1 mark)

$$\cot 210^{\circ} = \frac{1}{\tan(180^{\circ} + 30^{\circ})}$$
$$= \frac{1}{\tan 30^{\circ}} = \frac{1}{\frac{1}{\sqrt{3}}}$$
$$= \sqrt{3}$$

Question 2

(a) i. (2 marks)

$$\sin \theta = \frac{1}{2}$$
$$\theta = 30^{\circ}, 150^{\circ}$$

ii. (3 marks)

$$0^{\circ} \leq \theta < 360^{\circ}$$
$$\therefore 0^{\circ} \leq 2\theta < 720^{\circ}$$
$$\cos 2\theta = \frac{\sqrt{3}}{2}$$
$$2\theta = 30^{\circ}, 330^{\circ}, 390^{\circ}, 690^{\circ}$$
$$\therefore \theta = 15^{\circ}, 165^{\circ}, 195^{\circ}, 345^{\circ}$$

iii. (3 marks)

$$\tan^2 \theta = 1$$
$$\tan \theta = \pm 1$$
$$\therefore \theta = 45^\circ, 135^\circ, 225^\circ, 315^\circ$$

iv.
$$(3 \text{ marks})$$

$$2\cos^{2}\theta - \cos\theta = 0$$

$$\cos\theta(2\cos\theta - 1) = 0$$

$$\cos\theta = 0$$

$$\therefore \theta = 90^{\circ}, 270^{\circ}$$

$$\therefore \theta = 60^{\circ}, 90^{\circ}, 270^{\circ}, 300^{\circ}$$

$$T = \frac{360^{\circ}}{3} = 120^{\circ}$$

ii. (1 mark)

$$a=2$$

iii. (2 marks)

Question 3

(a) i. (1 mark)

$$\begin{array}{l} A(2,4) \quad B(5,6) \\ m = \frac{y_2 - y_1}{x_2 - x_1} \\ = \frac{6 - 4}{5 - 2} = \frac{2}{3} \end{array}$$

ii. (2 marks)

$$(x,y) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$
$$= \left(\frac{5+2}{2}, \frac{6+4}{2}\right)$$
$$= \left(\frac{7}{2}, 5\right)$$

iii. (1 mark)

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

= $\sqrt{(5 - 2)^2 + (6 - 4)^2}$
= $\sqrt{3^2 + 2^2} = \sqrt{13}$

iv. (2 marks)

$$\frac{y - y_1}{x - x_1} = m$$
$$\frac{y - 6}{x - 5} = \frac{2}{3}$$
$$\times (x - 5)$$
$$y - \frac{6}{+6} = \frac{2}{3}x - \frac{10}{3}$$
$$y = \frac{2}{3}x + \frac{8}{3}$$

(b) i. (1 mark)

$$2x - 3y = 4$$
$$-3y = -3y$$
$$3y = 2x - 4$$
$$y = \frac{2}{3}x - \frac{4}{3}$$

ii. (1 mark)

$$m = \frac{2}{3}$$

iii. (1 mark)

$$m = \tan \theta$$
$$\tan \theta = \frac{2}{3}$$
$$\therefore \theta = \tan^{-1} \frac{2}{3}$$
$$= 33.69^{\circ} = 33^{\circ} 41'$$

Question 4

(a) (2 marks)

(b) i. (2 marks)

Using the cosine rule,

 $x^{2} = 60^{2} + 50^{2} - 2 \times 60 \times 50 \times \cos 140^{\circ}$ = 10696.267... $x = 103.423 \,\mathrm{m}$

ii. (2 marks)

$$A = \frac{1}{2}ab\sin C$$
$$= \frac{1}{2} \times 60 \times 50 \times \sin 140^{\circ}$$
$$= 964.181 \,\mathrm{m}^2$$

(c) i. (2 marks)

$$\angle ANL = 90^{\circ} - 66^{\circ} = 24^{\circ}$$
$$\angle NAM = 66^{\circ} - 25^{\circ} = 41^{\circ}$$

ii. (2 marks)

$$\frac{AM}{\underset{\times \sin 24^{\circ}}{\sin 24^{\circ}}} = \frac{4\ 000}{\underset{\times \sin 24^{\circ}}{\sin 41^{\circ}}}$$
$$AM = \frac{4\ 000\ \sin 24^{\circ}}{\sin 41^{\circ}}$$
$$= 2\ 479.88\ \mathrm{m}$$

iii. (2 marks)

$$\frac{x}{AM} = \cos 25^{\circ}$$
$$x = AM \cos 25^{\circ}$$
$$= \frac{4\,000 \sin 24^{\circ}}{\sin 41^{\circ}} \times \cos 25^{\circ}$$
$$= 2\,247.53 \,\mathrm{m}$$
$$= 2\,248 \,\mathrm{m} \text{ (nearest metre)}$$

Question 5

(a) (2 marks)

$$\cos^{3}\theta + \cos\theta\sin^{2}\theta$$
$$= \cos\theta(\cos^{2}\theta + \sin^{2}\theta)$$
$$= \cos\theta$$

- (b) (3 marks)
 - ✓ [1] for locating α in the 2nd or 4th quadrants
 - ✓ [1] for finding correctly the hypotenuse in the corresponding △
 - \checkmark [1] for final correct answer

Alternatively, [-1] for each mistake.

 $\therefore \alpha$ is in the second or fourth quadrants

$$\therefore x = \sqrt{12^2 + 5^2} = 13$$
$$\therefore \sin \alpha = \pm \frac{5}{13}$$

(c) (3 marks)

$$\frac{1}{1 - \cos \theta} + \frac{1}{1 + \cos \theta}$$
$$= \frac{(1 + \cos \theta) + (1 - \cos \theta)}{(1 - \cos \theta)(1 + \cos \theta)}$$
$$= \frac{2}{1 - \cos^2 \theta}$$
$$= \frac{2}{\sin^2 \theta}$$
$$= 2 \operatorname{cosec}^2 \theta$$

(d) (3 marks)

- \checkmark [1] for diagram
- \checkmark [1] for attempt to use cosine rule
- \checkmark [1] for final correct answer

Apply the cosine rule to the triangle,

$$x^{2} = 240^{2} + 270^{2} - 2 \times 240 \times 270 \times \cos 110^{\circ}$$

= 174 825.81 · · ·
$$x = 418.12 \text{ km}$$