Question 1

(a) Simplify:
i) $\quad \sqrt{27}$
ii) $\sqrt{72}-\sqrt{50}$
(b) Expand and simplify:
$(3 \sqrt{2}+1)(\sqrt{2}-1)$
(c) Evaluate $\sqrt{\frac{4.56+86.7}{6.4^{3} \times 5.63}}$ correct to 3 significant figures.
(d) Express $0 . \dot{3} \dot{5}$ as a simple fraction.
(e) Factorise completely:
i) $4 x^{2}-36$
ii) $5 y-15+x y-3 x$
(f) Simplify:
i) $\quad \frac{x-4}{2}+\frac{x+3}{3}$
ii) $\frac{a+2}{a^{2}-3 a-4} \div \frac{a^{2}+4 a+4}{a+1}$
(g) Solve the equation and leave the answer in simplest surd form:

$$
n^{2}+10 n+7=0
$$

(h) A number is increased by $7 \frac{1}{2} \%$ to give 86 . Find the number.
(a) Solve $|2 x-1|<3$ and graph the answer on a number line.
(b) Solve $2^{x}=128$
(c) Solve simultaneously:

$$
\begin{aligned}
& 3 x+2 y=-6 \\
& x-2 y=-10
\end{aligned}
$$

(d) State the domain of the function:

$$
y=\frac{4}{x-3}
$$

(e) State the range of the function:

$$
y=3^{x}+3
$$

(f) Determine $f(-x)$ for the function $f(x)=x^{3}-5 x$ and hence state whether the function is odd, even or neither. Give a reason for your answer.
(g) Simplify $8^{\frac{-2}{3}} \times 49^{\frac{1}{2}}$
(h) Simplify $|-5|-|8|$.
(i) i) Sketch the graphs of $y=2 x+3$ and $y=x^{2}$ on the same Cartesian Plane.

Clearly show the intercepts with the axes.
iii) Shade the region of the plane defined by the inequations $y \geq x^{2}$ and $y \leq 2 x+3$.
(a)

The points $\mathrm{A}(3,4), \mathrm{B}(1,-6)$ and $\mathrm{C}(-5,2)$ are the vertices of a triangle.
i) Show that the equation of the line $A C$ is $x-4 y+13=0$.

Call this equation line k.
ii) $\quad \mathrm{P}(2,-1)$ is the mid-point of AB . Find the gradient of BC and hence, find the equation of the line l through P parallel to $B C$.
iii) Find the point of intersection Q of the lines k and l.
iv) Show that Q is the mid-point of $A C$.
v) Show that $P Q=\frac{1}{2} B C$
vi) Find the perpendicular distance from B to $A C$.
(b) Find the length of radius and the coordinates of the centre of the circle:

$$
(x-4)^{2}+(y-5)^{2}=16
$$

(c) Find the equation of the line with x-intercept 4 that makes an angle of 45° with the x-axis.
(a) Solve $2 \cos \theta=-1$ for $0^{\circ} \leq \theta \leq 360^{\circ}$
(b) Show that $\sec \theta+\tan \theta=\frac{1+\sin \theta}{\cos \theta}$
(c) Find the exact values of:
i) $\quad \operatorname{cosec} 135^{\circ}$
ii) $\quad \tan \left(-150^{\circ}\right)$
(d) If $\cos \alpha=\frac{2}{3}$, find the exact value of $\tan \alpha$ where α is acute.
(e) On a golf course, the distance from a tee T to the hole H is 350 m . A golfer's ball comes to rest at point $B, 200 \mathrm{~m}$ from T. Angle HTB is 10°, as shown in the diagram. How far is B from H ? Give your answer correct to 2 decimal places.

NOT TO SCALE
a) A series has nth term given by $T_{n}=n^{3}-5$. Find:
i) the $4^{\text {th }}$ term $\quad 2$
ii) which term is 5827
b) The limiting sum of a geometric series is $-\frac{3}{10}$ and its first term is $-\frac{1}{2}$. Find the common ratio of the series.
c) Find which term -370 is in the series $17+8-1-\ldots$
d) In the diagram, $A B C D$ is a square and $A B T$ is an equilateral triangle. The line $T P$ bisects $\angle A T B$, and $\angle P A B=15^{\circ}$.
i) Copy the diagram onto your examination paper and explain why

$$
\angle P A T=75^{\circ}
$$

ii) Prove that $\triangle T A P \equiv \triangle D A P$
iii) Find $\angle A P T$.
iv) Prove that $\triangle D A P$ is isosceles.

$\angle P A T=75^{\circ}$

Qa) (i) $\sqrt{27}=\sqrt{3 \times 3 \times 3}=3 \sqrt{3}$
(ii) $\sqrt{72}-\sqrt{50}=b \sqrt{2}-5 \sqrt{2}$

$$
=\sqrt{2} v
$$

(b) $(3 \sqrt{2}+1)(\sqrt{2}-1)$

$$
\begin{align*}
& =3.2+\sqrt{2}-3 \sqrt{2}-1 \\
& =6-2 \sqrt{2}-1 \tag{2}\\
& =5-2 \sqrt{2}
\end{align*}
$$

(k)

$$
\begin{align*}
& \sqrt{\frac{4.56+86.7}{64^{3} \times 5.63}} \tag{3}\\
= & 0.249^{\mathrm{V}} \\
= & 3.5 . f)
\end{align*}
$$

$$
\begin{equation*}
\text { f(ii) } \frac{a+2}{a^{2}-3 a-4} \div \frac{a^{2}+4 a+4}{a+1} \tag{2}
\end{equation*}
$$

$$
=\frac{(a+2) 1}{(a+1)(a-4)} \times \frac{(a+1) 1}{(a+2)(a+2)}
$$

(2)

$$
a=1
$$

$$
b=10
$$

d

$$
=\frac{1}{(a-4)(a+2)} \sqrt{ }
$$

$$
\begin{aligned}
\text { Let } x & =0.3535 \\
100 x & =35.3535 \\
x & =0.3535 \\
99 x & =35 \\
x & =\frac{35}{99}
\end{aligned}
$$

(g)
cannot factorise \therefore use formula

$$
n=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
c=7
$$

$$
=\frac{-(10) \pm \sqrt{16^{2}-4\left(1 x_{1}\right)}}{2(1)}
$$

(2)
(ii)

$$
\begin{align*}
& 5 y-15+x y-3 x \\
= & 5(y-3)+x(y-3) \\
= & (y-3)(5+x) \tag{2}
\end{align*}
$$

(f)

$$
\text { (i) } \begin{align*}
& \frac{x-4}{2}+\frac{x+3}{3} \\
& \frac{3(x-4)}{6}+\frac{2(x+3)}{6} \\
= & \frac{3 x-12+2 x+6}{6} \\
= & \frac{5 x-6}{6} \tag{2}
\end{align*}
$$

Q_{2}
(a) $|2 x-1|<3$
$2 x-1<3$ or $-(2 x-1)<3$

$$
\begin{array}{ll}
2 x<4 & -2 x+1<3 \\
x<2 & -2 x<2
\end{array}
$$

$$
x>-1
$$

$$
\therefore \quad-1<x<2 \checkmark
$$

(3) (g)
(b)

$$
\begin{aligned}
2^{x} & =128 \\
2^{x} & =2^{7} \\
x & =7
\end{aligned}
$$

(c)
(2)

$$
\text { (c) } \begin{align*}
3 x+2 y & =-6 \tag{A}\\
x-2 y & =-10 \\
A+B \quad 4 x & =-16 \\
x & =-4
\end{align*}
$$

Substitute $x=-4$ into. (A)

$$
\begin{aligned}
3(-4)+2 y & =-6 \\
2 y & =-6+12 \\
2 y & =6 \\
y & =3
\end{aligned}
$$

$\therefore x=-4$ and $y=3$
(d)

$$
\begin{array}{r}
y=\frac{4}{x-3} \tag{1}\\
\quad \therefore D=\{x \neq x \neq\}
\end{array}
$$

real vake's\}
(e) $R=\{y: y \text { all real values }\}^{2}$ $y>3$.
(3) i)
(2)
(f) $f(x)=x^{3}-5 x$

$$
\begin{align*}
& \therefore f(-x)=(-x)^{3}-5(-x) \\
&=-x^{3}+5 x \\
&=-\left(x^{3}-5 x\right) \\
& f(x)=-f(x) \\
& \therefore \text { odd } \tag{2}
\end{align*}
$$

$8^{-\frac{2}{3}} \times 49^{\frac{1}{2}}$

$$
=\frac{1}{8^{2 / 3}} \times\left(7^{2}\right)^{1 / 2}
$$

$$
=\frac{1}{\sqrt[3]{8^{2}}} \times 7
$$

$$
=\frac{1}{\sqrt[3]{\left(2^{3}\right)^{2}}} \times 7 \uparrow
$$

$$
=\frac{1}{\sqrt[3]{2^{6}}} \times 7
$$

$$
=\frac{1}{2^{2}} \times 7
$$

$$
\begin{equation*}
=\frac{1}{4} \times 7 \tag{3}
\end{equation*}
$$

$$
=7 / 4
$$

(6) $|-5|-|8|=5-8=-3$
i)

Total: [20]

$$
\begin{gather*}
x-4(3)+13^{4}=0 \\
x-12+13=0 \tag{3}\\
x=-1 \\
\therefore Q(-1,3)
\end{gather*}
$$

(iv)

$$
(i)
$$

AC Midpont $=\left(\frac{3+-5}{2}, \frac{4+2}{2}\right)$

$$
=\left(-\frac{2}{2}, \frac{6}{2}\right)
$$

$$
=(-1,3) \checkmark
$$

$$
\begin{equation*}
\therefore Q(-1,3) \text { is } \tag{2}
\end{equation*}
$$

Midpont ot $A C$
(ii) $P(2,-1), A 1$ to $B C$

$$
\begin{aligned}
\text { Gradient ot } \begin{aligned}
B C & =\frac{-6-2}{1-(-5)} \\
& =\frac{-8}{6} \\
& =-4 / 3
\end{aligned}
\end{aligned}
$$

\therefore Gradient of $l=-\frac{4}{3}$

$$
\begin{gathered}
y-(-1)=-\frac{4}{3}(x-2) \\
y+1=-\frac{4}{3}(x-2)^{2}
\end{gathered}
$$

$$
3 y+3=-4 x+8
$$

$4 x+3 y-5=0 \quad$ or $\quad y=-\frac{4}{3} x+5 / 3$

$$
\begin{array}{ll}
k: & x-4 y+13=0 \\
e: & 4 x+3 y-15=0 \tag{B}
\end{array}
$$

(1) $\times 4 \quad-4 x-16 y+5 z=0$

$$
\begin{array}{rlrl}
19 y-57 & =0 & d & =\left|\frac{(1)(1)+(-4)(-6)}{\sqrt{1^{2}+(-4)^{2}}} 13\right| \\
19 y & =57 & & (2) \\
y & =3 & & =\frac{|1+24+13|}{\sqrt{17}}=\frac{38}{\sqrt{17}} \text { units }
\end{array}
$$

(iv) k
(vi) (3) - 0

$$
\begin{aligned}
& x-4 y+13=0 \quad(A C \\
& a=1, b=-4, c=13 \quad B(1,-6) \\
& d=\frac{|(1)(1)+(-4)(-6)+13|}{\sqrt{1^{2}+(-4)^{2}}} \sqrt{4} \\
& =\frac{11+24+13 \mid}{\sqrt{17}}=\frac{38}{\sqrt{17}} \text { units }
\end{aligned}
$$

$$
\begin{align*}
& \text { (v) } \quad P Q=\frac{1}{2} B C \\
& P(2,-1) \\
& B(1,-6) \\
& Q(-1,3) \\
& C(-5+2) \\
& d=\sqrt{\left(x_{2}-x\right)^{2}+\left(y_{2}-y\right)^{2}} \\
& P_{Q d}=\sqrt{\left.(-1-2)^{2}+(3-2-1)\right)^{2} n} \\
& =\sqrt{9+16} \square \\
& =\sqrt{25} \\
& =5 \\
& B c_{d}=\sqrt{(-5-1)^{2}+(2-(-6-1))^{2}} \\
& \begin{array}{l}
=\sqrt{36}+64 \\
=\sqrt{108}
\end{array} \\
& =10 \tag{4}\\
& \therefore P Q=\frac{1}{2} B C
\end{align*}
$$

Q3(b) $(x-4)^{2}+(y-5)^{2}=16$

$$
\begin{align*}
& r=\sqrt{16} \\
& r=4 \tag{2}
\end{align*}
$$

Cordinates of centre $(4,5)$
(c)

$$
\begin{gathered}
X(4,0) \\
M=\tan 4 c^{0} A \\
\therefore M=1 \\
\therefore y=1 x+b \\
\text { stituta } x(4,0): \Lambda \\
0=1(4)+b \\
-4=b \\
\therefore y=1 x-4
\end{gathered}
$$

Substitute $x(4,0): \Lambda$

$$
y=1 x-4
$$

Total: 22
Q4
(a) $2 \cos \theta=-1$

$$
\cos \theta=-\frac{1}{2}
$$

θ is $\therefore 2^{n d}+3^{r d}$ guapiont

$$
\begin{gather*}
\frac{\text { and quadrat }}{180^{\circ}-60^{\circ}} \quad \frac{3_{d} \text { quadrout }}{180^{\circ}+60^{\circ} \mathrm{V}} \\
=120^{\circ} \sim \tag{3}\\
=240^{\circ} \mathrm{n}
\end{gather*}
$$

(b)

$$
\begin{align*}
\sec \theta+\tan \theta=\frac{1+\sin \theta}{\cos \theta} \\
\begin{aligned}
& \text { LAS } \theta+\tan \theta \\
&=\frac{1}{\cos \theta} r+\frac{\sin \theta}{\cos \theta} \\
&=\frac{1+\sin \theta}{\cos \theta} \\
&=\text { RHS }
\end{aligned}
\end{align*}
$$

(c)

$$
\text { (i) } \begin{align*}
\operatorname{coscc} 135^{\circ} & =\frac{1}{\sin 135^{\circ}} \\
& =\frac{1}{\left(\sin 180^{\circ}-45^{\circ}\right)} \\
& =\frac{1}{\sin 45^{\circ}} \\
& =\frac{1}{\sqrt{2}}=\sqrt{2} \tag{2}
\end{align*}
$$

(ii) $\tan \left(-150^{\circ}\right)$
(d) $\cos \alpha=\frac{2}{3}\left(\frac{a}{h}\right)$

$$
\begin{aligned}
a^{2} & =3^{2}-2^{2} \\
& =9-4 \\
& =5 \\
0 & =\sqrt{5}
\end{aligned}
$$

$$
\begin{equation*}
\tan \alpha=\frac{\sqrt{5}}{2} \tag{2}
\end{equation*}
$$

(e)

$$
\begin{aligned}
t^{2} & =b^{2}+h^{2}-2 b h \cos T V \\
& \left.=(35)^{2}+(200)^{2}-330\right)(200) \\
& =24 b^{26} .9^{6} \cos 10^{\circ}
\end{aligned}
$$

$$
\begin{equation*}
t=156.93 \mathrm{~m} \tag{3}
\end{equation*}
$$

Q
9i)

$$
\begin{align*}
T_{n} & =n^{3}-5 \\
T_{4} & =4^{3}-5 \\
& =59 \tag{D}
\end{align*}
$$

(a)

(iii)

$$
\begin{gather*}
T n=5827 \quad n=? \\
5827 v=n^{3}-5 n \\
5832=n^{3} n \\
\sqrt{5832}=n \\
18=n \tag{3}
\end{gather*}
$$

(b)

$$
\begin{aligned}
& S_{0}=\frac{a}{1-r} \\
& \frac{-3}{10} \hat{1}=\frac{-\frac{1}{2}}{1-r}
\end{aligned}
$$

$$
a=-\frac{1}{2}
$$

$$
\begin{align*}
\frac{-3}{10} & =\frac{-\frac{1}{2}}{1-r} \\
-3(1-r) & =-5 \\
-3+3 r & =-5 n \\
3 r & =-2 \tag{3}\\
r & =-2 / 3
\end{align*}
$$

$$
S_{\infty}=-3 / 1
$$

(c)

$$
\begin{gather*}
17+8+-1-\ldots \quad T_{n}=-370 \\
a=17 \quad d=-9 \tag{}\\
T n=a+(n-1) d \\
-370=17+(n-1)(-9) n \\
-370=17-9 n+9 \\
-370-26=-9 n \\
v-396=-9 n \tag{3}\\
v \frac{396}{9}=n \tag{3}\\
44=n
\end{gather*}
$$

(iii)

$$
\begin{aligned}
\angle A T P & =30^{\circ} \quad(\text { Halfof } \angle A T B) \\
\angle A P T & =180^{\circ} \mathrm{V}\left(75^{\circ}+30^{\circ}\right) \\
& =75^{\circ}
\end{aligned}
$$

(iv) $\triangle A T P$ is isoscéles

$$
\begin{aligned}
& T P \text { is isosceles } \\
& \left(\angle P A T=\angle T A P=75^{\circ}\right)
\end{aligned}
$$

Since GATP= ODAP$\triangle D A P$ is also is asceles

