

SYDNEY BOYS HIGH SCHOOL
 MOORE PARK, SURRY HILLS

2007

YEAR 11 Mathematics 2 Unit
HALF YEARLY EXAM

Mathematics

2 Unit

General Instructions

- Reading Time - 5 Minutes
- Working time - 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Marks may NOT be awarded for messy or badly arranged work.
- All necessary working should be shown in

Total Marks - 70

Examiner: D.McQuillan
(1) Evaluate $\frac{5.1^{2}}{10.1-3.6}$ to 3 decimal places.
(2) Show that the triangle inequality $|x+y| \leq|x|+|y|$ is true for $x=4$ and $y=-7$.
(3) If $\sqrt{80}=a \sqrt{5}$ find the value of a.
(4) Simplify $\frac{3 a}{b}-\frac{a}{2 b}$.
(5) Factorise
(i) $x^{2}+10 x-24$
(ii) $3 m^{2}-3 m n-m+n$
(iii) $1-8 x^{3}$
(6) Rationalise the denominator of $\frac{\sqrt{5}+7}{3 \sqrt{2}}$.
(7) Find the interior angle sum of a 12 sided polygon.
(8) Write $\sqrt[4]{x^{5}}$ in index form.
(9) Express $0 . \dot{5} \dot{4}$ as a fraction.
(10) Simplify $\sqrt{5}+\sqrt{2}-\sqrt{45}+\sqrt{8}$.
(11) Expand and simplify $(\sqrt{3}-5)(\sqrt{3}+5)$.
(12) Solve these equation simultaneously

$$
\begin{aligned}
& 2 x-9=y \\
& 5 x+12=2 y
\end{aligned}
$$

(13) Solve
(a) $\quad|5 x+13|=|3 x+3|$.
(b) $\quad|2 x-1|>13$.
[2]
(14) Simplify $\frac{x^{2}-2 x-3}{x^{2}-4 x-5} \times \frac{x^{2}-25}{(x-3)(x+5)}$.
(15) Use the quadratic formula to solve $2 x^{2}-6 x-3=0$ leave your answer in simplest surd form.
(16) Write the expression $x^{2}-6 x+12$ in the form $(x-h)^{2}+k$ using the completing the square method and hence find values of h and k.
(17) Find the value of x (to 2 decimal places).

(18) Solve
(a) $\quad 2^{t-3}=16$.
(b) $\quad x^{4}-10 x^{2}+9=0$.
(19) Find θ to the nearest degree.

(20) Given the figure

(a) Prove that $\triangle A B C$ is similar to $\triangle D E C$.
(b) Hence find the length of CE.
(21) Find the exact value of
(a) $\cos 45^{\circ}$
(b) $\tan 180^{\circ}$
(c) $\sin 300^{\circ}$
(22) Simplify $\cos \theta \sin \left(90^{\circ}-\theta\right)+\sin \theta \cos \left(90^{\circ}-\theta\right)$.
(23) Simplify $\left(\frac{27 y^{6}}{8}\right)^{-\frac{2}{3}}$.
(24) Sketch a graph of $y=\cos x$ where $-180^{\circ} \leq x \leq 180^{\circ}$.
(25) Solve $\cos \theta=-\frac{\sqrt{3}}{2}$ for $0^{\circ} \leq \theta \leq 360^{\circ}$
(26)
(a) Show that $2 x^{2}+9 x-5=(2 x-1)(x+5)$.
(b) Hence solve $2 x^{2}+9 x-5 \leq 0$.
(c) Graph the solutions on a number line.
(27) From camp, a hiker walks due north for 8 km , then 6 km due west to a lake.
(a) Draw a neat diagram to represent this information.
(b) How far is the hiker from camp?
(c) What is the bearing of the camp from the lake (to the nearest degree)?
(28) In a right-angled triangle, one of the sides adjacent to the right angle is 4 cm longer than the other. Find the exact length of the hypotenuse if the area of the triangle is $96 \mathrm{~cm}^{2}$.
(29) Find the points of intersection of the line $y=3 x+2$ and the parabola $y=x^{2}-7 x-9$.
(30) Show that $\frac{(\sin A+\cos A)^{2}}{\cos A}=2 \sin A+\sec A$.
(31) Solve $\tan ^{2} \phi=1$ for $0^{\circ} \leq \phi \leq 360^{\circ}$

End of Exam

Matho YRII Haly Yearhy 20072 unit dass.
(i) $\frac{26.01}{6.5} \fallingdotseq 4.002(3 D P)$
(2)

$$
\begin{aligned}
\mid 4+5 & \leq|4|+|-7| \\
|-3| & \leq 4+7 \\
3 & \leq 11 \text { true }
\end{aligned}
$$

(1)

$$
\begin{align*}
& \text { (12) } \left.\begin{array}{c}
y=2 x-9 \\
2 y=5 x+12
\end{array}\right\} \tag{1}\\
& \begin{array}{c}
(2 x-9)=5 x+12 \\
4 x-18=5 x+12 \\
-30=x
\end{array} \\
& \text { 2 }
\end{align*}
$$

(3) $\sqrt{80}=\sqrt{16 \times 5}=4 \sqrt{5} \Rightarrow a=4$
(1) and $y=2 x-30-9$

$$
\begin{align*}
& =-69 \tag{2}\\
& (-30,-69)
\end{align*}
$$

(13)
(3)
(4) $\frac{6 a-a}{2 b}=\frac{5 a}{2 b}$
(i) $(x+12)(x-2)$ (1)
(ii) $\begin{aligned} & 3 m(m-n)-1(m-n) \\ = & (3 m-1)(m-n)\end{aligned}$
(iii) $(1-2 x)\left(1+2 x+4 x^{2}\right)$ (1)
(6) $\frac{(\sqrt{5}+7)}{3 \sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{10}+7 \sqrt{2}}{6}$
(7) $\frac{360}{12}=30 \Rightarrow$ intenior is $15^{\circ} \times 12=1800^{\circ}$ (1)
(8) $x^{\frac{5}{4}}(1)$
(9) $\frac{54}{99}=\frac{6}{11}$
(i0)

$$
\begin{align*}
& \sqrt{5}+\sqrt{2}-3 \sqrt{5}+2 \sqrt{2} \\
& =-2 \sqrt{5}+3 \sqrt{2} \tag{2}
\end{align*}
$$

(b) $2 x-1>13$

$$
2 x>14
$$

and

$$
x>7
$$

$$
2 x-1<-13
$$

$$
\begin{equation*}
2 x<-12 \tag{1}
\end{equation*}
$$

$$
x<-6
$$

(ii) $3+5 \sqrt{3}-5 \sqrt{3}-25=-22$

(25) $\cos \theta=-\frac{\sqrt{3}}{2}$
quad 2,3-

$$
\begin{aligned}
& \text { quad 2,3 } \\
& \cos \theta=\frac{\sqrt{3}}{2} \Rightarrow \theta=30
\end{aligned}
$$

30

$$
\begin{align*}
180-30 & =15^{\circ} \tag{2}\\
180+30 & =210^{\circ} \tag{2}
\end{align*}
$$

(27)

(b)

$$
\begin{aligned}
& 6^{2}+8^{2}=c^{2} \\
& c=10 \mathrm{~km}
\end{aligned}
$$

26

$$
\text { (a) } \begin{aligned}
(2 x-1)(x+5) & =2 x^{2}+10 x-x-5 \\
& =2 x^{2}+9 x-5
\end{aligned}
$$

(b)

$$
-5 \leq x \leq \frac{1}{2}
$$

(1)

or $937^{\circ} \mathrm{E}$
(c)

(0)

$$
\begin{align*}
& x \\
& \text { area }=\frac{1}{2} \times x \times(x+4)=96 \\
& 2 x^{2}+4 x=192 \\
& x^{2}+4 x-192=0 \\
& (x+16)(x-12)=0 \\
& x=-16, x=12 \\
& \text { USe } x=12, \quad c^{2}=12^{2}+16^{2} \tag{3}\\
& 5016 \quad c \quad c^{2}=12+16 \mathrm{~cm}
\end{align*}
$$

$$
\begin{gathered}
\text { (29) } \left.\begin{array}{c}
y=3 x+2 \\
y=x^{2}-7 x-9
\end{array}\right\} \\
\left.\begin{array}{c}
x^{2}-7 x-9=3 x+2 \\
x^{2}-7 x-3 x-9-2=0 \\
x^{2}-10 x-11=0 \\
(x-11)(x+1)=0 \\
x=-1 \quad \text { and } \quad x=11 \\
y=3 x-1+2 \quad y=3 x 11+2 \\
=-3+2 \\
=-1 \\
(-1,-1) \quad(11,35
\end{array}\right)
\end{gathered}
$$

(30)

LHS $\frac{\sin ^{2} A+2 \sin A \cos A+\cos ^{2} A}{\cos A}$

$$
\begin{align*}
& =\frac{1+2 \sin A \cos A}{\cos A} \frac{\cos A}{} \\
& =\sec A+2 \sin A \\
& =R H S \tag{3}
\end{align*}
$$

(3)

$$
\begin{align*}
& \tan \phi= \pm 1 \\
& \tan \phi=1 \quad \tan \phi=-1 \\
& \text { quad } 1,3 \quad \text { guad } 2,4 \\
& \phi=45^{\circ} \\
& 180-45=135^{\circ} \\
& 180+45=225 \circ \\
& 360-45=315
\end{align*}
$$

(31) $\tan ^{2} \phi=1$

