

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2006 YEAR 11 MATHEMATICS

HALF YEARLY EXAM

Mathematics (2 unit)

General Instructions

- Reading Time 5 Minutes
- Working time 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Marks may **NOT** be awarded for messy or badly arranged work.
- All necessary working should be shown in every question.

Total Marks - 65

• Attempt questions 1-6

Examiner: P.Bigelow

Question 1 (10 Marks)

(a) If
$$f(x) = 1 + x + x^2$$
, find $f(2)$. [1]

(b) Expand and simplify
$$(x+4)(x-6)$$
 [2]

(c) Express
$$\frac{1}{\sqrt{2}}$$
 with a rational denominator [1]

(d) Factorise [3] (i) $a^2 + 3a + 2$ (ii) $49 - y^2$ (iii) $x^3 + y^3$

(e) Solve
$$7y - 4 = 2y + 11$$
 [1]

(f) Evaluate
$$\frac{7.93}{8.22 - 3.47}$$
 correct to 3 significant figures. [1]

(g) If
$$\sqrt{45} + \sqrt{80} = a\sqrt{5}$$
, find *a*. [1]

Question 2 (10 Marks)

(a)	Write down the domain of the function $f(x) = \sqrt{1-x}$.	[1]
(b)	Sketch the line $2x - y - 4 = 0$.	[1]
(c)	Sketch the parabola $y = (x+1)(x-3)$.	[1]
(d)	$y = \sqrt{4 - x^2}$ is the equation of a semi-circle.	[3]
	(i) Sketch the semi-circle	
	(ii) State the domain and range of the function.	
(e)	Classify the functions as ODD, EVEN or NEITHER.	[3]
	(i) $f(x) = x$	
	(ii) $f(x) = x^2 - 1$	
	(iii) $f(x) = \frac{1}{1+x^2}$	
(f)	Solve $ x+1 = 2$	[1]

Question 3 (11 marks)

- (a) Solve the following pair of equations simultaneously [2] x-2y=42x+y=3
- (b) Find the equation of the line parallel to x + y 1 = 0 and passing through (4,-6). [2]
- (c) Find the angle sum of a regular 10 sided polygon. [1]
- (d) Find the value of *a* (correct to 1 decimal place). [2]

- (e) Find the value of θ (correct to the nearest minute) where $\sin \theta = \frac{4}{7}$. [2]
- (f) Find the exact value of [2]
 - (i) $\sin 60^{\circ}$
 - (ii) tan 300°

Question 4 (10 Marks)

(a) Find the largest angle in the triangle (correct to the nearest minute).

[2]

- (b) Sketch $y = \cos x$ for $0^\circ \le x \le 360^\circ$ [2]
- (c) Show that (-4, -5), (2, 7) and (5, 13) are collinear. [2]
- (d) Find the shortest distance between the line 4x 3y + 15 = 0and the origin. [2]
- (e) Find, without a calculator, $0.\dot{1}\dot{5}$ as a fraction in simplest form. [2]

Question 5 (12 Marks)

- (a) Write $\sqrt[3]{x^4}$ in index form. [1]
- (b) Write down the coordinates of the focus and equation of the directrix for the parabola $x^2 = 20y$. [2]
- (c) Show that $\triangle ABC$ is similar to $\triangle AED$. [2]

(d) Given that α and β are roots of the equation $x^2 - 3x + 1 = 0$, find [4]

- (i) $\alpha + \beta$
- (ii) $\alpha\beta$
- (iii) $\frac{1}{\alpha} + \frac{1}{\beta}$
- (iv) $\alpha^2 + \beta^2$

(e) AB is parallel to CD. GE=GF. Find the value of x.

[3]

Question 6 (12 Marks)

(a)	Find the centre and radius of the circle $x^2 - 2x + y^2 + 4y - 4 = 0$	[2]
(b)	Find the equation of the line, passing through the intersection of the lines $2x - y = 1 = 0$ and $3x + y - 6 = 0$ and containing the point (-2, 3).	[3]
(c)	A parabola $y = ax^2 + bx + c$ passes through A(-1, 4), B(0, 7) and C(1, 8). Determine the values of <i>a</i> , <i>b</i> and <i>c</i> .	[2]
(d)	Given the quadratic expression $x^2 + (k-3)x + k$. For what values of k, is the expression positive for all values of x?	[2]
(e)	In $\triangle ABC$, $\hat{A} = 38^{\circ}21'$, $b = 11.6$ m and $a = 7.9$ m. Find the	[2]

size of the angle *B* (correct to the nearest degree).

[3]

END OF PAPER

2006 Mathematics Continuers: Solutions Part A

Question 1 (10 Marks)

(a) Evaluate $8^{2 \cdot 1}$ to 4 significant figures,

Solution: By calculator, $78 \cdot 79324245 \approx 78 \cdot 79$ to 4 sig. fig.

(b) Write $0.\dot{1}\dot{3}$ as a simplified fraction.

Solution: Let $x = 0.\dot{1}\dot{3}$, $100x = 13.\dot{1}\dot{3}$, 99x = 13, $\therefore x = \frac{13}{99}$.

(c) Simplify

(i)
$$3x - (4 - x)$$

Solution: $3x - 4 + x = 4x - 4$
(ii) $\frac{x+1}{3} + \frac{2x}{5}$
Solution: $\frac{5x+5+6x}{15} = \frac{11x+5}{15}$

(d) Convert 270° to radians in exact form.

Solution: $270^{\circ} \times \frac{\pi}{180^{\circ}} = \frac{3\pi}{2}$

(e) Factorise

(i)
$$x^2 - 9$$

Solution: (x+3)(x-3)

(ii) $64 + x^3$

Solution: $4^3 + x^3 = (4 + x)(16 - 4x + x^2)$

2

1

1

1

1

1

(f) Given that

$$f(x) = \begin{cases} 6 - x^2 & \text{if } x \ge 0, \\ |x| & \text{if } x < 0, \end{cases}$$

1

1

 $\boxed{2}$

 $\boxed{2}$

 $\left|2\right|$

1

 $\boxed{2}$

evaluate

(i)
$$f(-2)$$

Solution: $|-2| = 2$
(ii) $f(0)$
Solution: $6 - 0^2 = 6$

Question 2 (11 Marks)

(a) Solve |2x + 6| = 10.

Solution: 2x + 6 = 10, or -2x - 6 = 10, 2x = 4, -2x = 16, $\therefore x = 2$. x = -8.

(b) Simplify
$$\frac{1}{\sec^2 \theta} + \frac{1}{\csc^2 \theta}$$

Solution: $\cos^2 \theta + \sin^2 \theta = 1$

(c) (i) Solve the inequation |x+3| < 2.

Solution: -2 < x + 3 < 2, -5 < x < -1.

(ii) Hence graph the solution on a number line.

(d) Find the equation of the circle with centre (-4, 6) and radius $\sqrt{5}$.

Solution: $(x+4)^2 + (y-6)^2 = 5$

(e) Find the exact value of $\tan \frac{3\pi}{4}$.

Solution:
$$\frac{S}{T} \stackrel{A}{\underset{C}{\longrightarrow}} - \tan \frac{\pi}{4} = -1$$

Question 3 (9 Marks)

Г

(a) (i) Write down the expansion for sin(A + B).

Solution: $\sin A \cos B + \cos A \sin B$

(ii) Hence find the exact value of sin 75°.

Solution:
$$\sin(45^\circ + 30^\circ) = \sin 45^\circ \cos 30^\circ + \cos 45^\circ \sin 30^\circ$$

$$= \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \times \frac{1}{2},$$
$$= \frac{1 + \sqrt{3}}{2\sqrt{2}} \text{ or } \frac{\sqrt{2} + \sqrt{6}}{4}.$$

(b) If α and β are the roots of $2x^2 + 3x + 4 = 0$, find the value of

(i) $\alpha\beta$

Solution:
$$\frac{4}{2} = 2$$

(ii) $\frac{1}{\alpha} + \frac{1}{\beta}$

Solution: $\frac{\alpha + \beta}{\alpha\beta} = \frac{-3}{2} \times \frac{1}{2},$
 $= -\frac{3}{4}.$

 2

2

1

1

(c) Sketch the intersection of the regions $y > x^2 - 1$ and $y \le x$.

Question 4 (11 Marks)

(a) State the domain and range of $g(x) = \sqrt{x+4}$.

Solution: Domain: $x \ge -4$, Range: $g(x) \ge 0$.

(b) Show that $f(x) = x^3 + 3x$ is an odd function.

Solution:
$$f(-x) = (-x)^3 + 3(-x),$$

= $-x^3 - 3x,$
= $-(x^3 + 3x),$
= $-f(x).$
 $\therefore f(x)$ is odd.

(c) Find correct to the nearest minute the angle between y = 6x - 7 and y = x + 3.

Solution:
$$m_1 = 6, m_2 = 1.$$

 $\tan \alpha = \left| \frac{6-1}{1+6 \times 1} \right|,$
 $= \frac{5}{7}.$
 $\therefore \alpha = 35^{\circ}32'.$

3

 $\left|2\right|$

2

(d) Find the values of A and B if $2(x-1)^2 \equiv A(x^2+1) + Bx$.

Solution: Let x = 0, 2 = A. Let x = 1, 0 = 4 + B, B = -4.

(e) For A(5, 1) and B(-3, 7) find the coördinates of the point that divides the interval AB internally in the ratio 3:1.

Solution:
$$\left(\frac{3 \times (-3) + 1 \times 5}{3 + 1}, \frac{3 \times 7 + 1 \times 1}{4}\right) = (-1, 5\frac{1}{2})$$

 $\left|2\right|$

711 CONTINUERS SECTION B 5 (a) x - 6x + y 2 + 10 y + 9=0 $(x-3)^{2} + (y+5)^{2}$ =-9+9+25 = 25. (Adveride doesn't pass the vertical line text pro a purchier. OR. There are points (ie too) where the x-value is the sure. OR. It is not a 1-1 consultandence as snaffing (1) Cartie (3,-5) radius 5.) VV

 $\left(C \right) \quad \frac{\chi - 3}{2} < 0$ x (x-3) LO (ie muttiply heth aides by x") · · · O < z < 3 let m = x + m = 9, ! V V $ie x^{2} = 9, !$ $|x = \pm 3, \pm 1|$ x - 10x + 9 = 0(d) m²-10 m + 9 = 0 (m - 9) (m - 1)= 0

$$4x - 3y - 8 = 0 \quad a \neq paint (-2,3)$$

$$\mathcal{A} = \begin{bmatrix} 4x - 2 & -3x & 3 & -8 \\ \hline \sqrt{4^2} + (-3)^2 \end{bmatrix}$$

$$= \begin{bmatrix} -8 & -9 - 8 \\ 5 \end{bmatrix}$$

$$= \begin{bmatrix} -8 & -9 - 8 \\ 5 \end{bmatrix}$$

$$= \begin{bmatrix} -25 \\ 5 \end{bmatrix}$$

On an

Find the intersection of (b) 2x - y = 3 - C 3x-y=-2 -0 0 - 0 2 = - 5 Antin () -10 - y = 3 y = -13 -:-(-5,-/3) . Equation of line having through (3,-1) and (-5,-13) $\frac{\gamma + 1}{2 - 3} = \frac{-13 + 1}{-5 - 3} = \frac{-12}{-8}$ $\sqrt{\sqrt{}}$ $\frac{2y+2}{3x-2y-11} = 0$

 \mathcal{C} F 80 A d = tan 15" 80 (m).i.d = 80tan 15°. now tan 0 = de = 80ter15° = 0.3573 . = 19° 40' (OR 20°)

(5) × −3 (d) 2x+y-3=5 -6x -39 z = -111 -x+3y-22=1 -x-y+5y=12 --(5) (4A) + (5a) Ð -3/2 = -933 = 30+3 3x+4z=9 -@ (3) × 3 And in @ 3x-3y+152=36 3a 32 + 12=9 (sa) + (2) 3x = /x = 2x + 13z = 37 (5) I in O (4) x 2 6x+8z=18 -(4a) チョン $1 \cdot | (-1, a, 3)$

(b)
$$y^{a} + L_{2} + M = 0$$
 has needs $d, 2K$.
New $d + 2d = -L$ $\forall dx + 2d = M$
 $\therefore 3k = -L = 0$ $2d^{2} = M - 0$
 $d = -\frac{1}{3}$ $2d^{2} = M - 0$
 $d \times (-\frac{1}{3})^{2} = M$
 $\frac{dL^{2}}{9} = M$ VVV
 $\left[\frac{2d^{2}}{9} = \frac{9M}{3}\right]$
(in $\frac{2}{7}$ L is national then $-\frac{1}{3} = 4$ is national.
 d here $2d = -\frac{2}{3}$ is also national
(b) $\frac{9}{3}$ $\int_{-\frac{1}{7}}^{-\frac{1}{7}} \frac{1}{7} = \frac{1}{7}$
 $\frac{1}{(3)^{1}} = \frac{1}{7}$ $\frac{1}{7} \sqrt{(2-3)^{2} + (2-1)^{2}} = \frac{1}{7} + 1$

