Question Seven (20 Marks)

(a) The Holden Car Company offers a loan of $\$ 50000$ on any of their cars purchased before 31 st May, 2003. The loan attracts an interest of just $\frac{1}{2} \%$ per month, and to celebrate Holden's 75 years in Australia the company also offers an interest free period for the first six months. However, the first repayment is due at the end of the first month.

A customer takes out the loan and agrees to repay the loan over ten years by making 120 equal monthly repayments of M. Let A_{n} be the amount owing at the end of the $n^{\text {th }}$ repayment (in $\$$), then:
(i) Show that $A_{6}=50000-6 M$
(ii) Show that $A_{8}=(50000-6 M) \times 1.005^{2}-M(1.005+1)$
(iii) Hence, show that $A_{120}=(50000-6 M) \times 1.005^{114}-M \times \frac{\left(1.005^{114}-1\right)}{1.005-1}$
(iv) Hence, show that $M=\frac{50000 \times 1.005^{114}}{6 \times 1.005^{114}+\frac{1.005^{114}-1}{0.005}}$
(v) Finally, find the value of the monthly repayments to the nearest cent.
(b) How many terms of the series $23+19+15+\ldots$. must be added to give a sum of 50?
(c) The first term of an arithmetic series is 3 and the twentieth term is 136. Find the common difference and the sum of 20 terms.
(d) The series $\frac{1}{3}-\frac{1}{6}+\frac{1}{12}-\ldots$. is a geometric series.
(i) What is the common ratio?
(ii) Find the forth term.
(iii) Find the sum of the first 8 terms.

End of Question Seven

Question Eight (20 Marks)

(a) From the diagram, write down the value of:
(i) $\cos y$

(ii) $\sin x$
(iii) $\cot x$
(iv) $\operatorname{cosec} y$
(v) $\sec x$
(vi) $\cot y$
(b) Find x to 2 decimal places.

(c) Suppose in a right angled triangle that α is an acute angle and $\sec \alpha=\frac{\sqrt{11}}{3}$. Find the exact value of:
(i) $\operatorname{cosec} \alpha$
(ii) $\cot \alpha$
(iii) Show that $\operatorname{cosec}^{2} \alpha-\cot ^{2} \alpha=1$
(d)

Find the value of h and x to 2 decimal places.
(e) Show that
(i) $a=b \tan \alpha$
(ii) $\sin ^{2} \alpha=\frac{a^{2}}{a^{2}+b^{2}}$

End of Question Eight End of Examination.

20 yr 11 Half-yearly 2011.

Q1)
a) $-2+5=3$.
b). $\frac{3}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}=\frac{3 \sqrt{5}}{5}$.
c) $\frac{17}{99}$
d) $45 \times 1.12=50.4$.

$$
\begin{aligned}
& \text { e) }|x+1|=4 \text {. } \\
& |\mid \\
& x+1=4 \quad x+1=-4 \\
& x=5 \text { or } x=5
\end{aligned}
$$

f)

$$
\begin{aligned}
& \text { } \begin{aligned}
& \frac{3}{a-b}+\frac{1}{b-a} \\
&= \frac{3}{a-b}-\frac{1}{a-b} \\
&= \frac{2}{a-b} .
\end{aligned} .
\end{aligned}
$$

g)

$$
\begin{gathered}
(2 x+3)(x-4)=0 \\
2 x=-3 \text { or } x=4 \\
x=-3 / 2 \text { or } x=4
\end{gathered}
$$

h)

$$
\begin{aligned}
2 x & =-7(500-x) \\
2 x & =-7(500)+7 x \\
3500 & =5 x \\
x & =700 .
\end{aligned}
$$

i) $\quad \cos 45^{\circ}=\frac{1}{\sqrt{2}}$

j) $\tan x=1$.

$$
\begin{aligned}
& x=45^{\circ}, 180^{\circ}+45^{\circ} \\
& x=45^{\circ} \text { or } 225^{\circ} .
\end{aligned}
$$

12)

$$
\begin{aligned}
& \frac{x}{4}+\frac{3 x-1}{3} \\
= & \frac{x(3)+4(3 x-1)}{12} \\
= & \frac{3 x+12 x-4}{12} \\
= & \frac{15 x-4}{12}
\end{aligned}
$$

i) $\frac{66^{1 / 3}}{4^{3}}=\frac{4}{4^{3}}=\frac{1}{4^{2}}=\frac{1}{16}$
m). $4^{x}=8$

$$
\begin{array}{ll}
2^{2 x}=2^{3} & x=3 / 2 \\
2 x=3 &
\end{array}
$$

n)

$$
m_{1}=34 \quad m_{2}=7 \quad M=\frac{53}{(A)} \quad g=9.8 \text {. }
$$

$$
\begin{aligned}
& \left(\frac{m_{1}-m_{2}}{M+m_{1} m_{2}}\right) g \\
= & \left(\frac{34-7}{53-338}\right) 9.8 \\
= & 0.9093(4 \mathrm{sig} f i g)
\end{aligned}
$$

0)

$$
\begin{array}{r}
7-4 x>12 \\
-4 x>5 \\
x<-\frac{5}{4}
\end{array}
$$

20 Yrll halfyeary 2011
Q2)
a)

$$
\begin{align*}
& x+3 y=13 \tag{1}\\
& 2 x+5 y=21 \tag{2}
\end{align*}
$$

(i) $\times 2$

$$
\begin{align*}
& 2 x+6 y=26 \tag{3}\\
& 2 x+5 y=21
\end{align*}
$$

(3) -2)

$$
y=5
$$

SuRs $y=5$

$$
\begin{array}{r}
x+3(5)=13 . \\
x=-2 .
\end{array}
$$

$$
\begin{equation*}
x=-2 \tag{3}
\end{equation*}
$$

(b).

$$
\begin{array}{r}
k x+4=0 \\
k(-5)+4=0 \\
-5 k=4 \\
R=\frac{+4}{5} \\
\hline \tag{1}
\end{array}
$$

c)..) $|7| t|-3|=7+3=10$.
ii) $|-7|-|-15|=7-15=-8$.
d)

$$
\begin{align*}
& x \times 1.075=86 \\
& x=\frac{86}{1.075} \quad x=.80 . \tag{2}
\end{align*}
$$

e)

$$
\begin{align*}
& |x+5|=2 x-1 . \\
& \begin{array}{rl}
\mid x+5=2 x-1 & x+5=(-2 x-1) \\
6=x & x+5=-2 x+1 \\
x=6 & 3 x=-4 \\
x=-4 / 3 .
\end{array}
\end{align*}
$$

f) $\frac{a^{2}+a}{a+1}=\frac{a(a+1)}{a+1}=a$.
g) i)

$$
\begin{align*}
& (2 \sqrt{2}-1)(3 \sqrt{2}+3) \tag{2}\\
& =(2 \sqrt{2})(3 \sqrt{2})-3 \sqrt{2}+6 \sqrt{2}-(3) \\
& =12+3 \sqrt{2}-3 \tag{2}\\
& =9+3 \sqrt{2} \quad \sqrt{a(\sqrt{a}-\sqrt{b})}
\end{align*}
$$

n)

$$
\begin{aligned}
& x=\frac{5-\sqrt{2}}{5+\sqrt{2}} \quad a-\sqrt{a b} \\
& x+\frac{1}{x}=\frac{5-\sqrt{2}}{5+\sqrt{2}}+\frac{5+\sqrt{2}}{5-\sqrt{2}} \\
&=\frac{(5-\sqrt{2})(5-\sqrt{2})+(5+\sqrt{2})(5+\sqrt{2})}{(5+\sqrt{2})(5-\sqrt{2})} \\
&=2 \text { 矛 }-10 / \sqrt{2}+2+25+10 \sqrt{2}+2 \\
&=50+4 . \\
&=54 .
\end{aligned}
$$

i)

$$
\begin{aligned}
& x^{2}+6 x+1=0 \\
& x=\frac{-6 \pm \sqrt{36-4(i)(1)}}{2(4)} \\
& \\
& =\frac{-6 \pm \sqrt{32}}{2} \\
& \\
& =\frac{-6 \pm \sqrt{16 \times 2}}{2} \\
& \\
& =\frac{-6 \pm 4 \sqrt{2}}{2}= \pm 2 \sqrt{2}
\end{aligned}
$$

so $2 \sqrt{2}-3$ is a . Hin .

20 YR 11 HALF YEARLY 2011.
Q3
a) i)

$$
\text { 1) } \begin{aligned}
& p x+4 p+a x+4 a \\
= & p(x+4)+a(x+4) \\
= & (p+a)(x+4)
\end{aligned}
$$

ib)

$$
\begin{aligned}
& a^{3}+3 a^{2} b+a b^{2}+3 b^{3} \\
= & a^{2}(a+3 b)+b^{2}(a+3 b) \\
= & \left(a^{2}+b^{2}\right)(a+3 b)
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& 9 a^{2}-4 b^{2} \\
= & (3 a-2 b)(3 a+2 b)
\end{aligned}
$$

(iv) $\frac{x^{2}}{81}-4^{2}=\left(\frac{x}{9}-y\right)\left(\frac{x}{9}+y\right)$
v) $z^{3}+1^{3}=(z+1)\left(z^{2}+z+1\right)$
v)

$$
\begin{aligned}
m^{3} p^{3}-1 & =(m p)^{3}-1^{3} \\
& =(m p-1)\left(m^{3} p^{2}+m p+1\right)
\end{aligned}
$$

(VII)

$$
\begin{aligned}
& 2(x-y)^{3}+54 . \\
= & 2\left((x-y)^{3}+27\right) . \\
= & 2\left((x-y)^{3}+3^{3}\right) \\
= & 2(x-y+3)\left((x-y)^{2}-3(x-y)+9\right) \\
= & 2(x-y+3)\left(x^{2}-2 x y+y^{2}-3 x+3 y+9\right) \\
= & 2(x-y+3)\left(x^{2}-3 x-2 x y+3 y+y^{2}+9\right)
\end{aligned}
$$

(Viii)

$$
\begin{aligned}
& x^{2}+6 x-7 \\
= & (x+7)(x-1)
\end{aligned}
$$

$(v x)$

$$
\begin{aligned}
& x^{2}+14 x+33 \\
& (x+11)(x+3)
\end{aligned}
$$

$$
\text { (x) } \begin{aligned}
& 8 x^{2}+2 x-3 \\
= & 8 x^{2}+6 x-4 x-3 \\
= & 8 x(4 x+3)-(4 x+3)=(2 x-1)(4 x+3)
\end{aligned}
$$

$$
\begin{aligned}
& \text { b(ii) } \\
& \frac{2 x+2 y}{x^{3}-y^{3}} \times \frac{x^{2}-2 x y+y^{2}}{x^{2}-y^{2}} \\
& =\frac{2(x+y)}{(x-y)\left(x^{2}+x y+y^{2}\right)} \times \frac{(x-y)}{(x+y)(x-y)} \\
& =\frac{2}{x^{2}+x y+y^{2}}
\end{aligned}
$$

iii) $\frac{x^{3}-(x-y)^{3}}{x^{2}-(x-y)^{2}}$

$$
=\frac{\left(x-(x-y)\left(x^{2}+(x)(x-y)+(x-y)^{2}\right)\right.}{\left(x^{2}\right)(x-y)(x+(x-y))}
$$

$$
=\frac{x^{2}+x^{2}-x y+x^{2}-2 x y+y^{2}}{(2 x-y)}
$$

$$
=\quad 3 x^{2}-3 x y+y^{2}
$$

$$
(2 x-y)
$$

$$
\text { Q3(c)im} \frac{n}{n}-\frac{m^{2}-n^{2}}{n m}=\frac{(m-n)(m+n)}{n m} \quad ?
$$

c) $\left(\right.$ ii) $\frac{1}{a+5}+\frac{2}{3}=\frac{3+2(a+5)}{3(a+5)}=\frac{2 a+13}{3(a+5)}$.
(iii) $\frac{1}{x}+\frac{3}{x}-\frac{1}{x^{2}}=\frac{x+3 x-1}{x^{2}}=\frac{4 x-1}{x^{2}} 2$

$$
\begin{aligned}
\text { Q3 (b). i) } & \frac{4 x^{3} y-16 x y}{x^{2}+2 x-8} \\
= & \frac{4 x y\left(x^{2}-4\right)}{(x+4)(x-2)} \\
= & \frac{4 x y(x-2)(x+2)}{(x+4)(x-2)} \\
& =4 x y(x+2) \\
& x+4
\end{aligned}
$$

b(ii) next panie.

YRU 20 HALF YEARLY 2011.
Q4.
a)

$$
\left.\begin{array}{c}
\frac{1}{x+5}+\frac{1}{x-2}=\frac{1}{(x+5)(x-2)} \\
\frac{x-2+x+5}{(x+5)(x-2)}=\frac{1}{(x+5)(x-2)} \\
2 x+3=1 \\
2 x
\end{array}\right) .
$$

(b)

$$
\begin{aligned}
& -3 \leqslant \frac{2 x-1}{3}<3 \\
& -11 \\
& -9 \leqslant 2 x-1<9 \\
& -8 \leqslant 2 x \leqslant 10 \\
& -4 \leqslant x<5
\end{aligned}
$$

c) i) $\frac{\sqrt{x^{2}}}{1 x}$

$$
\begin{array}{ll}
x>0 & \frac{\sqrt{x^{2}}}{x}=1 \\
x<0 & \frac{\sqrt{x^{2}}}{-x}=-1
\end{array}
$$

A

$$
\begin{aligned}
& =\sqrt{9-6 x+x^{2}} \\
& =\sqrt{(x-3)^{2}} \\
& =(x-3) .
\end{aligned}
$$

d)

$$
\begin{aligned}
& 2 x^{2}+6 x-5=0 . \\
& x^{2}+3 x-5 / 2=0 . \\
& x^{2}+3 x+(3 / 2)^{2}=\frac{5}{2}+\left(\frac{3}{2}\right)^{2} \\
& \left(x+\frac{3}{2}\right)^{2}=\frac{19}{4} \\
& x+3 / 2= \pm \sqrt{19 / 4} \\
& x=\frac{3 \pm \sqrt{19}}{1}
\end{aligned}
$$

4e)

$$
\begin{gathered}
13^{2}=(a+7)^{2}+a^{2} . \\
169=a^{2}+14 a+49+a^{2} \\
169=2 a^{2}+14 a+49 . \\
2 a^{2}+14 a-120=0 . \\
a^{2}+7 a+-60=0 . \\
(a+12)(a-5)=0 \\
a=-12 \text { or } a=5 \\
\text { DISCARD-VE. } a=5 .
\end{gathered}
$$

f)

$$
\begin{gathered}
x(x+1)=72 . \\
x^{2}+x-72=0 . \\
(x+9)(x-8)=0 . \\
x=-9 \text { or }+8 .
\end{gathered}
$$

a)

$$
\begin{gathered}
x^{2}+4 x=60 . \\
x^{2}+4 x-60=0 . \\
x+10)(x-6)=0 . \\
x=10 \text { or }+6 .
\end{gathered}
$$

DISCARA -VE $10 \quad x=6$.
h) $y=3 x-2 \quad y=x^{2}$

Equate

$$
\begin{aligned}
& x^{2}=3 x-2 . \\
& x^{2}-3 x+2=0 . \\
& (x-2)(x-1)=0 .
\end{aligned}
$$

4i)

$$
\begin{gathered}
x+2 y=-8 . \\
x y=8 \\
x=\frac{8}{4}
\end{gathered}
$$

sob (3) in (1).

$$
\begin{array}{r}
\frac{8}{y}+2 y=-8 \\
x y+2 y^{2}=-8 y \\
2 y^{2}+5 y+8=0 \\
y^{2}+4 y+4=0 \\
(x+2)^{2}=0
\end{array}
$$

20 YRII HALF YEARLY 2011.
Q5.
a)

$$
\begin{aligned}
& \angle D C H=\angle E B C=53^{\circ} \quad \text { (corresponding } \angle S \\
& \angle E B E=\angle A B F=53^{\circ} \quad \text { (vertically opposite) }
\end{aligned}
$$

b) i) if $E D=F D$ and $A D=C D$.
as $A B C D$ is a square.
then. $A E=C F$.

$$
\begin{aligned}
A B & =B C \cdot(A B C D \text { is a sQuARE) } \\
\therefore B E & =B F(P 4 \text { hag) } \\
\therefore \triangle B A E & \equiv \triangle B C F \text { (S.S.S.) }
\end{aligned}
$$

ii) $\frac{B E}{B A}=\frac{3}{2}$.

$$
\tan \angle A E B=\frac{2}{\sqrt{5}}
$$

Q5)
c) $(1) \angle B A C$ is common.

$$
\begin{aligned}
& \frac{A B}{A D}=\frac{25}{40}=\frac{5}{8} \\
& \frac{A C}{A E}=\frac{20}{32}=\frac{5}{8}
\end{aligned}
$$

$\triangle A B C \| \triangle$ (included angle equal and surraindng ratio equals.
(11) $B C / \| D E$ BECAUSE.

$$
\left.\angle A B C=\angle A D E . \text { (similar } \Delta^{\prime} S \triangle A B C \| \triangle A D E\right)
$$

\therefore corresponding angles are equal. and $B C / / D E$.
(iii) $D E=20^{\circ}$.

$$
\begin{aligned}
& \frac{B C}{D E}=\frac{5}{8} \quad\left(\text { simuar } \triangle^{\prime} \text { 's } \triangle A B C I l l \triangle A D E\right) \\
& \frac{B C}{20}=\frac{5}{8} . \\
& B C=\frac{100}{8}=12.5 .
\end{aligned}
$$

d) i)

$$
\begin{aligned}
\angle C A B & =180-y-\beta \cdot(\angle \operatorname{sum} \Delta) \\
\angle A F E & =\frac{180-(180-y-\beta)}{2} \\
& =\frac{\beta+y}{2} \\
& =\frac{1}{2}(\beta+y)
\end{aligned}
$$

ii) $\angle D C A=180-\beta$ (\angle on straight line)

$$
\begin{aligned}
\angle D A C & =180-(180-\beta)-2 \alpha \\
& =\beta-2 \alpha .
\end{aligned}
$$

2u yr 11 half yearly. 2011.
Q6
a)

$$
\begin{align*}
& A=P(1+r)^{n} \tag{2}\\
& A=2000(1+0.08)^{6} \\
& A=3173.75 .
\end{align*}
$$

(1)

$$
\begin{align*}
1 I & =A-P \\
& =A-2000=1173 \cdot 75 . \tag{2}
\end{align*}
$$

b).

$$
\begin{align*}
I & =P R T . \\
I & =1300 \times 0.12 \times 5 . \tag{2}\\
& =780 .
\end{align*}
$$

c).

$$
A_{1}=11500(1.075)
$$

$$
\begin{aligned}
A_{2} & =\left(A_{1}+11500\right)(1.075) \\
& =[11500(1.075)+11500](1.075) \\
& =11500(1.075)^{2}+11500(1.075) \\
& =11500(1.075)[1.075+1] .
\end{aligned}
$$

$$
\begin{aligned}
A_{3} & =\left(A_{2}+11500\right)(1.075) \\
& =(11500(1.075)(1.075+1)+11500)(1.075) \\
& =11500(1.075)^{2}(1.075+1)+11500(1.075) \\
& =
\end{aligned}
$$

(C) 1$)$

$$
\begin{aligned}
A_{3} & =11500(1.075)[(1.075)(1+1.075)+1] . \\
& =11500(1.075)\left[1.075+1.075^{2}+1\right] . \\
& =11500(1.075)\left[1+1.075+1.075^{2}\right] . \\
A_{20} & =11500(1.075)\left[1+1.075+1.075^{2} .075\right. \\
& +\ldots+1.075] \\
& =11500(1.075)\left[\frac{1\left(1.075^{20}-1\right)}{1.075-1}\right] \\
& =11500(1.075)\left(\frac{1.075^{20}-1}{0.075}\right) . \\
& =535,354.12(3)(2 d p) .5
\end{aligned}
$$

$$
\begin{align*}
(11) X & =\left(A_{20}-60,000\right)(1-0.18)+60,000 \\
& =\left(A_{20}-60,000\right)(0.82)+60,000 \tag{2}\\
& =.449,790.38 .
\end{align*}
$$

d) $x=a m t$ invested now.

$$
n=10 .
$$

$r=146$ for $6 \quad 8 \%$ for 4 yrs.

$$
A=200000 . \quad 200000=\left(x(1.06)^{6}\right)\left((1.08)^{4}\right)
$$

$$
\begin{aligned}
& \frac{200000}{(1.06)^{(}(1.08)^{4}}=x \\
& x=\$ 103,633.4085 .
\end{aligned}
$$

QU YR II HALF YEARLY 2011.
Q 7 a)
(i) $P=50,000 . \quad r=0.005$.

6 math int free.

$$
\begin{aligned}
A_{1} & =50,000-M \\
A_{2} & =A_{1}-M . \\
& =50000-M-M . \\
& =50000-2 M . \\
\therefore A_{6} & =50000-6 M .
\end{aligned}
$$

(ii)

$$
\begin{aligned}
A_{7} & =(50000-6 M)(1.005)-M . \\
A_{8} & =A_{7}(1.005)-M . \\
& =((50000-6 M)(1.005)-M)(1.005)-M . \\
& =(50000-6 M)(1.005)^{2}-1.005 M-M . \\
V & =(50000-6 M)(1.005)^{2}-M(1+1.005) .
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& \left.A_{120}=(50000-6 M)(1.005)^{114}-M(1+1.005+1 / 10.100)^{113}\right) \\
& =(50000-6 M)(1.005)^{114}-M\left(\frac{1 .\left(1.005^{114}-1\right)}{1.005-1}\right) \\
& =(50000-6 M)(1.005)-\frac{H\left(1.005^{114}-i\right)}{0.005}
\end{aligned}
$$

Q7(a)
(iv) $A_{120}=0$ (as loan pard off).

$$
\begin{aligned}
& 0=(50000-6 M)\left(1.005^{114}\right)-M\left(\frac{1.005^{114}-1}{0.005}\right) \\
& M\left(\frac{1.005^{114}-1}{0.005}\right)=(50000-6 M)\left(1.005^{114}\right) \\
& M\left(\frac{1.005^{114}-1}{0.005}\right)=50000\left(1.005^{114}\right)-6 M\left(1.005^{114}\right) \\
& 6 M\left(1.005^{14}\right)+M\left(\frac{1.005^{114}-1}{0.005}\right)=50000\left(1.005^{114}-\right. \\
& M\left(6\left(1.005^{114}\right)+\left(\frac{1.005^{114}-1}{0.005}\right)\right)=50000\left(-.005^{114}-\right. \\
& M=\frac{50000\left(1.005^{114}\right)}{6\left(1.005^{114}\right)+\left(\frac{1.005^{114}-1}{0.005}\right)} .
\end{aligned}
$$

(v)

$$
\frac{88,287.87107}{10.695+.153 \cdot 151}
$$

MANV320Ther. 539.176

Q7) (b).

$$
\begin{aligned}
& 23+19+15 . a=23 \quad d=-4 \quad n=? \\
& S_{n}=50=\frac{n}{2}(2 a+(n-1) d) \\
&= \frac{n}{2}(46+(n-1)(-4)) \\
& 100=n(46+(n-1)(-4)) \\
& 100=46 n-4 n^{2}+4 n \\
& 100=50 n-4 n^{2} \\
& 50=25 n-2 n^{2} \\
& 2 n^{2}-25 n+50=0 \\
& \frac{2}{2}-20 n-5 n+50=0 \\
& 2 n(n-10)-5(n-10)=0 \\
&(2 n-5)(n-10)=0 \\
& n=\frac{+5}{2} \text { or } n=10 .
\end{aligned}
$$

as n munst be an integer $n=10$
(c)

$$
\begin{aligned}
a=3 & T_{20}
\end{aligned}=a+(n-1) d=136.0136 .
$$

$$
S_{20}=\frac{n}{2}(a+l)=10(3+136)=1390 .
$$

(7d) i) common rall $r=-\frac{1}{2}$.
ii).

$$
\begin{aligned}
T_{A} & =a r^{n-1} \\
T_{4} & =\frac{1}{3}\left(-\frac{1}{2}\right)^{3} . \\
& =-\frac{1}{24} .
\end{aligned}
$$

III).

$$
\begin{aligned}
& S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \\
& \begin{aligned}
S_{8} & =\frac{\frac{1}{3}\left(1-\left(-\frac{1}{2}\right)^{8}\right)}{1--\frac{1}{2}} \\
& =\frac{\frac{1}{3}\left(1-\left(-\frac{1}{2}\right)^{8}\right)}{\frac{3}{2}} \\
& =\frac{85}{384} .
\end{aligned}
\end{aligned}
$$

Yr il 20 half yearly 2011.
Q8
(a) i) $\cos y=\frac{15}{17}$
ii) $\sin x=\frac{8}{10}=\frac{4}{5}$.
iii) $\cot x=\frac{\operatorname{adj}}{O P P}=\frac{6}{8}=\frac{3}{4}$.
iv) $\operatorname{cosec} y=\frac{\text { hyp }}{O P P}=\frac{17}{8}$.
v). $\sec x=\frac{\text { hup }}{\text { adj }}=\frac{10}{6}=\frac{5}{3}$
vi) $\cot y=\frac{\operatorname{adj}}{\operatorname{app}}=\frac{15}{8}$.
(b) $\frac{40}{7} x \quad \tan 43=\frac{x}{7}$.

$$
\begin{aligned}
x=7 \tan 43 & =6.527 \\
& =6.53(2 d p) .
\end{aligned}
$$

(C) $\frac{\sqrt{11} / \sqrt{2}}{3} \quad \sec \alpha=\frac{\text { hyp }}{\text { adj }}=\frac{\sqrt{11}}{3}$.

$$
\sqrt{(\sqrt{11})^{2}-3^{2}}=\sqrt{11-9}=\sqrt{2}
$$

i) $\operatorname{cosec} \alpha=\frac{\text { hyp }}{O P D}=\frac{\sqrt{11}}{\sqrt{2}}$.
ii) $\cot \alpha=\frac{\text { adj }}{\text { opp }}=\frac{3}{\sqrt{2}}$.
iii) $\operatorname{cosec}^{2} \alpha-\cot ^{2} \alpha=\frac{11}{2}-\frac{9}{2}=\frac{2}{2}=1$.

8d) $\tan 43=\frac{h}{50}$.

$$
\begin{aligned}
& h=50 \tan 43 . \\
& h=46 \cdot 63 \cdot(2 \mathrm{dp})
\end{aligned}
$$

$$
\begin{aligned}
\tan 40 & =\frac{h}{x+50} . \\
x+50 & =\frac{h}{\tan 40 .} \\
x+50 & =55.5664 . \\
x & =5.57 \quad(2 \mathrm{dp}) .
\end{aligned}
$$

(e) $a \int_{b}^{\sqrt{a^{2}+b^{2}}}$
$\tan \alpha=\frac{a}{b}$

$$
\begin{aligned}
a & =b \tan \alpha . \\
\sin \alpha & =\frac{a}{\sqrt{a^{2}+b^{2}}} \quad \sin ^{2} \alpha=\frac{a^{2}}{a^{2}+b^{2}} \\
(\sin \alpha)^{2} & =\frac{a^{2}}{\left(\sqrt{a^{2}+b^{2}}\right)^{2}} \Rightarrow
\end{aligned}
$$

