SYDNEY BOYS HIGH SCHOOL

HALF-YEARLY EXAMINATION

YEAR 11

MAY 2003

MATHEMATICS

Time allowed - Ninety Minutes

Examiner: R. Boros

DIRECTIONS TO CANDIDATES

- All questions may be attempted.
- Questions are not of equal value.
- All necessary working should be shown in every question. Full marks may not be awarded for careless or badly arranged work.
- Approved calculators may be used.
- Start each question in a new writing booklet.
- If required, additional paper may be obtained from the examination supervisor upon request.

Question 1 (18 marks) Start work in a new booklet

Marks

 $\sqrt{32} + \sqrt{98} - \sqrt{50}$ leaving your answer in exact (a) Simplify form.

2

(b) $\left(\frac{8}{27}\right)^{\frac{1}{3}} \times \left(\frac{4}{9}\right)^{-\frac{1}{2}}$

2

 $\frac{8x^3}{9x^4} \times \frac{5x}{10x^2}$ Simplify (c)

1

 $4x^2 + 16x - 9$ (d) Factorise

2

Solve for x, $\frac{3x-2}{5} = \frac{x}{4} + 3$ (e)

2

Show that $\frac{1}{3-\sqrt{2}} + \frac{1}{3+\sqrt{2}}$ is rational (f)

Solve the inequality and graph the solution to it on a number line (g)

2

2

- 9 2x > 14
- Solve the equation (h)

|x+1| = 5-3x

3

Show that $0.\overline{27}$ is a rational number (i)

2

Question 2 (15 marks) Start work in a new booklet

Write down the value of $\sin \theta$ if $\tan \theta = \frac{5}{12}$ and $\cos \theta < 0$ (a)

2

(b) If $\sin \theta^{\circ} = \frac{2}{3}$, find the exact value of

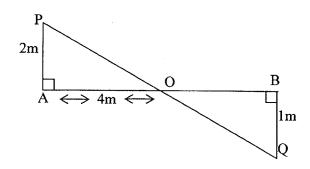
3

- (i) $\cos ec \theta^o$
- (ii) $\sin(180-\theta)^{\circ}$
- (iii) $\sin(-\theta)^{\circ}$
- (c) Express as trigonometric ratios of θ^o only.

3

- (i) $\cos(180+\theta)^{\circ}$
- (ii) $\tan(-\theta)^0$
- (iii) $\sec(90-\theta)^{\circ}$
- (d) Prove that $\frac{1}{\sin\theta\cos\theta} \tan\theta = \cot\theta$

3


2

- (e) From 0,two cyclists ride along straight roads which branch out at an angle of 70°. Their speeds are 10km/h and 15km/h respectively. Find their distance apart after 2 hours (correct to 2 decimal places).
- (f) A boy 1.5 m tall, casts a shadow of length 2m. At the same time, what should be the length of the shadow cast by a tree of height 9m?

2

Question 3

(14 marks) Start work in a new booklet.

In
$$\triangle PAO$$
, $AP = 2m$, $AO = 4m$, $PAO = 90^{\circ}$

In
$$\triangle QBO$$
, $BQ = 1m$, $\hat{QBO} = 90^{\circ}$

PQ and AB intersect at O

(i) Prove $\Delta PAO / / / \Delta QBO$

2

(ii) Find the length of BO

1


(iii) Find the length of PQ

3

3

(b) From P, the bearing of a point of a point Q, 30km away is $114^{\circ}T$. From Q 5 the bearing of a point R, 20km away is $230^{\circ}T$. By drawing a diagram of the above information, find the distance from P to R (to 2 decimal places) and also the bearing of R from P.

EF // BD

$$\hat{BAC} = \hat{FAC} = x$$

 $\hat{ACD} = y$

Find the values of x and y (Give reasons)

Question 4 (18 marks) Start work in a new booklet

(a) The lines 2x+3y=-19 and 5x-y=12 intersect at P. Find the coordinate of P

2

(b) Show that (6,-4), (5,-1) and (2,8) are collinear

3

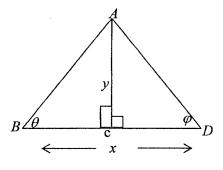
(c) Find the equation of the line which has an x intercept of 3 and a y intercept of -2. Write your answer in the gradient - intercept form.

2

(d) Find the equation of the perpendicular bisector of AB where A(6,-9) and B(-3,9) Write your answer in the general form.

3

(e) Which of the two points P(7,-3) and Q(-2,0) are the closest to the line 3x+4y+2=0. Are the two points on the same side of the line or on opposite sides?


3

(f) Factorise completely $16 - m^4$

2

3

(g)

Prove that $y = x \sin \theta \sin \varphi$ $\sin(\theta + \varphi)$

Question 5 (17 marks) Start work in a new booklet

(a) Write the following expressions in the form of a complete square sign plus or minus a constant

1

(ii) $x^2 - 6x + 11$

(i)

 $x^{2} + 4x$

1

(b) If
$$A = \frac{27}{64}$$
, $B = \frac{125}{128}$, $C = \frac{25}{81}$

3

Find the value of $\frac{A^3C^2}{B^2}$ in simplest rational form

(c) Solve the following equations, leaving your answers in surd form if necessary

(i)
$$x + \frac{1}{x} = 2$$

2

(ii)
$$x(x-3) = 9$$

3

(d) Graph the solution set to
$$|2x+1| \le 3$$

2

(e) Solve the simultaneous equations

3

$$2a - 7b + 3c = 7$$

$$a+3b+2c=-4$$

$$4a + 5b - c = 9$$

(f) Fully factorise

$$8x^3 + 27y^3$$

2

end of paper