

SYDNEYBOYS HIGH SCHOOL MoORE PARK, SURRY HILLS

2008

YEAR 11
Mathematics (2U)
Half Yearly Examination

Mathematics

General Instructions

- Write using black or blue pen
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may not be awarded for messy or badly arranged work.

Reading time: 5 minutes
Working time: 90 minutes
Total Marks - 70

- Attempt All Questions.
- All questions are NOT of equal value.

Examiner: A. Ward

1. Find 0.009738148 correct to three significant figures.
2. Write down the supplement of $126^{\circ} 52^{\prime}$.
3. Simplify $-5 p^{4}+3 p^{2}+2 p^{4}$.
4. Simplify $2 \frac{1}{2} \times 3 \frac{7}{8} \div 5 \frac{5}{9}$.
5. Simplify $\sqrt{27}+\sqrt{48}$.
6. Expand and simplify $(2 x-3)(3 x+4)$.
7. Solve $\frac{6 t-1}{t}=4$.
8. Factorise $x^{2}-13 x+30$.
9. Calculate: $\frac{\sqrt{4.7-3.2}}{9.4-1.6}$ correct to 3 decimal places.
10. Express $0 . \dot{2} \dot{1}$ as a rational number.
11. Solve $x^{2}-4 x=0$.
12. Find the value of d to 3 decimal places.

13. Write down the exact value of $\cos 210^{\circ}$.
14. Solve $(x-4)^{2}=17$. Leave your answer in surd form.
15. Express $\frac{7 \pi}{15}$ radians in degrees.
16. Simplify $\frac{5 x}{x^{2}-4}-\frac{x+2}{10 x^{2}}$.
17. Express in $\sqrt{1452}$ the form $a \sqrt{b}$ where \sqrt{b} is irrational.
18. Find c in terms of a, b and d :

$$
d=\sqrt{b^{2}-4 a c}
$$

19. Factorise fully:
a) $r s-15+3 s-5 r \quad 2$
b) $2 x^{2}+x-21 \quad 2$
c) $x^{4}-a^{4} \quad 2$
d) $x^{3}-a^{3} \quad 2$
20. Solve $2 x^{2}+8 x+16=0$ by completing the square. 2
21. If $\cos \theta=\frac{-7}{25}$ and $90^{\circ} \leq \theta \leq 180^{\circ}$, find $\tan \theta$. 2
22. Solve $3(2+y)-4(2 y-7) \leq 9$. 2
23. Express with a rational denominator:

$$
\begin{equation*}
\frac{2 \sqrt{5}+1}{2 \sqrt{5}-1} \tag{2}
\end{equation*}
$$

24. Solve: $|2 x-5|=7$
25. Simplify $(x+a)^{2}+(x-a)^{2}$
26. Solve $x+\frac{2}{x}=-3$.
27. Solve the simultaneous equations:

$$
\begin{aligned}
& x+y+z=7 \\
& 2 x+3 y-z=0 \\
& 3 x+4 y+2 z=17
\end{aligned}
$$

28. A triangle $P Q R$ whose area is $3 \mathrm{~cm}^{2}$ has sides $P Q=4 \mathrm{~cm}$ and $Q R=\sqrt{3} \mathrm{~cm}$. Find $\angle P Q R$.
29. $A B C D E$ is a regular pentagon, with $A B$ and $D C$ produced to F. Find the values of x, y and z. (Do not give reasons)

30. In triangle $R P T, r=15, t=8$ and $\angle R P T=2$ radians. Find side p to 2 decimal places.
31. Solve the inequality:

$$
\begin{equation*}
|x+3| \leq 2 x-2 \tag{3}
\end{equation*}
$$

32. If $p=\frac{\cos \theta}{2}$ and $q=\sin ^{3} \theta$, find $\sin ^{2} \theta+\cos ^{2} \theta$ in terms of p and q.
33. In triangle $P Q R$, the obtuse angle $\angle Q P R=\theta$. The angle $\angle P R Q=30^{\circ}$ and the lengths $P Q$ and $Q R$ are 6 cm and 8 cm respectively. Find the value of $\cos \theta$ correct to 3 significant figures.

34.

In the diagram $A C$ is the diameter of a circle radius r and BD is perpendicular to $A C$.
(a) Prove that triangles $A B C, A D B$ and
$B D C$ are similar.
(b) Given that $B C=\frac{1}{2} r$ show that $A D: D C=15: 1$

Year 112 unit $1 / 2$ yearly 2008

1. 0.009738148

$$
\begin{equation*}
=0.00974 \tag{1}
\end{equation*}
$$

2,

$$
\begin{aligned}
& \text { Supp of } 126^{\prime} 52^{\prime} \\
& =180 \text { 126 } 52^{\prime} \\
& =53^{\circ} 8^{\prime}
\end{aligned}
$$

3.

$$
\begin{aligned}
& -5 p^{4}+3 p^{2}+2 p^{4} \\
& =3 p^{2}-3 p^{4}
\end{aligned}
$$

$$
\text { 4. } \begin{aligned}
& 2^{1 / 2} \times 3 / 8 \div 55 / 9 \\
= & 111 / 160 \text { OR } \\
\text { 5. } & \sqrt{27}+\sqrt{48} \\
= & \sqrt{9} \cdot \sqrt{3}+\sqrt{16 \cdot \sqrt{3}} \\
= & 3 \sqrt{3}+4 \sqrt{3} \\
= & 7 \sqrt{3}
\end{aligned}
$$

$$
=1115 / 160 \text { OR 279/160 }
$$

6.

$$
\begin{align*}
& (2 x-3)(3 x+4) \\
= & 6 x^{2}+8 x-9 x-12 \\
= & 6 x^{2}-x-12 \tag{1}
\end{align*}
$$

7.

$$
\begin{align*}
\frac{6 t-1}{t} & =4 \\
6 t-1 & =4 t \\
2 t & =1 \\
t & =1 / 2 \tag{1}
\end{align*}
$$

8.

$$
\begin{align*}
& x^{2}-13 x+30 \\
= & (x-3)(x-10) \tag{i}
\end{align*}
$$

$$
\text { 9. } \begin{align*}
& \frac{\sqrt{4.7-3.2}}{9.4-1.6} \\
= & 0.157018573 \\
= & 0.1573 d p \tag{1}
\end{align*}
$$

10.

$$
\begin{align*}
x & =0 \cdot 2 i \\
100 x & =21 \cdot 2 i \\
99 x & =21 \\
x & =21 / 99=7 / 33 \tag{1}
\end{align*}
$$

11.

$$
\begin{gathered}
x^{2}-4 x=0 \\
x(x-4)=0 \\
x=0, x-4=0
\end{gathered}
$$

(12)

$$
x=4 \text { (12) }
$$

12. $5 \int_{35^{\circ} 28}^{d} \frac{d}{\sin 90}=\frac{5}{\sin 38^{\circ} 28^{\prime}}$

$$
d=8.037819828
$$

$$
=8.038 \text { 3dp (1) }
$$

13. $\cos 210^{\circ}=-\sqrt{3} / 2$
14.

$$
\begin{align*}
& (x-4)^{2}=17 \tag{1}\\
& x-4= \pm \sqrt{17} \\
& x=4 \pm \sqrt{17} \tag{1}
\end{align*}
$$

15. $\frac{7 \pi}{15}$ in degrees

$$
\begin{equation*}
\frac{7 \pi}{15} \times \frac{180}{\pi}=84^{\circ} \tag{1}
\end{equation*}
$$

$$
\text { 16. } \begin{aligned}
& \frac{5 x}{x^{2}-4}-\frac{x+2}{10 x^{2}} \\
& =\frac{5 x}{(x+2)(x-2)}-\frac{x+2}{10 x^{2}} \\
& =\frac{50 x^{3}-(x+2)^{2}(x+2)}{10 x^{2}(x+2)(x-2)} \\
& =\frac{50 x^{3}-\left(x^{2}+4 x+4\right)(x-2)}{10 x^{2}(x+2)(x-2)} \\
& =\frac{50 x^{3}-\left(x^{3}-2 x^{2}+4 x^{2}-8 x+4 x-8\right)}{10 x^{2}(x+2)(x-2)} \\
& =\frac{50 x^{3}-x^{3}-2 x^{2}+4 x+8}{10 x^{2}(x+2)(x-2)} \\
& =\frac{49 x^{3}-2 x^{2}+4 x+8}{10 x^{2}(x+2)(x-2)}
\end{aligned}
$$

17. $\sqrt{1452}=a \sqrt{b}$
$\sqrt{4}-\sqrt{121} \cdot \sqrt{3}=a \sqrt{b}$
$2 \cdot 11 \cdot \sqrt{3}=a \sqrt{b}$

$$
22 \sqrt{3}=a \sqrt{b}
$$

$$
\therefore a=22 \quad b=\frac{3}{(1)}
$$

18.

$$
\begin{array}{r}
d=\sqrt{b^{2}-4 a c} \\
d^{2}=b^{2}-4 a c \\
4 a c=b^{2}-d^{2} \\
c=\frac{b^{2}-d^{2}}{4 a} \tag{1}
\end{array}
$$

19.a) $r s-15+3 s-5 r$

$$
\begin{align*}
& s(r+3)-5(r+3) \\
& =(r+3)(s-5) \tag{1}
\end{align*}
$$

$$
\text { (1) } \begin{align*}
& 2 x^{2}+x-21 \\
& \frac{(2 x+7)(2 x-6)}{2} \\
& =\frac{x(x-3)(2 x+7)}{2} \\
& =(x-3)(2 x+7) \tag{2}
\end{align*}
$$

C)

$$
\text { } \begin{align*}
& x^{4}-a^{4} \\
= & \left(x^{2}-a^{2}\right)\left(x^{2}+a^{2}\right) \\
= & \left(x^{2}+a^{2}\right)(x+a)(x-a) \tag{1}
\end{align*}
$$

d)

$$
\begin{align*}
& x^{3}-a^{3} \\
= & (x-a)\left(x^{2}+x a+a^{2}\right) \tag{2}
\end{align*}
$$

20.

$$
\begin{aligned}
& \text { 0. } 2 x^{2}+8 x+16=0 \\
& x^{2}+4 x+8=0 \\
& \text { (x) } x^{2}= \\
& x^{2}+4 x+4=-8+4 \\
& (x+2)^{2}=-4 \\
& x+2=\sqrt{-4}
\end{aligned}
$$

\therefore no solutions
21.

$$
\begin{equation*}
\tan \theta=-\frac{24}{7} \tag{1}
\end{equation*}
$$

22.

$$
\begin{gather*}
3(2+y)-4(2 y-7) \leqslant 9 \\
6+3 y-8 y+28 \leqslant 90 \\
34-5 y \leqslant 9 \\
-5 y \leqslant-25 \\
y \geqslant 5 \tag{0}
\end{gather*}
$$

$$
\text { 23. } \begin{aligned}
& \frac{2 \sqrt{5}+1}{2 \sqrt{5}-1} \times \frac{2 \sqrt{5}+1}{2 \sqrt{5}+1} \\
= & \frac{20+4 \sqrt{5}}{20-1}+1 \\
= & \frac{21+4 \sqrt{5}}{19}
\end{aligned}
$$

24. $|2 x-5|=7$

$$
2 x-5=7 \quad 2 x-5=-7
$$

$$
2 x=12
$$

$$
2 x=-2
$$

$$
\begin{equation*}
x=6 \tag{1}
\end{equation*}
$$

$$
x=-1
$$

(1)
25. $(x+a)^{2}+(x-a)^{2}$

$$
x^{2}+2 x a+a^{2}+x^{2}-2 x a+a^{2}
$$

$$
\begin{equation*}
=2 x^{2}+2 a^{2} \tag{1}
\end{equation*}
$$

$$
=2\left(x^{2}+a^{2}\right)
$$

26.

$$
\text { 3. } x+\frac{2}{x}=-3 .
$$

27.

$$
\begin{array}{r}
x+y+z=7 \\
2 x+3 y-3=0 \\
3 x+4 y+23=17 \tag{3}
\end{array}
$$

(2) $\times 2$

$$
\begin{equation*}
4 x+6 y-23=0 \tag{4}
\end{equation*}
$$

(4) +3
(1) +2

$$
\begin{align*}
& 7 x+10 y=17 \tag{5}\\
& 3 x+4 y=7 \tag{6}
\end{align*}
$$

(5) $\times 3$

$$
\begin{equation*}
21 x+30 y=51 \tag{7}
\end{equation*}
$$

(8) $\times 7 \quad 21 x+28 y=49$

$$
\begin{align*}
& 2 y=2 \\
& y=1 \tag{1}
\end{align*}
$$

into (6)

$$
\begin{align*}
& 3 x+4=7 \\
& 3 x=3 \\
& x=1 \tag{1}
\end{align*}
$$

- into (1)

$$
\begin{gather*}
1+1+3=7 \\
3=5 \tag{1}
\end{gather*}
$$

test in (2)

$$
2+3-5=0
$$

28.

$$
\begin{aligned}
& A=1 / 2 a b \sin C(1) \\
& 3=1 / 2 \times 4 \times \sqrt{3} \times \sin \theta \\
& \sin \theta=\frac{6}{4 \sqrt{3}} \\
& \theta=60^{\circ}
\end{aligned}
$$

29.

regular pentagon $=540^{\circ}$

$$
\begin{align*}
& \therefore x=108^{\circ} \\
& y=36^{\circ} \tag{1}\\
& z=36^{\circ} \tag{1}
\end{align*}
$$

30.

$$
\begin{aligned}
p^{2} & =8^{2}+15^{2}-2 \times 8 \times 15 \times \cos 2^{c} \\
& =289-240 \cos 2^{\circ} \\
p & =\sqrt{289-240 \cos 2^{\circ}} \\
& =13.75226379 \\
& =13.75(3) \quad \log 1.0
\end{aligned}
$$

31. $|x+3| \leqslant 2 x-2$

$$
\begin{array}{cc}
x+3 \leqslant 2 x-2 & -x-3 \geqslant 2 x-2 \\
5 \leqslant x & -1 \geqslant 3 x \\
x \geqslant 5 & x \leqslant-1 / 3 \\
\text { (1) } &
\end{array}
$$

32.

$$
p=\frac{\cos \theta}{2}, q=\sin ^{3} \theta
$$

$$
2 p=\cos \theta
$$

$$
\begin{equation*}
4 p^{2}=\cos ^{2} \theta \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& q=\sin ^{2} \theta-\sin \theta \\
& \sin ^{2} \theta=
\end{aligned}
$$

$$
\sin ^{2} \theta=
$$

$$
\begin{equation*}
\cos ^{2} \theta+\sin ^{2} \theta=4 p^{2}+\sqrt{q^{2}} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\sin 30}{6}=\frac{\sin \theta}{8} \tag{1}
\end{equation*}
$$

$$
\sin \theta=\frac{8 \sin 30}{6}
$$

sin

$$
\begin{align*}
\sin \theta & =2 / 3 \tag{1}\\
\theta & =41.8103149 \\
\cos \theta & =0.745355992 \\
& =0.745 \quad \text { (3s.f) }
\end{align*}
$$

$34 . a)$ let $\angle A=x$.
$\triangle A B C+\triangle A B O$

$$
\angle A B C=90^{\circ}=\angle A D B
$$

$\angle A$ common.
$\therefore \angle A C B=90-\angle A=\angle A B D$
$\therefore \triangle A B C$ a $\triangle A B D$ are similar
$\triangle A B D \subset \triangle B D C$
$\angle A D B=90^{\circ}=\angle B D C$
$\angle C=90^{\circ}-\angle A$ (from above)
$\therefore \angle A B D=90^{\circ}-\angle A$
$\therefore \angle B A D=\angle C B D$
$\therefore \triangle A B D$ III $\triangle B D C$
$\therefore \triangle A B C\|\triangle A D B\| \triangle B D C$
(2)
b)

radius $=r$ (given)

$$
B C=1 / 2 r
$$

$A C=2 r$ (dame! \quad)

$$
\therefore(2 r)^{2}=\left(\frac{r}{2}\right)^{2}+A B^{2}
$$

$A B^{2}=4 r^{2}-r^{2} / 4$

$$
=15 / 4 r^{2}
$$

$A B=\sqrt{15} / 2 r$
$A C: A B=A B: A D$
(similar Δ 's sides same ratio)

$$
\begin{aligned}
& 2 r: \sqrt{15} / 2 r=\sqrt{15} / 2 r: A D . \\
& 2: \sqrt{15} / 2=\sqrt{\sqrt{5} / 2 r}: A D \\
& 1: \sqrt{15} / 4=\sqrt{15} / 2 r: A D
\end{aligned}
$$

$\therefore A D=\frac{\sqrt{15}}{4}-\frac{\sqrt{15}}{2} r$

$$
A D=\frac{15}{8} r
$$

in $\triangle A B D$

$$
\begin{aligned}
& A B^{2}=A D^{2}+B D^{2} \\
& \frac{15}{4} r^{2}=\frac{225}{64} r^{2}+B D^{2} \\
& B D^{2}=\frac{15}{64} r^{2} \\
& B D=\frac{\sqrt{15}}{8} r
\end{aligned}
$$

in $\triangle B C D$

$$
\begin{aligned}
& B C^{2}=B O^{2}+O C^{2} \\
& \frac{r^{2}}{4}=\frac{15 r^{2}+D C^{2}}{64} \\
& X^{2}=\frac{1}{64} r^{2} \\
& D=\frac{1 r}{8}
\end{aligned}
$$

$$
\begin{align*}
\therefore & A D: D C \\
= & \frac{15 r}{8} \because \frac{1}{8} \\
= & 15: 1 \tag{3}
\end{align*}
$$

I lm sure there is an easier way to do
this!

