Question 1 [Maximum mark: 10] [Start on a new green sheet]

(a) Evaluate $\sqrt{\frac{\pi^{2}+3.2^{3}}{5.6-1.2^{2}}}$ correct to three significant figures.
(b) Simplify $\frac{x}{x^{2}-4}+\frac{2}{x-2}$
(c) Find integers a and b such that $\frac{1}{\sqrt{5}-2}=a+b \sqrt{5}$
(d) Show that $f(x)=x^{4}+3 x^{2}-1$ is an even function.
(e) Solve the inequality $x^{2}-x-12<0$ 2

Question 2 [Maximum mark: 10] [Start on a new green sheet]

(a) The diagram shows a sketch of the curve $y=g(x)$

(i) Write down the range of $g(x)$.
(ii) For what values of x is $g(x)$

- Increasing
- Decreasing
(b) Shade the region in the Cartesian plane for which the following inequalities hold simultaneously.

$$
\begin{equation*}
y<x-2, \quad y \geq 0 \text { and } x \geq 6 \tag{3}
\end{equation*}
$$

(c) Simplify: $\frac{6^{m}+2^{m}}{2^{m}}$
(d) Solve $\quad 9^{x-3}=3$

Question 3 [Maximum mark : 10]

[Start on a new green sheet]
(a) Evaluate the following limits:
(i) $\lim _{x \rightarrow 2} \frac{2 x+3}{x-1}$

1
(ii) $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x-1}$
(b) $A B C D$ is a parallelogram. Find the values of m, w, y and z.

(c) Sketch the following graphs and state their domain.
(i) $y=\sqrt{16-x^{2}}$
(ii) $y=\frac{3}{x-2},-3 \leq y \leq-1$
(a) Find the value of x.

(b) $A B C D$ is a rhombus, $A X$ is perpendicular to $B C$ and intersects $B D$ at L.

Not to scale
(i) Copy the diagram into your Answer sheet and explain why

$$
\angle A D B=\angle C D B
$$

(ii) Prove that $\triangle A L D$ and $\triangle C L D$ are congruent.
(iii) Show that $\angle D A L$ is a right angle.
(iv) Hence or otherwise find the size of $\angle L C D$

End of Examination

\qquad
Question 1.
(e) $x^{2}-x-12<0$
(a) $3.20<(2)[32014721] \quad(x-4)(x+3)$

$$
x=4,-3
$$

$$
\text { (b) } \begin{array}{r}
\frac{x}{x^{2}-4}+\frac{2}{x-2} \\
\frac{x+2(x+2)}{(x+2)(x-2)} \\
=\frac{x+2 x+4}{(x+2)(x-2)} \\
=\frac{3 x+4}{(x+2)(x-2)} \tag{2}
\end{array}
$$

$$
\begin{aligned}
& \text { (c) } \frac{1}{\sqrt{5}-2} \times \frac{\sqrt{5}+2}{5+2} \\
& =\frac{\sqrt{5}+2}{(5)^{2}-2^{2}}=\frac{\sqrt{5}+2}{5-4} \\
& =\sqrt{5}+2 \cdot x \\
& \therefore a=2 . x \\
& b=1 . x
\end{aligned}
$$

(d)

$$
\begin{align*}
f(x) & =x^{4}+3 x^{2}-1 \\
f(-x) & =(-x)^{4}+3(-x)^{2}-1 \\
& =x^{4}+3 x-1 \\
& =f(x) \tag{2}
\end{align*}
$$

$\therefore f(x)$ is even.

Question 2 ［Maximum mark：10］［Start on a new green sheet］

（a）The diagram shows a sketch of the curve $y=g(x)$

（b）Shade the region in the Cartesian plane for which the following inequalities hold
simultaneously．

$$
y<x-2, \quad y \geq 0 \text { and } x \geq 6
$$

（c）Simplify：$\left.\frac{6^{m}+2^{m}}{2^{m}}=\frac{3^{m} 2^{m}+2^{m}}{2^{m}}=\frac{2^{m}\left(3^{m}+1\right)}{3^{m}}=3^{m}+1\right]$
Reduce to primes
（d）Solve $9^{x-3}=3$

$$
\begin{aligned}
3^{2(x-3)}=3 \\
3^{2(x-3}
\end{aligned} \quad \begin{aligned}
& 2(x-3)=1 \\
& x-3=\frac{1}{2} \\
& x=\frac{1}{2}+3 \\
& x=3 \frac{1}{2} \text { or } \frac{7}{2} \quad \begin{array}{r}
9^{\frac{1}{2}}
\end{array} \quad \therefore x-3=\frac{1}{2} \\
& x=3 \frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& 0<x<b \\
& a<x<0, \quad b<x<d
\end{aligned}
$$

－Increasing
－Decreasing
－Diagraunctuow be to $\frac{1}{3}$ page
\＆Rues sinsuldme 3 used
－解 lat ane
number stasodd be used con each $2{ }^{2}$ is to scale．

\qquad
QUESTIAN 3.
(a) (i)
(c) (i)

$$
\begin{array}{rl}
\lim _{x \rightarrow 2} & 2 x+3 \\
& =\frac{2(2)+5}{2-1} \\
& =7
\end{array}
$$

$$
y=\sqrt{16-x^{2}}
$$

$$
=\sqrt{4^{3}-x^{2}}
$$

(ij) $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x-1}$
Domacis: $-4 \leqslant x \leqslant 4$

$$
\begin{aligned}
& =\lim _{x \rightarrow 1} \frac{(x-1)\left(x^{2}+x+1\right)}{x-1} \\
& =\lim _{x \geqslant 1} x^{2}+x+1 \\
& =1^{2}+1+1 \\
& =3 \times(2
\end{aligned}
$$

(ii) $y=\frac{3}{x-2}$.

$$
\begin{aligned}
& m=40^{\circ} \\
& w=100^{\circ} \\
& y=16 \mathrm{~cm} \\
& z=40^{\circ}
\end{aligned}
$$

(b)

Domain: $-1 \leqslant x \leqslant 1$
\qquad
QGESTIDN 4.
(a)

$$
\begin{aligned}
& \frac{x}{5}=\frac{9}{4} \\
& 4 x=45 x \\
& x=\frac{45}{4}=11 \frac{1}{4}
\end{aligned}
$$

(b) (i) The diagonels of a imack for the diagrom rhombus bisect the l mank for he roosson. angles of a rhombus.
(ii) In $\triangle A C D$ and $\triangle C L D$

PL is coommon

$$
\triangle A D=D C \text { sides of a rlaembus }
$$

$$
\angle A D L=\angle C D L \text { (i) aboue. } x
$$

$$
\begin{equation*}
\therefore \triangle A C D \equiv \triangle C C D(S A S) \tag{3}
\end{equation*}
$$

(iii) $\angle O A L=90^{\circ}$ (Alt.ougls an 11 lines) $V(2)$
(14) $\angle L C D=90^{\circ}$ Carrespording angles of congruenf \triangle.

