

SYDNEY BOYS HIGH SCHOOL
 MOORE PARK, SURRY HILLS

2010
YEAR 11
Half Yearly Examination

Mathematics

General Instructions

- Reading Time - 5 Minutes
- Working time - 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Marks may NOT be awarded for messy or badly arranged work.
- All necessary working should be shown in every question.
- Answer in simplest exact form unless otherwise instructed

Total Marks - 100

- Attempt all questions
- All questions are NOT of equal value

Examiner: \quad R. Boros

1. Solve $\frac{1}{3}(x-2)-\frac{1}{2}(2-x)=1$
2. Find the value of x if $\sqrt{x}=\sqrt{50}-\sqrt{18}$
3. Solve the following quadratic equation leaving your answer in surd form

$$
(2 x-1)^{2}=6
$$

4. Express $\frac{1}{\sqrt{3}-2}$ with a rational denominator
5. Expand and simplify $\sqrt{(a-5)(a+5)+25}$
6. The 3 legs of a triangular sailing course for the London Olympics have lengths $8 \mathrm{~km}, 10 \mathrm{~km}$ and 16 km .
a) Draw a sketch showing this information.
b) Mark in angle α where the smallest angle should be.
c) Calculate this angle α correct to the nearest minute.
7. Express $1.0 \dot{2} \dot{6}$ as a rational number
8.

9. Find the exact value of $\tan 60^{\circ} \times \sin \left(30^{\circ}\right)$
10. Evaluate $\frac{5.3}{9.6-3.7}$ correct to 2 significant figures
11. What is 0.0000309 written in scientific notation?
12. How many zeros are significant in the number 0.0050309 ?
13. Which congruency test would be used to establish the congruency of these 2 triangles?

14. Which elements in the set are rational numbers?

$$
\left\{\sin 30^{\circ}, \pi, \sqrt{10}, 3 . \dot{4}, 2^{\frac{1}{2}}\right\}
$$

15. Which of the following statements about the diagonals of a rhombus is False?
a) The diagonals bisect each other.
b) The diagonals bisect the angles of the rhombus.
c) The diagonals bisect at right angles.
d) The diagonals are equal.
16. Fully factorise:
a) $3 a^{2}-13 a+12$
b) $64-a^{3}$
c) $a y-a x-c x+c y$
17. Find x, giving reasons/working

18. Solve these equations for x :
a) $\frac{3 x+4}{x}=2 \quad 2$
b) $x^{2}=6 x$
c) $3-2 x \geq 7$
19. If $f(x)=|2 x-5|$, solve $f(x)=f(4)$
20. Solve for $x,|3+2 x| \geq|x-1|$
21. Find h. correct to 2 decimal places.

22. Solve these simultaneous equations:

$$
\begin{aligned}
& 5(2 x-y)=7 x+1 \\
& 3(3 x+y)=5(x-y+12)
\end{aligned}
$$

23. Each interior angle of a regular polygon is 140°. How many sides does the polygon have?
24. Simplify $\frac{5}{x-3} \div \frac{x^{2}+3 x}{x^{2}-9}$
25. Simplify $\frac{\cos A}{\sin \left(90^{\circ}-A\right)}$
26.

$$
\begin{aligned}
\text { Given that } \mathrm{A} & =\left[\frac{9}{5}\right]^{3} \\
\mathrm{~B} & =\left[\frac{1}{25}\right] \\
\mathrm{C} & =81
\end{aligned}
$$

Find the value of x and y if $\frac{A^{2}}{B^{5} C^{3}}=3^{x} \times 5^{y}$
27.

ABCD is a rectangle with dimensions as shown.
a) Find the length of BD
b) Find the length of BM
28. A teacher is employed in 1980 at a initial salary of $\$ 27750$ p.a. After each year of service she recieves an increment of \$1050 until she reaches the maximum salary of $\$ 37200$.
a) What is her salary after 8 years of service?
b) How long does she have to work until she receieves the maximum salary?
c) What are her total earnings for the first 10 years of service?
29. By considering $0 . \dot{2} \dot{9}$ as a recurring decimal which is a sum on an infinite geometric series, find the equivalent fraction to $0 . \dot{2} \dot{9}$. Show all working.
30. Calculate the interest earned on an investment of $\$ 11750$ at 9% p.a. compounded quarterly for 5 years.
31. An employee invests $\$ 950$ at the beginning of each year in a superannuation scheme. Assuming interest is paid at $7 \frac{1}{2} \%$ p.a. on the investment, how much to the nearest $\$$ will this investment grow to after 40 years?
32. Loukia borrowed $\$ 60000$ at 18% p.a. where the interest is compounded monthly on the balance owing. If she pays off this loan in equal monthly instalments over 25 years, calculate (to the nearest cent):
a) the amount of each monthly repayment. 3
b) the total amount paid for the loan. 2
c) the total interest paid 2
d) the rate of simple interest (to 2 d.p.) equivalent to this compound interest.
33.

A symmetrical roof is to be supported at regular intervals by vertical posts.
The shortest posts are ' a ' metres long and consecutive posts differ in length by ' d ' metres. The total length of all posts is ' S ' metres. Let the number of posts be $(2 n+1)$.
a) Prove that $S=d n^{2}+2 a n+a$
b) If $S=64.4, d=0.1, a=2$
find:
i) The number of posts
ii) The length of the longest post.

Half Yearly Maths 211 Continueis zo10
(1) $\frac{x}{3}-\frac{x}{3}-1+\frac{x}{x}=1$
(xb)

$$
\begin{align*}
& \frac{6 x}{3}-6 \times \frac{2}{3}-6 \times 1+6 \times \frac{x}{2}=1 \times 6 \\
& 2 x-4-6+3 x=6 \\
& 5 x=16 \\
& x=16 \tag{2}\\
& x=5,5
\end{align*}
$$

(2)

$$
\begin{align*}
\sqrt{50}=\sqrt{25 \times 2} & =5 \sqrt{2} \\
\sqrt{18}=\sqrt{9 \times 2} & =3 \sqrt{2} \\
\sqrt{x} & =2 \sqrt{2} \\
& =\sqrt{4 \times 2} \\
& =\sqrt{8} \\
x & =8 \tag{2}
\end{align*}
$$

(3)

$$
\begin{gather*}
(2 x-1)= \pm \sqrt{6} \\
\frac{(2 x}{2 x}=1 \pm \sqrt{6} \\
x=\frac{1 \pm \sqrt{6}}{2} \tag{3}
\end{gather*}
$$

(4) $\frac{1}{(\sqrt{3}-2)} \times \frac{(\sqrt{3}+2)}{(\sqrt{3}+2)}=\frac{\sqrt{3}+2}{3-4}=-\frac{(\sqrt{3}+2)}{1}$
(5) $\sqrt{a^{2}-25+25}=\sqrt{a^{2}}=a$
(b) (a)
(b)

6(c) Cosine rule: $8^{2}=10^{2}+16-2 \times 10 \times 16 \times \cos \alpha$.

$$
\begin{align*}
64 & =356-320 \cos \alpha \\
-292 & =-320 \cos \alpha \\
\cos \alpha & =0.9125, \\
\alpha & =24^{\circ} 9 \tag{2}
\end{align*}
$$

(7) $1.026=1.0262626 \ldots$
let $x=0.02626 \ldots$

$$
\begin{align*}
100 x & =2 \cdot 62626 \\
99 x & =2.6 \tag{2}\\
x & =\frac{2.6}{99}=\frac{26}{990}=\frac{13}{495}
\end{align*}
$$

so. $1.02 \dot{6}=1 \frac{13}{495}$
(8)

$\hat{A B C}=180-121=59^{\circ}$ contenior angles
$F \hat{B E}=59^{\circ}$ vertically opposited
$\begin{aligned} B \hat{F} E=x=\text { verticality opposite } & =180-\left(59^{\circ}+42^{\circ}\right) \\ & =79 \quad \text { (2) }\end{aligned}$
(9) $\sqrt{3} \times \frac{1}{2}=\frac{\sqrt{3}}{2}$
(2)
(10) $0.90 \quad 255$ (2)
(11) 3.09×10^{-5}
(12) $2 \rightarrow$
(13) SSS SAAS AAS RHS
(14) $\left\{\sin 30^{\circ}, 3.4^{\circ}\right\}$
(in)

a) T
b) T
c) T
d) F
(i6)
a). $(3 a-4)(a-3)$
b) $(4-a)\left(16+4 a+a^{2}\right)$
c) $a(y-x)+c(y-x)$

$$
\begin{align*}
& a(y-x)+c(y= \tag{2}\\
& (y-x)(a+c)(z)
\end{align*}
$$

(17) small and larges Δ are similar, 2 angle test. ratio of sides -

$$
\begin{align*}
& \frac{x}{24+x}=\frac{12}{30} \\
& 30 x=288+12 x \\
& 18 x=288 \\
& x=16 \tag{2}
\end{align*}
$$

(18)
a) $\begin{gathered}3 x+4=2 x \\ x=-4\end{gathered}$
(c)

$$
\text { (b) } x^{2} \frac{1}{2} b x
$$

$$
\begin{gather*}
3-2 x \geqslant 7 \\
-2 x \geqslant 4 \tag{2}\\
x \leqslant-2 \tag{2}
\end{gather*}
$$

$$
x^{2}-6 x=0
$$

$$
x(x-6)=0
$$

$$
x=0, x=6
$$

(19) $f(x)=|2 \times 4-5|=3$
(20)

$$
\begin{align*}
3+2 x \geqslant x-1
\end{aligned} \text { and } \begin{aligned}
3+2 x & \leqslant-(x-1) \\
x \geqslant-4 & \\
3+2 x & \leqslant-x+1 \tag{3}\\
3 x & \leqslant-2 \tag{2}\\
-4 \leqslant x \leqslant-\frac{2}{3} & \text { (3) }
\end{align*}
$$

(21)

since $x+y=30$

$$
\tan 70^{\circ}=\frac{h}{x}
$$

$$
x \tan 70^{\circ}=h
$$

$$
x=\frac{h}{\tan 70^{\circ}}
$$

$$
\begin{equation*}
h=3.87 \tag{3}
\end{equation*}
$$

(2i)

$$
\begin{gather*}
10 x-5 y=7 x+1 \Rightarrow 3 x-5 y=1 \\
9 x+3 y=5 x-5 y+60 \Rightarrow 4 x+8 y=60 \\
\text { (1) } \Rightarrow 4 \quad 12 x-20 y=4 \\
\frac{12 x+24 y}{2 \times 3}=180 \\
y=4
\end{gather*}
$$

and. $\frac{3 x-20}{3 x}=1 \quad x=7$
(23) Interior is 140° extenor is $180^{\circ}-140^{\circ}=40$ total extenor $\frac{360^{\circ}}{40^{\circ}}=9$ sides.
(24) $\frac{5}{(x+3)} \times \frac{(x-3)(x+3)}{x(x+3)}=\frac{5}{x}$
(25) $\frac{\cos A}{\cos A}=1$
(28)

$$
\begin{equation*}
\frac{9^{6}}{\frac{5^{6}}{25^{5}} \times 81^{3}}=\frac{31}{5^{6}} \times \frac{5}{10}_{3^{12}}^{10}=3^{0} \times 5^{4} \tag{4}
\end{equation*}
$$

(27) $(B D)^{2}=\frac{18}{2}+24^{2}$
(b) Orea $\triangle A B D=\frac{1}{2} \times 24 \times 18=21$
(a) $B D=30$
so $216=\frac{1}{2} \times 30 \times A m$.

$$
\begin{equation*}
A m=14.4 \tag{2}
\end{equation*}
$$

Hus $(14.4)^{2}+(B m)=24^{2}$

$$
\begin{equation*}
B m=19.2 \tag{2}
\end{equation*}
$$

(28) (a)

$$
\begin{align*}
a & =27750 \\
d & =1050 \\
n & =8 \\
u_{n} & =a+(n-1) d \\
& =27750+7 \times 1050 \tag{2}\\
& =\$ 35100
\end{align*}
$$

(b)

$$
\begin{aligned}
3200 & =27750+(n-1) 105 \\
9450 & =1050(n-1) \\
q & =n-1 \\
n & =10 \text { yers. (2) }
\end{aligned}
$$

(c)

$$
\begin{align*}
S_{n} & =\frac{n}{2}(a+l) \\
& =\frac{10}{2}(27750+37200) \\
& =\$ 324750 \tag{2}
\end{align*}
$$

(29)

$$
\begin{align*}
& 0.29=0.29+0.0029+0.000029 \cdots \\
& r \equiv \frac{1}{100}, a=0.29 \\
& S_{\infty}=\frac{a}{1-r}=\frac{0.29}{1-\frac{1}{100}}=\frac{0.29}{.99}=\frac{29}{99} \tag{2}
\end{align*}
$$

(3.)

$$
\begin{align*}
A & =P\left(1+\frac{r}{100}\right)^{n} 100 \\
& =11750\left(1+\frac{2.25}{100}\right)^{20}=\$ 18335 \cdot 98 \tag{2}
\end{align*}
$$

interst is $\$ 65^{\circ} 85^{\circ} .98$
(3i)

$$
\begin{aligned}
& \text { Year1 } A=950\left(1+\frac{7.5}{100}\right)^{40} \\
& \text { Year } 2 \quad A=950\left(1+\frac{75}{100}\right)^{39} \\
& \text { year } 40 \quad A=950\left(1+\frac{7.5}{100}\right)^{1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { year } 40 \quad A=950(1+100) \\
& \text { fotal }=950(1.075)^{\prime}+950(1.075)^{2}+\cdots+950(1.075)^{2}
\end{aligned}
$$

$$
=950(1.075)^{\prime}[1+1.075+\cdots+1.07539]
$$

$\operatorname{sum}\left[7 \quad S_{n}=\frac{N L-a}{r-1}=\frac{1.075 \times 1.075-1}{1.0755-1}\right.$
total is $\neq 233086$ (nearst $\phi)=\frac{1.075-1}{0075}$
(32) $\$ 60000,182 p a=1.56$ pmonth 300 montesAfter 1 month $~ M=60000\left(1+\frac{12}{108}\right)-m$
(a)

$$
=10000(1.015)-m
$$

$$
\begin{aligned}
A_{2} & =60000(1.015)^{2} \\
& =60000(1.015)^{2}-m(1+1.015)
\end{aligned}
$$

$$
\left.\begin{array}{rl}
A_{300} & =60000(1.015)^{300}-m(1+1.015+\cdots+1.015
\end{array}{ }^{299}\right)
$$

bottom $S_{n}=\frac{r-a}{1-1}=\frac{1.015 \times 1.015-1}{1.073-1}$

$$
\begin{equation*}
=\frac{1.015-300-1}{0.15}=5737.25 \tag{3}
\end{equation*}
$$

total $m=\$ 910 \cdot 46$
(b) $\$ 910.46 \times 300=\$ 273138$
(c)

$$
\begin{align*}
& \$ 273138-\$ 60000=\$ 213138 \tag{5}\\
& 213138=\frac{60009 \times \frac{r}{199}}{} \times 25 \\
& \mu=14.21 \% \text { p.a- Het } \tag{2}
\end{align*}
$$

(33) (a)

$$
\begin{align*}
S_{n} & =\frac{n}{2}(2 a+(n-1) d) \times d+a+n d \\
& =n(2 a+n d-d)+a+n d \\
& =2 a n+n^{2} d-n d+a+n d \\
& =d^{2}+2 a n+a \tag{3}
\end{align*}
$$

(b)

$$
\begin{aligned}
& 64 \cdot 4=0 \cdot 1 n^{2}+2 \times 2 n+2 \\
& 62 \cdot 4=0 \cdot 1 n^{2}+4 n
\end{aligned}
$$

$\times 10$

$$
\begin{aligned}
& 624=n^{2}+40 n \\
& n^{2}+40 n-624=0
\end{aligned}
$$

quad formula $n=\frac{-40 \pm \sqrt{100-4 x / x-624}}{2}$

$$
\begin{align*}
& =\frac{-40+64}{2} \\
\text { Fake }(t) & \frac{-40+64}{2}=12 \tag{2}
\end{align*}
$$

(c)

$$
\begin{align*}
\text { longest post a+nd } & =2+12 \times 0.1 \\
& =3.2 \mathrm{~m} . \tag{2}
\end{align*}
$$

