SYDNEY BOYS' HIGH SCHOOL

HALF-YEARLY EXAMINATION May 2002

MATHEMATICS

Time allowed - Ninety Minutes
Examiner: A.M.Gainford

DIRECTIONS TO CANDIDATES

- $A L L$ questions may be attempted.
- All necessary working should be shown in every question. Full marks may not be awarded for careless or badly arranged work.
- Approved calculators may be used.
- Start each Section on a new page. Section A (Q1, Q2, Q3, Q4), Section B (Q5, Q6, Q7, Q8), Section C (Q9, Q10, Q11).
- If required, additional paper may be obtained from the Examination Supervisor upon request.

SectionA

(a) Evaluate $\frac{\pi+2}{\pi-2}$ correct to one decimal place.
(b) Simplify $a(1-b)-b(1-a)$.
(c) Write $\frac{\sqrt{6}}{\sqrt{3}-\sqrt{2}}$ in the form $a \sqrt{2}+b \sqrt{3}$.

Question 2

(a) Express $0 \cdot \mathrm{P} \mathrm{P}$ as a common fraction in lowest terms.
(b) Prove that no regular polygon has an internal angle of 132°.
(c) Solve for $x: \quad(x+4)^{2}=9$.

Question 3

(a) \quad Simplify $\left(\frac{4}{3}\right)^{\frac{5}{2}} \times 2^{-3} \times \sqrt{\frac{27}{64}}$
(b) Express $\frac{\sqrt{3}+1}{\sqrt{3}}$ with rational denominator.
(c) By expressing it in its simplest form, show that $\frac{1}{\sqrt{7}-2}-\frac{1}{\sqrt{7}+2}$ is rational.

Question 4

Factorise completely:
(a) $4 a b^{2}-6 a b$
(b) $4 m^{2}-9$
(c) $x^{2}-2 x-15$

Section B

Question 5
The value of a computer system is depreciating at a rate of 30% each year. Its current value is $\$ 3500$.
(a) What will be its value in one year's time?
(b) What was its value one year ago?
(c) Express the total two year loss as a percentage of the current value.

Question 6

For the points $A(1,6)$ and $B(3,8)$:
(a) Find the coordinates of M, the midpoint of $A B$.
(b) Find the equation of the line through M, perpendicular to $A B$.
(c) Write the equation of the line $A B$.

Question 7

Graph on separate number lines the solutions to the following:
(a) $2 x+3<5 x+9$
(b) $-1 \leq x<2$
(c) $|x-2| \leq 3$

Question 8

(a) Show that the lines $y=2 x-1$ and $2 x-y+3=0$ are parallel.
(b) Find the perpendicular (shortest) distance between the two lines in Part (a).
(c) By completing the square on x, or otherwise, find the minimum value of the quadratic expression $x^{2}+8 x+9$.

Section C

Question 9

Factorise completely:
(a) $12 x^{2}+5 x-3$
(b) $2 x y+6 x-y-3$
(c) $a^{3}-8$

Question 10

(a) Given that $A B \| C D$ and angles are as marked, find the measure of $\angle B E C$. (Give reasons)

(b) Find the equation of the line with gradient -1 , which passes through the intersection of the lines $2 x-5 y+19=0$ and $2 x+3 y-5=0$.

Question 11

In the figure $A B=A C ; \angle B A C=\angle B P A=\angle C R A=90^{\circ} ; \angle B A P=\alpha$.
Prove that:
(a) $\angle A C R=\alpha$.
(b) Triangles $A B P$ and $C A R$ are congruent.
(c) Triangles $B P Q$ and $C R Q$ are similar.
(d) $\frac{P Q}{Q R}=\frac{R A}{A P}$.

