FORM V MATHEMATICS

Friday 7th May 2010

General Instructions

- Writing time - 2 hours
- Write using black or blue pen.
- Board-approved calculators and templates may be used.
- All necessary working should be shown in every question.
- Start each question on a new leaflet.

Structure of the paper

- Total marks - 108
- All six questions may be attempted.
- All six questions are of equal value.

Collection

- Write your name, class and master clearly on each leaflet.
- Hand in the six questions in a single well-ordered pile.
- Hand in a leaflet for each question, even if it has not been attempted.
- If you use a second leaflet for a question, place it inside the first.
- Write your name on the question paper and place it inside your leaflet for Question One.

5P: BR

Checklist

- Writing leaflets: 6 per boy.

Examiner
JMR

QUESTION ONE (18 marks) Start a new leaflet.
(a) Write $\frac{\pi^{2}}{3}$ correct to 2 decimal places.
(b) Write $\cos 40^{\circ} 40^{\prime}$ correct to 2 decimal places.
(c) Solve $\frac{2 x}{3}=\frac{1}{2}$.
(d) Simplify $3 x^{2} \div 6 x^{3}$.
(e) Factorise completely $2 x^{2}-50$.
(f) Expand and simplify $6 x-2(x-6)$.
(g) Evaluate $x^{3}-1$ when $x=3$.
(h) (i) Find the gradient of the line $x+2 y-3=0$.
(ii) Write down the gradient of the line which is perpendicular to $x+2 y-3=0$.
(i) Expand and simplify $(2 \sqrt{3}-1)^{2}$.
(j) Write the exact value for:
(i) $\sin 60^{\circ}$
(ii) $\tan 120^{\circ}$
(k) Given $f(x)=x^{2}+4 x-3$, find:
(i) $f(1)$
(ii) $f(-a)$
(l) Find the natural domain of the function $f(x)=\frac{1}{4-x}$.
(m) Evaluate $\frac{|x-6|}{2}$ when $x=-8$.
(n) Factorise $x^{3}-27$.

QUESTION TWO (18 marks) Start a new leaflet.
(a) Express $0 \cdot \dot{2} \dot{4}$ as a fraction in simplest form. You must show all working.
(b) (i) Sketch the graph of $x^{2}+y^{2}=9$.
(ii) Use your graph to explain why $x^{2}+y^{2}=9$ is not a function.
(c) Solve $|2 x-5|=13$.
(d) Solve the inequation $|3 x+1| \leq 10$ and graph your solution on a number line.
(e) Classify each function as even, odd or neither.
(i)

(ii)

(iii)

(f) Given the formula $\frac{1}{a}+\frac{1}{b}=\frac{1}{c}$, find a if $b=-2$ and $c=-3$.
(g) Find the mid-point of the interval $A B$, given A is $\left(\frac{13}{2}, \frac{11}{2}\right)$ and B is $(13,-11)$.
(h) Solve the inequation $x^{2}+4 x \geq 5$.
(i)

Find the exact value of x in the diagram above.

QUESTION THREE (18 marks) Start a new leaflet.
(a) Consider the parabola $y=x^{2}-2 x-8$.
(i) Find the y-intercept.
(ii) Find the x-intercepts.
(iii) What is the equation of the axis of symmetry?
(iv) Find the coordinates of the vertex.
(v) Sketch the parabola, showing all of the above features.
(b) On the same number plane, sketch the graphs of $y=\sin x$ and $y=\cos x$ for the domain $0^{\circ} \leq x \leq 360^{\circ}$. Hence find the values of x for which $\sin x=\cos x$.
(c) If the line $a x-2 y+13=0$ is parallel to the line $3 x-y+5=0$, find the value of a.
(d)

Find the area of $\triangle X Y Z$ in the diagram above. Give your answer correct to 3 significant figures.
(e) (i) Sketch the graph of $y=|x|+1$, showing all main features.
(ii) State the domain and range of $y=|x|+1$.
(f) Determine whether the point $A\left(-8 \frac{1}{2},-15 \frac{1}{2}\right)$ lies on the line $7 x-3 y+13=0$.

QUESTION FOUR (18 marks) Start a new leaflet.
(a) Find the acute angle θ, correct to the nearest minute, given that $\sec \theta=\frac{5}{2}$.
(b) Simplify $\tan \theta \sec \theta \cos ^{2} \theta$.
(c) Solve $\sin x=-\frac{\sqrt{3}}{2}$, for $0^{\circ} \leq x \leq 360^{\circ}$.
(d)

In the diagram above, $\triangle A B C$ has dimensions $A B=7 \mathrm{~cm}$ and $B C=15 \mathrm{~cm}$. The point D lies on $A C$ such that $A D=5 \mathrm{~cm}$ and $B D=3 \mathrm{~cm}$.
(i) Use the cosine rule to show that $\angle A D B=120^{\circ}$.
(ii) Show that $\angle B C D=10^{\circ}$, rounded to the nearest degree.
(iii) Find the length of $D C$, correct to the nearest millimetre.
(e) Find a and b, if $a+b \sqrt{2}=(3+\sqrt{2})(2-\sqrt{2})$.
(f) In $\triangle T U V, T U=5 \mathrm{~cm}, T V=9 \mathrm{~cm}$ and $\angle T V U=22^{\circ}$. Find the size of $\angle T U V$ correct to the nearest degree.

QUESTION FIVE (18 marks) Start a new leaflet.
(a) (i) On the same number plane, sketch the graphs of $y=1-x^{2}$ and $y=x-5$, for $-4 \leq x \leq 4$.
(ii) Hence or otherwise find the coordinates of the points of intersection of the graphs.
(iii) Hence solve the inequation $1-x^{2}>x-5$.
(b) On a number plane, sketch the region $y<2^{x}$.
(c) Express $\frac{3-\sqrt{2}}{2 \sqrt{2}-1}$ with a rational denominator.
(d) Solve the inequation $-18 \leq 3(2 x-5)<9$ and graph the solution on a number line.
(e) Given that $\tan \theta=\frac{4}{3}$ and $\sin \theta$ is negative, find $\cos \theta$ without evaluating θ.
(f) Solve simultaneously:

$$
\begin{aligned}
& x^{2}-y^{2}=25 \\
& x^{2}+y^{2}=43
\end{aligned}
$$

(g) Find the centre and radius of the circle $x^{2}+y^{2}-16 x+56=0$.

QUESTION SIX (18 marks) Start a new leaflet.
(a) Solve $\cos ^{2} x+\cos x=0$, for $0^{\circ} \leq x \leq 360^{\circ}$.
(b) Simplify $\frac{a^{2}-b^{2}}{\frac{b}{a}-\frac{a}{b}}$.
(c)

In the diagram above $P Q R S$ is a square.
(i) Find the gradient of $P R$.
(ii) Show that the equation of $Q S$ is $7 x-3 y-14=0$.
(iii) Find k, the y-coordinate of Q.
(iv) Find the length of $P R$.
(v) Hence or otherwise find the area of $P Q R S$.
(d) Factorise completely $t^{4}+t^{2}-2$.
(e) Two people are 10 km apart. They start walking at the same time, each with a constant speed. If they walk directly towards each other, they will meet in one hour. If they walk in the same direction, with the slower walker leading the way, they will meet in 5 hours. By letting the speed of the slower walker be $x \mathrm{~km} / \mathrm{h}$ and the speed of the faster walker be $y \mathrm{~km} / \mathrm{h}$, set up two equations and solve them simultaneously to find the speed of each person.

SOLUTION: FORMV HALF-YEARLY 2010
1.(a) 3.29
(b) 0.76
(c) $\frac{2 x}{3}=\frac{1}{2}$
(j) (i) $\sin 60^{\circ}=\frac{\sqrt{3}}{2}$
(k) (i)

$$
\begin{aligned}
f(x) & =x^{2}+4 x-3 \\
f(1) & =1^{2}+4-3 \\
& =2
\end{aligned}
$$

(ii)

$$
\begin{aligned}
f(-a) & =(-a)^{2}+4(-a)-3 \\
& =a^{2}-4 a-3
\end{aligned}
$$

(d) $3 x^{2} \div 6 x^{3}=\frac{3 x^{2}}{6 x^{3}}$
(ii)

$$
=-\sqrt{3}
$$

$4 x=3$

$$
x=\frac{3}{4}
$$

$n 60^{\circ}$

$$
=\frac{1}{2 x}
$$

(18 marks)
(ii) $m_{2}=2$
(i)
(h) (i) $x+2 y-3=0$
(g)

$$
m_{1}=-\frac{1}{2}
$$

$$
\begin{aligned}
(2 \sqrt{3}-1)^{2} & =12-4 \sqrt{3}+1 \\
& =13-4 \sqrt{3}
\end{aligned}
$$

$$
\left.\begin{array}{rlrl}
x^{3}-1 & =3^{3}-1 & & =\frac{14}{2} \\
& =27-1 & & =7 \\
& =26
\end{array}\right)
$$

2.

- (a)

$$
\begin{aligned}
\text { Let } x & =0.242424 \cdots \\
100 x & =24.242424 . \cdots \\
99 x & =24 \\
x & =\frac{24}{99} \\
x & =\frac{8}{33}
\end{aligned}
$$

(b) (i)

(ii) Graph fails the vertical line test.
(c) $|2 x-5|=13$

Either $2 x-5=13$ or $2 x-5=-13$

$$
2 x=18 \quad 2 x=-8
$$

(d) $|3 x+1| \leqslant 10$

$$
\therefore-10 \leqslant 3 x+1 \leqslant 10
$$

(t)

$$
\begin{aligned}
\frac{1}{a}+\frac{1}{b} & =\frac{1}{c} \\
\frac{1}{a}-\frac{1}{2} & =-\frac{1}{3} \\
\frac{1}{a} & =\frac{1}{6} \\
a & =6 \\
M & =\left(\frac{\frac{13}{2}+13}{2}, \frac{\frac{11}{2}-11}{2}\right) \\
& =\left(\frac{39}{4}, \frac{-11}{4}\right)
\end{aligned}
$$

(g)
(h)

$$
x^{2}+4 x \geqslant 5
$$

$$
x^{2}+4 x-5 \geqslant 0
$$

Sketch: $y=x^{2}+4 x-5$
x interepts -5 , 1

$$
x=9 \text { or } x=-4
$$

Solution: $x \leqslant-5$
or $x \geqslant 1$

$$
-11 \leqslant 3 x \leqslant 9
$$

(i)

$$
-\frac{11}{3} \leqslant x \leqslant 3
$$

$$
\begin{aligned}
x^{2}+6^{2} & =8^{2} \\
x^{2}+36 & =64 \\
x^{2} & =28 \\
x & =\sqrt{28} \\
x & =2 \sqrt{7}
\end{aligned}
$$

(e) (i) odd -has point symmetry
(ii) even - symmetrical about y axis
or Algebraic method (i) $f(-x)=-f(x)$
(ii) $f(-x)=f(x)$
(iii) $f(-x)=-f(x)$
3. (a) (i) $(0,-8)$
(ii)

$$
\begin{aligned}
& x^{2}-2 x-8=0 \\
& (x-4)(x+2)=0 \\
& x=4 \text { or }-2
\end{aligned}
$$

x-intercepts: $(4,0)$ and $(-2,0)$
(iii)

$$
\begin{aligned}
x & =\frac{-b}{2 a} \\
& =\frac{2}{2} \\
x & =1
\end{aligned}
$$

(iv) When $x=1$

$$
\begin{aligned}
y & =(1)^{2}-2(1)-8 \\
& =-9
\end{aligned}
$$

(e) (i)

(ii) Domain: $x \in R$

Range: $y \geqslant 1$
(v)

(f)

$$
\begin{aligned}
\text { LHS } & =7 \times\left(-8 \frac{1}{2}\right)-3\left(-15 \frac{1}{2}\right)+13 \\
& =-59 \frac{1}{2}+46 \frac{1}{2}+13 \\
& =0 \\
& =\text { RUS. }
\end{aligned}
$$

So, A does lie on the line.
(d)

$$
\begin{aligned}
A & =\frac{1}{2} \times 14 \times 6 \times \sin 38^{\circ} \\
& =25.9 \mathrm{~cm}^{2}(3 \operatorname{sig} . \text { figs })
\end{aligned}
$$

4.(a) $\sec \theta=\frac{5}{2}$
(e)

$$
\therefore \cos \theta=\frac{2}{5}
$$

$$
\begin{aligned}
(3+\sqrt{2})(2-\sqrt{2}) & =6-3 \sqrt{2}+2 \sqrt{2}-2 \\
& =4-\sqrt{2}
\end{aligned}
$$

$$
\theta \doteq 66^{\circ} 25^{\prime}\binom{\text { nearest }}{\text { minute }}
$$

So $a=4$ and $b=-1$
(b) $\tan \theta \sec \theta \cos ^{2} \theta=\sqrt{\frac{\sin \theta}{\cos \theta} \times \frac{\sqrt{1}}{\cos \theta} \times \frac{\cos ^{2} \theta}{1}}$ $=\sin \theta$
(C) $\sin x=-\frac{\sqrt{3}}{2}$
(f)

Sine is negative in 3 ra $/ 4^{\text {th }}$ quadrant r Related angle is 60°
(b)

$\operatorname{Sin} x=\cos x$ when $x=45^{\circ}$ or $225^{\circ} /$
(c)

$$
\begin{array}{rlrl}
3 x-y+5 & =0 & a x-2 y+13 & =0 \\
y & =3 x+5 & 2 y & =a x+13 \\
\text { so } m & =3 & y & =\frac{9 x}{2}+\frac{13}{2}
\end{array}
$$

$$
\cos \theta=-\frac{3}{5}
$$

(ii) $(-3,-8)$ and $(2,-3)$

$$
x=90^{\circ}, 180^{\circ} \text { or } 270^{\circ}
$$

(iii) $-3 \leqslant x \leqslant 2$.
b)

1 mark for $y=2^{x}$ graph 1 mark for dotted boundary I mark for correct region.
(g)

$$
\left.\begin{array}{rl}
x^{2}+y^{2}-16 x+56=0 \\
x^{2}-16 x+64+y^{2}=8 \\
(x-8)^{2}+y^{2}=8 \\
\text { Centre } & =(8,0) \\
\text { Radius } & =\sqrt{8} \\
& =2 \sqrt{2}
\end{array}\right\} \text { v }
$$

c)

$$
\begin{aligned}
\frac{3-\sqrt{2}}{2 \sqrt{2}-1} \times \frac{2 \sqrt{2}+1}{2 \sqrt{2}+1} & =\frac{6 \sqrt{2}+3-4-\sqrt{2}}{8-1} \\
& =\frac{5 \sqrt{2}-1}{7} \quad \quad(18 \text { marks })
\end{aligned}
$$

d) $-18 \leqslant 3(2 x-5)<9$

$$
-6 \leqslant 2 x-5<3
$$

(e) tan is positive and \sin is negative in $3 \cdot d$ quadrant.

$$
\text { 4 } \left\lvert\, \begin{aligned}
& u^{2}+u=0 \\
& u(u+1)=0 \\
& u=0 \text { or }-1 \\
& \cos x=0 \text { or } \cos x=-1
\end{aligned}\right.
$$

(f)

$$
\begin{aligned}
x^{2}-y^{2} & =25 \\
x^{2}+y^{2} & =43 \\
2 x^{2} & =68 \\
x^{2} & =34 \\
x & = \pm \sqrt{34} \\
34-y^{2} & =25 \\
y^{2} & =9 \\
y & = \pm 3
\end{aligned}
$$

6 (a) $\cos ^{2} x+\cos x=0$
Let $\cos x=u$
$\cos x=0$ or $\cos x=-1,0^{\circ} \leqslant x \leqslant 360^{\circ}$

(b)

$$
\begin{aligned}
\frac{a^{2}-b^{2}}{\frac{b}{a}-\frac{a}{b}} & =\frac{a^{2}-b^{2}}{b^{2}-a^{2}} \\
& =\frac{a^{2}-b^{2}}{1} \times \frac{a b}{b^{2}-a^{2}} \\
& =-\frac{1\left(b^{2}-a^{2}\right)}{1} \times \frac{a b}{b^{2}-a^{2}} \\
& =-a b
\end{aligned}
$$

(c) (i) $m=\frac{2-5}{7-0}$

$$
=-\frac{3}{7}
$$

(ii) $m=\frac{7}{3}$

$$
y-0=\frac{7}{3}(x-2)
$$

$$
3 y=7 x-14
$$

$7 x-3 y-14=0$
(iii) When $x=5$

$$
\begin{aligned}
& -1 \\
& -\frac{1}{2} \leqslant x<4 \\
& x<4
\end{aligned}
$$

$$
\begin{aligned}
35-3 y-14 & =0 \\
3 y & =21
\end{aligned}
$$

$$
\begin{aligned}
3 y & =21 \\
y & =7
\end{aligned}
$$

So, $k=7$.
(v) Area of square $=\frac{1}{2} x^{2}$ where x is the diagonal.

$$
\begin{aligned}
\text { Area:PQRS } & =\frac{1}{2} \times \sqrt{58}{ }^{2} \\
& =29 \text { units }^{2} \\
(d) t^{4}+t^{2}-2 & =\left(t^{2}+2\right)\left(t^{2}-1\right)^{2} \\
& =\left(t^{2}+2\right)(t+1)(t-1)
\end{aligned}
$$

(d)
(iv)

$$
\begin{aligned}
d & =\sqrt{(2-5)^{2}+(7-0)^{2}} \\
& =\sqrt{9+49} \\
& =\sqrt{58} \text { units }
\end{aligned}
$$

(v) Area of diagonal
(e) Speed of s lower walker $=x \mathrm{~km} / \mathrm{h}$
speed of faster walker cay km /h
In ore hour:

$$
x+y=10
$$

In five hours:

$$
5 x+10=5 y
$$

Substitute $x=10-y$

$$
\begin{aligned}
5(10-y)+10 & =5 y \\
50-5 y+10 & =5 y \\
60 & =10 y \\
y & =6 \\
\text { So } \quad x & =4
\end{aligned}
$$

The speed of the s lower waller was $4 \mathrm{~km} / \mathrm{h}$ The faster walker walked at $6 \mathrm{~km} / \mathrm{h}$.
$(18$ marks $)$

