

SYDNEY BOYS HIGH SCHOOL
MOORE PARK, SURRY HILLS

2004

YEAR 11 HALF-YEARLY EXAMINATION

Mathematics

General Instructions

- Reading Time - 5 Minutes
- Working time - One and a half hours
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators may be used.
- All necessary working should be shown in every question.

Total Marks - 72

- Attempt all questions.
- All questions are of equal value.
- Each section is to be answered in a separate booklet, labeled Section A (Questions 1, 2), Section B (Questions 3, 4) and so on.

Examiner: A.M.Gainford

SectionA

(a) Simplify $x(x-y)-y(y-x)$.
(b) Evaluate $\sqrt{\frac{3^{2}+12^{2}}{231-12^{2}}}$ correct to three significant figures.
(c) Express in simplest reduced form: $\left(\frac{2}{5}\right)^{10} \times\left(\frac{15}{4}\right)^{10} \times\left(\frac{2}{3}\right)^{9}$

Question 2

(a) Express $0 \cdot 72$ as a common fraction in lowest terms.
(b) Simplify $2 \sqrt{\frac{9}{4}}+\sqrt[3]{\frac{8}{125}}$ completely.
(c) State the value of the following, in exact terms:
(i) $\tan 60^{\circ}$
(ii) $\cos \frac{11 \pi}{6}$

Section B

(Start a new booklet)

Question 3

(a) Solve for $x: \quad x(x-4)=5$
(b) Express $\frac{1}{\sqrt{3}-2}$ with rational denominator.
(c) Find the value of x if $\sqrt{x}=\sqrt{50}-\sqrt{18}$.
(a) Expand and simplify: $\quad \sqrt{(a-4)(a+4)+16}, \quad a>0$.
(b) Three legs of a triangular sailing course have lengths $8 \mathrm{~km}, 10 \mathrm{~km}$, and 16 km .
(i) Draw a sketch showing this information.
(ii) Calculate the size of the smallest angle, correct to the nearest minute.
(c) On a number line sketch the solution of $4-x \geq 3$.

Section C

(Start a new booklet.)

Question 5

(a) In the diagram $A D \| B C$.

Copy the diagram onto your worksheet and find the value of x, giving reasons.

(b) Sketch the graph of $y=2 \sin \left(90^{\circ}-x\right)$ in the domain $-90^{\circ} \leq x \leq 360^{\circ}$.

Question 6

(a) Find the shortest distance between the parallel lines $y=2 x$ and $4 x-2 y+7=0$.
(b) Factorise completely each of the following:
(i) $5 x^{2}-9 x y-2 y^{2}$
(ii) $x^{2}+4 x+4-y^{2}$
(c) Solve $|5-2 x|=3$.

Section D

(Start a new booklet.)

Question 7

(a) Solve the following system of simultaneous equations:

$$
\begin{aligned}
& 2(x-y)=-7 \\
& 6 x+8 y=35
\end{aligned}
$$

(b) Draw a neat sketch of the graph of the function $y=\sqrt{9-x}$.

State the domain and range of this function.
(c) Show that $f(x)=\frac{4^{x}+4^{-x}}{2}$ is an even function.

Question 8
(a) Find the least value of the quadratic expression $x^{2}-4 x+10$, and state the x-value at which it occurs.
(b) Find the values of k for which the quadratic equation $3 x^{2}+2 x+k=0$ has no real roots.
(c) Find the value of x correct to two decimal places.

Section E

(Start a new booklet.)

Question 9

The diagram shows the points $A(0,2), B(4,0)$, and $C(5,7)$.
Copy the diagram onto your work sheet.
(a) Find the co-ordinates of M, the mid-point of $A B$.
(b) Show that the gradient of $A B$ is $-\frac{1}{2}$.
(c) Find the equation of the perpendicular bisector of $A B$.
(d) Show that the perpendicular bisector of $A B$ passes through C.
(e) What type of triangle is $A B C$? (Give a reason for your answer.)
(a) Sketch on the number plane the region in which all three of the following inequalities are satisfied:

$$
\begin{array}{r}
x-y+2>0 \\
2 x+y \geq-2 \\
x-3 \leq 0
\end{array}
$$

(b)

In the diagram $A B C$ is an isosceles triangle with $\angle A B C=\angle A C B$. The line $L M N$ is drawn as shown so that $C L=C M$, and $\angle C L M=x^{0}$.

Copy or trace the diagram to your booklet.
(i) Show that $\angle A B C=(180-2 x)^{0}$.
(ii) Hence show that $\angle T N L=3 x^{0}$.

This is the end of the paper.

SYDNEY BOYS HIGH SCHOOL MoORE PARK, SURRY HILLS

2004

YEAR 11

HALF YEARLY EXAMINATION

Mathematics

Sample Solutions

Section	Marker
A	Mr Fuller
B	Mr Dowdell
C	Mr Boros
D	Ms Nesbitt
E	Ms Opferkuch

Section A
Question 1
(a)

$$
\text { } \begin{aligned}
& x(x-y)-y(y-x) \\
= & x^{2}-x y-y^{2}+x y \\
= & x^{2}-y^{2}
\end{aligned}
$$

(b)

$$
\text {) } \begin{aligned}
& \frac{3^{2}+12^{2}}{231-12^{2}} \\
&= \sqrt{\frac{9+144}{231-144}} \\
&= \sqrt{\frac{153}{87}} \\
&= 1.33
\end{aligned}
$$

(c) $\left(\frac{2}{5}\right)^{10} \times\left(\frac{15}{4}\right)^{10} \times\left(\frac{2}{3}\right)^{9}$

$$
\begin{aligned}
& =\left(\frac{3}{2}\right)^{10} \times\left(\frac{2}{3}\right)^{9} \\
& =\left(\frac{3}{2}\right)^{9} \times\left(\frac{2}{3}\right)^{9} \times\left(\frac{3}{2}\right) \\
& =\frac{3}{2}
\end{aligned}
$$

Question 2
(a)

$$
\begin{aligned}
& \text { let } x=0.727272 \ldots \\
& 100 x=72.727272 \ldots \\
& 99 x=72 \\
& x=\frac{72}{99} \\
& x=\frac{8}{11}
\end{aligned}
$$

(b) $2 \sqrt{\frac{9}{4}}+\sqrt[3]{\frac{8}{125}}$

$$
=2 \times \frac{3}{2}+\frac{2}{5}
$$

$$
=3+\frac{2}{5}
$$

$$
=3 \frac{2}{5}
$$

(c) (1) $\tan 60^{\circ}=\sqrt{3}$
(ii) $\cos \frac{1 \pi}{6}=\cos \frac{\pi}{6}$

$$
=\frac{\sqrt{3}}{2}
$$

Q3 $21 x(x-4)=5$
$x^{2}-4 x-5=0$

$$
(x-5)(x+1)=0
$$

$$
\begin{equation*}
x=5 \text { or } x=-1 \tag{2}
\end{equation*}
$$

(b) $\frac{1}{\sqrt{3}-2} \times-\frac{\sqrt{3}+2}{\sqrt{3}+2}$

$$
\begin{align*}
& =\frac{\sqrt{3}+2}{3-4} \\
& =-(\sqrt{3}+2) \tag{2}
\end{align*}
$$

(c) $\sqrt{x}=\sqrt{50}-\sqrt{18}$
$=5 \sqrt{2}-3 \sqrt{2}$
$=2 \sqrt{2}$
$\therefore x=8$
$4(a) \sqrt{(a-4)(a+4)+16}$

$$
=\sqrt{a^{2}-16+16}
$$

$$
=\sqrt{a^{2}}
$$

$$
\begin{equation*}
=a \quad(a s a>c) \tag{2}
\end{equation*}
$$

(b)

$$
\begin{align*}
1610 \quad \cos \theta & =\frac{16^{2}+10^{2}-8^{2}}{2 \times 16 \times 10} \\
& =\frac{292}{320} \\
& =\frac{73}{30} \\
\therefore \theta & =24.1468 \\
& =24^{\circ} 9_{1}^{1} \tag{2}
\end{align*}
$$

(c) $4-x \geqslant 3$
$-x \geqslant-1$
$x \leq 1$

1004 Year II 2 unit Half Yearly
Section C
(a)

cointerior angles

$$
\begin{align*}
\hat{A B C} & =180-121=59^{\circ} \text { cointerior angles } \\
A \hat{B C} C & =F \hat{B} E=59^{\circ} \quad \text { vert. opp } \\
\hat{B F E} & =180-(59+42) \\
& =79^{\circ} \tag{2}\\
\therefore x & =B \hat{F} E=79^{\circ} \text { vert. opp }
\end{align*}
$$

since

$$
\sin (90-x)=\cos x .
$$

(b) $y=2 x$ and $4 x-2 y+7=0$
(a)
a) $y x^{2 y}=4 x+7$

$$
\begin{aligned}
& \text { (c) }|5-2 x|=3 \\
& \underset{5-2 x=3}{\downarrow} \varliminf_{5-2 x=-3} \\
& -2 x=-2 \quad-2 x=-8 \\
& x=1 \\
& x=4
\end{aligned}
$$

(1)
(b) (i) $5 x^{2}-9 x y-2 y^{2}$

$$
\begin{equation*}
=(5 x+y)(x-2 y) \tag{1}
\end{equation*}
$$

(ii) $x^{2}+4 x+4-y^{2}$

$$
\begin{align*}
& =(x+2)^{2}-y^{2} \\
& =(x+2-y)(x+2+y) \tag{2}
\end{align*}
$$

Q 7 (a)
(b)

Domain: $x \leqslant 9$
Range: $y \geq 0$
(c) $f(-x)=\frac{4^{-x}+4^{x}}{2}=f(x)$
$\therefore f(x)$ is an even function

Q8(a) least value at centre axis

$$
x=-\frac{b}{2 a}
$$

$$
x=2
$$

least value $=6$
or

$$
x^{2}-4 x+10=(x-2)^{2}+6
$$

vertex $(2,6)$
least value $=6$ when $x=2$ (1)
(b) No real root when $><0$

$$
\begin{align*}
b^{2}-4 a c & <0 \\
2^{2}-4 \times 3 \times k & <0 \\
-12 k & <-4 \\
k & >\frac{1}{3} \tag{2}
\end{align*}
$$

(c) Third angle $=180-80-32$

$$
=68^{\circ}
$$

$\frac{x}{\sin 68}=\frac{15}{\sin 80}$
$x=15 \frac{\sin 68}{\sin 80}$
$x=14.12\left(2 d_{p}\right)$

Question 9

Not to Scale
(a) $\mathrm{M}: x=\frac{4+0}{2}, y=\frac{2+0}{2}$

$$
=2 \quad=1
$$

$\therefore \quad \mathrm{M}(2,1)$
(b) $\quad m_{A B}=\frac{0-2}{4-0}$

$$
\begin{equation*}
=-\frac{1}{2} \tag{1}
\end{equation*}
$$

$$
\therefore m_{A B}=-\frac{1}{2}
$$

(c) $m_{1} \times m_{2}=-1$

$$
\begin{align*}
-\frac{1}{2} \times m_{2} & =-1 \tag{1}\\
m_{2} & =2
\end{align*}
$$

Using $\quad y-y_{1}=m\left(x-x_{1}\right)$, where $x=2, y=1, m_{2}=2$

$$
\begin{aligned}
y-1 & =2(x-2) \\
\therefore 2 x-y-3 & =0
\end{aligned}
$$

(d) Using $2 x-y-3=0$, where $x=5, y=7$

$$
\begin{align*}
2 \times 5-7-3 & =0 \tag{1}\\
\therefore L H S & =R H S
\end{align*}
$$

(e) In $\triangle A B C$

$$
\begin{aligned}
& d_{A C}=d_{B C}=\sqrt{50} \\
& d_{A B}=\sqrt{20}
\end{aligned}
$$

$\therefore \triangle A B C$ is isosceles

Question 10

(b) (i) In $\triangle C L M$
(1)

$$
\begin{aligned}
& \angle C L M=x^{0} \text { (data) } \\
& \angle C M L=x^{0}(\text { base } \angle, \text { isos. } \triangle) \\
& \therefore \angle A C B=180-2 x \quad(\angle \text { sum of } \triangle) \\
& \text { In } \triangle A B C \\
& \angle A C B=\angle A B C(\text { data }) \\
& \therefore \angle A B C=180-2 x
\end{aligned}
$$

(ii) In $\triangle M B N$

$$
\begin{align*}
\angle B M N & =\angle C M L \text { (vert. opp. } \angle \mathrm{s}) \tag{2}\\
& =x^{0} \\
\angle M B N & =180-\angle A B C(\text { supp. } \angle \mathrm{s}) \\
& =180-(180-2 x) \\
& =2 x
\end{align*}
$$

$\therefore \angle T N L=\angle B M N+\angle M B N$ (ext. $\angle=$ sum of two opp. int. $\angle s$)

$$
\begin{aligned}
& =x+2 x \\
& =3 x
\end{aligned}
$$

(a)

