

SYDNEY BOYS HIGH SCHOOL
 MOORE PARK, SURRY HILLS

2006

YEAR 11 MATHEMATICS HALF YEARLY EXAM

Mathematics
 (2 unit)

General Instructions

- Reading Time - 5 Minutes
- Working time - 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Marks may NOT be awarded for messy or badly arranged work.
- All necessary working should be shown in every question.

Total Marks - 65

- Attempt questions 1-6

Examiner: P.Bigelow
(a) If $f(x)=1+x+x^{2}$, find $f(2)$.
(b) Expand and simplify $(x+4)(x-6)$
(c) Express $\frac{1}{\sqrt{2}}$ with a rational denominator
(d) Factorise
(i) $a^{2}+3 a+2$
(ii) $49-y^{2}$
(iii) $x^{3}+y^{3}$
(e) Solve $7 y-4=2 y+11$
(f) Evaluate $\frac{7.93}{8.22-3.47}$ correct to 3 significant figures.
(g) If $\sqrt{45}+\sqrt{80}=a \sqrt{5}$, find a.

Question 2 (10 Marks)

(a) Write down the domain of the function $f(x)=\sqrt{1-x}$.
(b) Sketch the line $2 x-y-4=0$.
(c) Sketch the parabola $y=(x+1)(x-3)$.
(d) $y=\sqrt{4-x^{2}}$ is the equation of a semi-circle.
(i) Sketch the semi-circle
(ii) State the domain and range of the function.
(e) Classify the functions as ODD, EVEN or NEITHER.
(i) $f(x)=x$
(ii) $\quad f(x)=x^{2}-1$
(iii) $\quad f(x)=\frac{1}{1+x^{2}}$
(f) Solve $|x+1|=2$

Question 3 (11 marks)
(a) Solve the following pair of equations simultaneously

$$
\begin{aligned}
& x-2 y=4 \\
& 2 x+y=3
\end{aligned}
$$

(b) Find the equation of the line parallel to $x+y-1=0$ and passing through $(4,-6)$.
(c) Find the angle sum of a regular 10 sided polygon.
(d) Find the value of a (correct to 1 decimal place).

(e) Find the value of θ (correct to the nearest minute)
where $\sin \theta=\frac{4}{7}$.
[2]
(f) Find the exact value of
(i) $\sin 60^{\circ}$
(ii) $\tan 300^{\circ}$

Question 4 (10 Marks)

(a) Find the largest angle in the triangle (correct to the nearest minute).

(b) Sketch $y=\cos x$ for $0^{\circ} \leq x \leq 360^{\circ}$
(c) Show that $(-4,-5),(2,7)$ and $(5,13)$ are collinear.
(d) Find the shortest distance between the line $4 x-3 y+15=0$ and the origin.
(e) Find, without a calculator, $0.1 \dot{5}$ as a fraction in simplest form.

Question 5 (12 Marks)

(a) Write $\sqrt[3]{x^{4}}$ in index form.
(b) Write down the coordinates of the focus and equation of the directrix for the parabola $x^{2}=20 y$.
(c) Show that $\triangle \mathrm{ABC}$ is similar to $\triangle \mathrm{AED}$.

(d) Given that α and β are roots of the equation $x^{2}-3 x+1=0$, find
(i) $\alpha+\beta$
(ii) $\alpha \beta$
(iii) $\frac{1}{\alpha}+\frac{1}{\beta}$
(iv) $\alpha^{2}+\beta^{2}$
(e) AB is parallel to CD . $\mathrm{GE}=\mathrm{GF}$. Find the value of x.

Question 6 (12 Marks)

(a) Find the centre and radius of the circle

$$
\begin{equation*}
x^{2}-2 x+y^{2}+4 y-4=0 \tag{2}
\end{equation*}
$$

(b) Find the equation of the line, passing through the intersection of the lines $2 x-y=1=0$ and $3 x+y-6=0$ and containing the point $(-2,3)$.
(c) A parabola $y=a x^{2}+b x+c$ passes through $\mathrm{A}(-1,4)$, $\mathrm{B}(0,7)$ and $\mathrm{C}(1,8)$. Determine the values of a, b and c.
(d) Given the quadratic expression

$$
\begin{equation*}
x^{2}+(k-3) x+k \tag{2}
\end{equation*}
$$

For what values of k, is the expression positive for all values of x ?
(e) In $\triangle A B C, \hat{A}=38^{\circ} 21^{\prime}, b=11.6 \mathrm{~m}$ and $a=7.9 \mathrm{~m}$. Find the size of the angle B (correct to the nearest degree).

2006 Mathematics Continuers: Solutions Part A

Question 1 (10 Marks)

(a) Evaluate $8^{2.1}$ to 4 significant figures,

Solution: By calculator, $78.79324245 \approx 78.79$ to 4 sig. fig.
(b) Write $0 \cdot 1 \dot{3}$ as a simplified fraction.

Solution: Let $x=0 \cdot 1 \dot{3}$,

$$
100 x=13 \cdot \dot{1} \dot{3},
$$

$$
99 x=13,
$$

$$
\therefore x=\frac{13}{99} \text {. }
$$

(c) Simplify
(i) $3 x-(4-x)$

Solution: $3 x-4+x=4 x-4$
(ii) $\frac{x+1}{3}+\frac{2 x}{5}$

Solution: $\frac{5 x+5+6 x}{15}=\frac{11 x+5}{15}$
(d) Convert 270° to radians in exact form.

Solution: $270^{\circ} \times \frac{\pi}{180^{\circ}}=\frac{3 \pi}{2}$
(e) Factorise
(i) $x^{2}-9$

Solution: $(x+3)(x-3)$
(ii) $64+x^{3}$

Solution: $4^{3}+x^{3}=(4+x)\left(16-4 x+x^{2}\right)$
(f) Given that

$$
f(x)= \begin{cases}6-x^{2} & \text { if } x \geq 0, \\ |x| & \text { if } x<0,\end{cases}
$$

evaluate
(i) $f(-2)$

Solution: $|-2|=2$
(ii) $f(0)$

Solution: $6-0^{2}=6$

Question 2 (11 Marks)

(a) Solve $|2 x+6|=10$.

Solution: $2 x+6=10$, or $-2 x-6=10$,

$$
\begin{aligned}
2 x & =4, & -2 x & =16, \\
\therefore x & =2 . & x & =-8 .
\end{aligned}
$$

(b) Simplify $\frac{1}{\sec ^{2} \theta}+\frac{1}{\operatorname{cosec}^{2} \theta}$

Solution: $\cos ^{2} \theta+\sin ^{2} \theta=1$
(c) (i) Solve the inequation $|x+3|<2$.

$$
\begin{array}{cl}
\text { Solution: } & -2<x+3<2, \\
& -5<x<-1 .
\end{array}
$$

(ii) Hence graph the solution on a number line.

(d) Find the equation of the circle with centre $(-4,6)$ and radius $\sqrt{5}$.

Solution: $(x+4)^{2}+(y-6)^{2}=5$
(e) Find the exact value of $\tan \frac{3 \pi}{4}$.

$$
\text { Solution: } \frac{\bigotimes_{\mathrm{T}}^{\mathrm{S}} \boldsymbol{C}_{\mathrm{C}}^{\mathrm{A}}}{} \quad-\tan \frac{\pi}{4}=-1
$$

Question 3 (9 Marks)

(a) (i) Write down the expansion for $\sin (A+B)$.

Solution: $\sin A \cos B+\cos A \sin B$
(ii) Hence find the exact value of $\sin 75^{\circ}$.

Solution: $\sin \left(45^{\circ}+30^{\circ}\right)=\sin 45^{\circ} \cos 30^{\circ}+\cos 45^{\circ} \sin 30^{\circ}$

$$
\begin{aligned}
& =\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}} \times \frac{1}{2}, \\
& =\frac{1+\sqrt{3}}{2 \sqrt{2}} \text { or } \frac{\sqrt{2}+\sqrt{6}}{4} .
\end{aligned}
$$

(b) If α and β are the roots of $2 x^{2}+3 x+4=0$, find the value of
(i) $\alpha \beta$

Solution: $\frac{4}{2}=2$
(ii) $\frac{1}{\alpha}+\frac{1}{\beta}$

Solution: $\frac{\alpha+\beta}{\alpha \beta}=\frac{-3}{2} \times \frac{1}{2}$,

$$
=-\frac{3}{4} .
$$

(c) Sketch the intersection of the regions $y>x^{2}-1$ and $y \leq x$.

Solution:

Question 4 (11 Marks)

(a) State the domain and range of $g(x)=\sqrt{x+4}$.

Solution: Domain: $x \geq-4$,
Range: $g(x) \geq 0$.
(b) Show that $f(x)=x^{3}+3 x$ is an odd function.

Solution: $\quad f(-x)=(-x)^{3}+3(-x)$,

$$
=-x^{3}-3 x
$$

$$
=-\left(x^{3}+3 x\right)
$$

$$
=-f(x)
$$

$\therefore f(x)$ is odd.
(c) Find correct to the nearest minute the angle between $y=6 x-7$ and $y=x+3$.

Solution: $m_{1}=6, m_{2}=1$.

$$
\begin{aligned}
\tan \alpha & =\left|\frac{6-1}{1+6 \times 1}\right| \\
& =\frac{5}{7} \\
\therefore \alpha & =35^{\circ} 32^{\prime}
\end{aligned}
$$

(d) Find the values of A and B if $2(x-1)^{2} \equiv A\left(x^{2}+1\right)+B x$.

Solution: Let $x=0, \quad 2=A$.

$$
\text { Let } \begin{array}{rlr}
x=1, \quad 0 & =4+B, \\
B & =-4 .
\end{array}
$$

(e) For $A(5,1)$ and $B(-3,7)$ find the coördinates of the point that divides the interval $A B$ internally in the ratio $3: 1$.

Solution: $\left(\frac{3 \times(-3)+1 \times 5}{3+1}, \frac{3 \times 7+1 \times 1}{4}\right)=\left(-1,5 \frac{1}{2}\right)$

Y/1 COMTINUCRS
Section B
5 (a) $x^{2}-6 x+y^{2}+10 y+9=0$

$$
\begin{aligned}
(x-3)^{2}+(y+5)^{2} & =-9+9+25 \\
& =25 .
\end{aligned}
$$

(i) Maveidele doen'r' hass the reeticial line tect fis a punctici.
OR. Thue are points (ie theo) uterere the x-ralue is the sure.
OR. At is set a 1-1 conexardence w snaffing
(11 Centue $(3,-5)$ raduis 5.)
(b)

NB $a=3$.

$$
\begin{aligned}
\therefore(x-0)^{2} & =4 \times 3(y+2) \\
x^{2} & =12(y+2)
\end{aligned}
$$

(c) $\frac{x-3}{x}<0$.
$x(x-3)<0$ (ie muttilly heth saides by x^{2}.)

$$
\therefore 0<x<3
$$

$$
\begin{aligned}
& \mu=9,!V V \\
& \sim^{2}=9,
\end{aligned}
$$

$$
x^{2}=9,1
$$

$$
x= \pm 3, \pm 1
$$

6 (a)

(b)

$$
\begin{aligned}
y & =-a(x-0)(x-4) \\
\therefore y & =-a x(x-4)
\end{aligned}
$$

now $(2,+4)$ hies on it.

$$
\begin{aligned}
& \therefore+4=-2 a \cdot-2 . \\
& \therefore a=1 \\
& \therefore y=-x(x-4)
\end{aligned}
$$

(c) Forreal rests $\Delta \geqslant 0$

$$
\begin{gathered}
\therefore p^{2}-64 \geqslant 0 \\
(p-8)(p+8) \geqslant 0 \\
\quad \therefore p \geqslant 8, p \leqslant-8
\end{gathered}
$$

(d)

$$
\begin{aligned}
& \tan \theta=\sqrt{3} \quad, 0<\theta<\frac{\pi}{2} \\
& \therefore \theta=\frac{\pi}{3} \\
& \therefore \cos 2 \theta=\cos \frac{2 \pi}{3}=-\frac{1}{2} .
\end{aligned}
$$

$Q 7$
(a) $4 x-3 y-8=0$ and puitt $(-2,3)$

$$
\begin{aligned}
d & =\left|\frac{4 x-2-3 \times 3-8}{\sqrt{4^{2}+(-3)^{2}}}\right| \\
& =\left|\frac{-8-9-8}{5}\right| \\
& =\left|-\frac{25}{5}\right| \\
& =5
\end{aligned}
$$

(b) Ind the interrection of

$$
\begin{gathered}
2 x-y=3 \\
3 x-y=-2 \\
2-10 \\
x=-5
\end{gathered}
$$

Susin (1)

$$
\begin{aligned}
&-10-y=3 \\
& y=-13 \\
& \therefore(-5,-13)
\end{aligned}
$$

\therefore Equatioi ophir
hacung thengh $(3,-1)$ and $(-5,-13)$

$$
\begin{aligned}
& \frac{y+1}{x-3}=\frac{-13+1}{-5-3}=\frac{-12}{-8} \\
&=\frac{3}{2} \\
& \therefore 2 y+2=3 x-9
\end{aligned}
$$

(C)

(11)

$$
\begin{aligned}
\frac{d}{80} & =\tan 15^{\circ} \\
\therefore d & =80 \tan 15^{\circ} . \\
\text { now } \tan \theta & =\frac{d}{60} \\
& =\frac{80 \tan 15^{\circ}}{60} \\
& =0.3573 \\
\therefore \theta & =19^{\circ} 40^{\circ} \quad\left(\text { OR } 20^{\circ}\right)
\end{aligned}
$$

$$
\begin{align*}
& \text { (d) } 2 x+y-z=-3 \text {-(1) } \tag{5}\\
& -x+3 y-2 z=1 \text {-(2) } \\
& x-y+5 y=12 \tag{3}\\
& \text { (1) }+ \text { (3) } \\
& 3 x+4 z=9 \\
& \text { (3) } \times 3 \\
& 3 x-3 y+15 z=36 \text { (3a) } \\
& \text { (3a) }+ \text { (2) } \\
& 2 x+13 z=37 \text { (5) } \\
& \text { (4) } \times 2 \\
& 6 x+8 z=18 \\
& \text { (5) } x-3 \\
& -6 x-39 z=-111 \\
& \text { (4a) }+(5 a) \\
& -31 z=-93 \\
& z=3 \\
& \text { (a) Sub in © } 4 \\
& 3 x+12=9 \\
& 3 x=-3 \\
& x=-1 \\
& \text { out in } 0 \\
& -2+y-3=-3 \\
& 1 y=2 \\
& \therefore(-1,2,3)
\end{align*}
$$

98
(a) $x^{2}+\angle x+M=0$. has aect $\alpha, 2 \alpha$.

New $\alpha+2 \alpha=-L \quad \alpha \quad \alpha+2 \alpha=M$
(1)

$$
\begin{align*}
\therefore 3 \alpha & =-4-1 \quad 2 \alpha^{2}=M \\
\alpha & =-\frac{2}{3} \\
\tan \theta & 0
\end{align*}
$$

$$
\begin{aligned}
2 \times\left(\frac{-2}{3}\right)^{2} & =M \\
\frac{2 L^{2}}{9} & =M \\
2 \alpha^{2} & =9 M
\end{aligned}
$$

(II) If L is ralinial the $-\frac{L}{3}=\alpha$ in ratrival.
ot hence $2 \alpha=-\frac{2 L}{3}$ is aleo rathinal
(b.) $\underset{-\infty}{ }$ nead $S P=P M$ ie $\sqrt{(x-3)^{2}+(y-1)^{2}}=y+1$ $(x-3)^{2}+(y-1)^{2}=(y+1)^{2}$ $\frac{x^{2}-6 x+9+y^{2}-2 y+1}{2}=y^{2}+2 y+1$
(c)

now

$$
\begin{aligned}
& \alpha+\beta+x=180^{\circ} \\
& \theta+\phi=90^{\circ} \\
& \text { ie }(180-2 \beta)+(180-2 \alpha)=90^{\circ} \\
& \text { ie } 2 \alpha+2 \beta=270^{\circ} \\
& \alpha+\beta=135^{\circ}-\sigma
\end{aligned}
$$

Fatan $0+(2) x=45^{\circ}$

