

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2004 YEAR 11 HALF-YEARLY EXAMINATION

Mathematics

General Instructions

- Reading Time 5 Minutes
- Working time One and a half hours
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators may be used.
- All necessary working should be shown in every question.

Note:

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate.

Examiner: A.M.Gainford

Total Marks - 72

Attempt all questions.

All questions are of equal value.

Each section is to be answered in a separate

booklet, labeled Section A (Questions 1, 2), Section B (Questions 3, 4) and so on.

SectionA

Question 1

(a) Simplify
$$x(x-y)-y(y-x)$$
.

(b) Evaluate
$$\sqrt{\frac{3^2 + 12^2}{231 - 12^2}}$$
 correct to three significant figures.

(c) Express in simplest reduced form:
$$\left(\frac{2}{5}\right)^{10} \times \left(\frac{15}{4}\right)^{10} \times \left(\frac{2}{3}\right)^9$$

Question 2

(a) Express
$$0 \cdot \frac{1}{2}$$
 as a common fraction in lowest terms.

(b) Simplify
$$2\sqrt{\frac{9}{4}} + \sqrt[3]{\frac{8}{125}}$$
 completely.

(i)
$$\tan 60^\circ$$

(ii)
$$\cos\frac{11\pi}{6}$$

Section B

(Start a new booklet)

Question 3

(a) Solve for *x*: x(x-4) = 5

(b) Express
$$\frac{1}{\sqrt{3}-2}$$
 with rational denominator.

(c) Find the value of x if
$$\sqrt{x} = \sqrt{50} - \sqrt{18}$$
.

2

Marks 6

6

6

Question 4

(a) Expand and simplify:
$$\sqrt{(a-4)(a+4)+16}$$
, $a > 0$.

(b) Three legs of a triangular sailing course have lengths 8 km, 10 km, and 16 km.

- (i) Draw a sketch showing this information.
- (ii) Calculate the size of the smallest angle, correct to the nearest minute.
- (c) On a number line sketch the solution of $4-x \ge 3$.

Section C

(Start a new booklet.)

Question 5

(a) In the diagram $AD \parallel BC$.

Copy the diagram onto your worksheet and find the value of x, giving reasons.

(b) Sketch the graph of $y = 2\sin(90^{\circ} - x)$ in the domain $-90^{\circ} \le x \le 360^{\circ}$.

Question 6

- (a) Find the shortest distance between the parallel lines y = 2x and 4x 2y + 7 = 0.
- (b) Factorise completely each of the following:
 - (i) $5x^2 9xy 2y^2$
 - (ii) $x^2 + 4x + 4 y^2$
- (c) Solve |5-2x|=3.

3

6

6

Section D

(Start a new booklet.)

Question 7

(a) Solve the following system of simultaneous equations:

$$2(x-y) = -7$$
$$6x + 8y = 35$$

(b) Draw a neat sketch of the graph of the function $y = \sqrt{9-x}$.

State the domain and range of this function.

(c) Show that
$$f(x) = \frac{4^x + 4^{-x}}{2}$$
 is an even function.

Question 8

- (a) Find the least value of the quadratic expression $x^2 4x + 10$, and state the *x*-value at which it occurs.
- (b) Find the values of k for which the quadratic equation $3x^2 + 2x + k = 0$ has no real roots.
- (c) Find the value of x correct to two decimal places.

Section E (Start a new booklet.)

Question 9

The diagram shows the points A(0, 2), B(4, 0), and C(5, 7).

Copy the diagram onto your work sheet.

(a) Find the co-ordinates of *M*, the mid-point of *AB*.

(b) Show that the gradient of *AB* is
$$-\frac{1}{2}$$
.

- (c) Find the equation of the perpendicular bisector of *AB*.
- (d) Show that the perpendicular bisector of *AB* passes through *C*.
- (e) What type of triangle is *ABC*? (Give a reason for your answer.)

5

Question 10

(a) Sketch on the number plane the region in which all three of the following inequalities are satisfied:

$$x - y + 2 > 0$$

$$2x + y \ge -2$$

$$x - 3 \le 0$$

(b)

In the diagram *ABC* is an isosceles triangle with $\angle ABC = \angle ACB$. The line *LMN* is drawn as shown so that *CL=CM*, and $\angle CLM = x^0$.

Copy or trace the diagram to your booklet.

- (i) Show that $\angle ABC = (180 2x)^0$.
- (ii) Hence show that $\angle TNL = 3x^0$.

This is the end of the paper.

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2004

YEAR 11

HALF YEARLY EXAMINATION

Mathematics

Sample Solutions

Section	Marker	
Α	Mr Fuller	
В	Mr Dowdell	
С	Mr Boros	
D	Ms Nesbitt	
Ε	Ms Opferkuch	

$$\frac{\sec(\pm \log A)}{(a) x (x \cdot y) = y (y - x)}$$

$$= x^{2} - xy - y^{2} + xy$$

$$= x^{2} - y^{2}$$

$$(b) \int \frac{3^{2} + 12^{2}}{231 - 12^{2}}$$

$$= \int \frac{9 + 184}{231 - 12^{4}}$$

$$= \sqrt{\frac{15}{231 - 144}}$$

$$= \sqrt{\frac{15}{23}}$$

$$= (-\frac{3}{2})^{10} \times (-\frac{15}{14})^{10} \times (-\frac{2}{3})^{9}$$

$$= (-\frac{3}{2})^{10} \times (-\frac{15}{14})^{10} \times (-\frac{2}{3})^{9}$$

$$= (-\frac{3}{2})^{10} \times (-\frac{2}{3})^{9} \times (-\frac{3}{2})$$

$$= -\frac{3}{2}$$
Cancestion 2
(a) Let $x = 0.72.7272...$

$$= -\frac{72}{99}$$

$$x = -\frac{72}{99}$$

$$x = -\frac{72}{99}$$

8 Ø 3 4 2 32 2 , X . 3 2..... + 5 \$ 5 tam 60°= 53 (c)(1) $\cos \frac{1}{6} = \cos \frac{\pi}{6}$ (ii)5 2 5 = e.

$$(x^{3} (x) + x(x-4)) = 5^{-1}$$

$$(x^{-5})(x+1) = 0$$

$$x = 5^{-1} (x^{-5}) = -1$$
(3)

(b)
$$\frac{1}{\sqrt{3}-1} \times \frac{\sqrt{3}+2}{\sqrt{3}+2}$$

= $\frac{\sqrt{3}+2}{3-4}$
= $-(\sqrt{3}+2)$ (3)

(c)
$$\sqrt{x} = \sqrt{55} - \sqrt{15}$$

 $= 5\sqrt{2} - 3\sqrt{2}$
 $= 2\sqrt{2}$
 $\therefore x = 8$

$$4 (a) \sqrt{(a-4)(a+4)+14} = \sqrt{a^2-16+16} = \sqrt{a^2} = a \quad (as a > 2)$$

(b)

$$16$$

 8
 $2 \times 16 \times 10$
 $= \frac{292}{320}$
 $= \frac{73}{50}$
 $2 \times 1465 = --$
 $\approx 24^{\circ} q^{1}$ (2)

$$(c) \quad 4 - 3c \neq 3$$

$$-\infty \neq -1$$

$$x \leq 1$$

$$(3)$$

Q7(1)	226-2y=7 (1).	<u>Q8(c)</u>	least value at centre axis
	$6\chi + 8y = 35$ (2)		$\gamma \ell = -\frac{1}{2}$
	8x-8y=-28 (1x4		
	$\frac{142}{x} = \frac{1}{2}$		least value = 6
	$\chi = \pm$		<u>ST</u>
	$2x^{\frac{1}{2}}-2y=-7(1)$	-	$\frac{31}{32^2 - 43(1+10)} = (32 - 2)^2 + 6$
	-2y = -8		vertex (2,6)
	y=4 x== 3		least value = 6 when x=2 (D)
		,	
(6)		(b)	No real poot when D=0
	X X		$b^2 - 4ac < 0$
			$2^{2} - 4 \times 3 \times k < 0$
	0,0 9 x		-12K <-4
			<u>k > 3</u> @
	Domain: DC=9		
	Range: YZO (2)	(C)	Third angle = 180-80-32
	-		= 68°
6	· P7 × P		
(c)	$f(-x) = 4 + 4^{x} = f(x)$		$\frac{2C}{5in 68} = \frac{15}{5in 80}$
	2		
	f(z) is an even function		$2C = 15 \frac{Sin 63}{2}$
			Singo
	·		x = 14.12(2dp) (3)
			· · · · · · · · · · · · · · · · · · ·

