2011 Half-Yearly Examination

FORM V

MATHEMATICS 2 UNIT

Wednesday 11th May 2011

General Instructions

- Writing time - 2 hours
- Write using black or blue pen.
- Board-approved calculators may be used.
- All necessary working should be shown in every question.
- Start each question on a new leaflet.

Structure of the paper

- Total marks - 90
- All six questions may be attempted.
- All six questions are of equal value.

Collection

- Write your name, class and master clearly on each leaflet.
- Hand in the six questions in a single well-ordered pile.
- Hand in a leaflet for each question, even if it has not been attempted.
- If you use a second leaflet for a question, place it inside the first.
- Write your name on the question paper and place it inside your leaflet for Question One.

5P: SJG 5Q: TCW

Checklist

- Writing leaflets: 6 per boy.
- Candidature - 31 boys

Examiner

SGS Half-Yearly 2011 Form V Mathematics 2 Unit Page 2
QUESTION ONE (15 marks) Start a new leaflet.
(a) Write as a fraction in lowest terms:
(i) $0 \cdot 12$
(ii) 17.5%
(b) Express $\frac{6}{\sqrt{3}}$ with a rational denominator and simplify.
(c) Evaluate $\sin 33^{\circ} 45^{\prime}$ correct to two decimal places.
(d) Simplify $4 \sqrt{2}+3-\sqrt{2}$.
(e) Factorise:
(i) $x^{2}-5 x-36$
(ii) $a^{3}+8$
(f) Determine whether the point $(3,-2)$ lies on the line $2 x+3 y-1=0$.
(g) Solve:
(i) $x^{2}-4=0$
(ii) $|x|=7$
(h) Simplify $\frac{8 a b}{5} \div \frac{4 a b}{15}$.
(i) Solve the inequation $7 x-9 \leq 26$. Graph the solution on a number line.

SGS Half-Yearly 2011 Form V Mathematics 2 Unit Page 3
QUESTION TWO (15 marks) Start a new leaflet.
(a) Simplify $3 \sqrt{45}$.
(b) (i) On a set of axes, draw a ray representing the angle $\theta=210^{\circ}$.
(ii) Find $\cos 210^{\circ}$.
(c) How far and in what direction has the parabola $y=x^{2}$ been translated to produce $y=(x+4)^{2}$?
(d) (i) Solve the inequation $|x+3| \leq 5$.
(ii) Graph your solution on a number line.
(e) If $P(x)=x^{2}-3 x+2$, find and simplify:
(i) $P(3)$
(ii) $P(a)+3$
(iii) $P(a+3)$
(f) Simplify $\frac{1}{x}-\frac{1}{x+1}$.
(g) Expand and simplify $(\sqrt{3}+1)^{2}$.
(h) Find the acute angle θ to the nearest degree if:
(i) $\tan \theta=1.4$
(ii) $\operatorname{cosec} \theta=1 \cdot 3$

SGS Half-Yearly 2011 Form V Mathematics 2 Unit Page 4
QUESTION THREE (15 marks) Start a new leaflet.
(a) Factorise $3 b^{3}-3 c^{3}$.
(b) Find the natural domain of each function:
(i) $f(x)=\frac{1}{x+1}$
(ii) $f(x)=\sqrt{7-x}$
(c) Consider the parabola $y=x^{2}+2 x-8$.
(i) Find the y-intercept.
(ii) Find the x-intercepts.
(iii) Find the coordinates of the vertex.
(iv) Clearly sketch the parabola, showing all intercepts and the vertex.
(v) Hence solve $x^{2}+2 x-8>0$.
(d) Simplify:
(i) $\sqrt{27}+\sqrt{75}-\sqrt{48}$
(ii) $(2 \sqrt{6}+3)(2 \sqrt{6}-3)$
(e) Solve $\sin x=\frac{1}{\sqrt{2}}$, for $0^{\circ} \leq x \leq 360^{\circ}$.
(f)

The graph above shows the curve $y=-\frac{1}{x}$. What is the equation of the vertical asymptote?

QUESTION FOUR (15 marks) Start a new leaflet.
(a) Two positive numbers differ by 5 and their squares add to 233 . Form an equation and solve it to find the two numbers.
(b) A man standing on a rooftop looks down at a car parked some distance away. If the angle of depression of his line of sight is 18° and he is 16 metres above the ground, how far away from the base of the building is the car? Give your answer to the nearest centimetre.
(c) Factorise $3 x^{2}-10 x-8$.
(d) Express the following fractions with a rational denominator:
(i) $\frac{\sqrt{2}}{\sqrt{3}}$
(ii) $\frac{1}{\sqrt{5}-\sqrt{3}}$
(iii) $\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$
(e) Given the function $f(x)=x^{3}-x$, find $f(-x)$ and hence determine whether the symmetry of $f(x)$ is even, odd or neither.
(f)

Using the graph above, or otherwise, solve the inequation $6 x-x^{2}<x$.
(g) If a ranger can see his camp on a bearing of $127^{\circ} \mathrm{T}$, what is the bearing of the ranger from the camp?

SGS Half-Yearly 2011 Form V Mathematics 2 Unit Page 6
QUESTION FIVE (15 marks) Start a new leaflet.
(a) Showing all working, write $1 \cdot \dot{6} 0 \dot{3}$ as a fraction in lowest terms.
(b) Simplify $\frac{x+1}{x^{2}-6 x+5}-\frac{x-4}{x^{2}+4 x-5}+\frac{1}{x^{2}-25}$.
(c) If $\cos \theta=\frac{\sqrt{5}}{3}$ and $\tan \theta<0$, find the exact value of $\sin \theta$.
(d) (i) Find the centre and radius of the circle $x^{2}-4 x+y^{2}+2 y=4$.
(ii) Using a graph, or otherwise, determine the range of $x^{2}-4 x+y^{2}+2 y=4$.
(e) (i) On a single set of axes, sketch $y=|x-3|$ and $y=|x+1|$.
(ii) Hence, or otherwise, solve $|x-3|=|x+1|$.
(f) Prove the identity $\cos \theta+\tan \theta \sin \theta=\sec \theta$.

SGS Half-Yearly 2011 Form V Mathematics 2 Unit Page 7
QUESTION SIX (15 marks) Start a new leaflet.
(a) Sketch the graph of the function $y=\frac{1}{x+2}-1$, clearly showing any asymptotes and intercepts with the axes.
(b) Shade the region where $x^{2}+y^{2} \leq 16, x>-1$ and $y<2$.
(c) A ship at sea sees a lighthouse on a bearing of $320^{\circ} \mathrm{T}$. After the ship sails into port, which lies 6 kilometres due west of its original position, the lighthouse is still visible but on a bearing of $048^{\circ} \mathrm{T}$. How far is the port from the lighthouse? Leave your solution correct to 2 decimal places.
(d) Solve $\cot 2 \alpha=-1$, for $0^{\circ} \leq \alpha \leq 360^{\circ}$, giving your solutions correct to one decimal place.
(e) (i) Sketch $y=-\sqrt{16-x^{2}}$.
(ii) Sketch $y=4-x^{2}$, for $-4 \leq x \leq 4$, on the same number plane as part (i).
(iii) Solve $4-x^{2}=-\sqrt{16-x^{2}}$, leaving your solutions as exact values.
(iv) Hence, or otherwise, solve $4-x^{2}+\sqrt{16-x^{2}} \geq 0$.

Form V HY: Mathematics SJC
Q1. a) i) $0.12=\frac{3}{25}$
ii) $17.5 \%=\frac{7}{40}$
b) $\frac{6}{\sqrt{3}}=2 \sqrt{3}$
c) $\sin 33^{\circ} 45^{\circ}=0.56$ (to 2 dep.)
d) $4 \sqrt{2}+3-\sqrt{2}=3+3 \sqrt{2}$
e) i) $x^{2}-5 x-36=(x-9)(x+4)$
ii) $a^{3}+8=(a+2)\left(a^{2}-2 a+4\right)$
f) $2 \times 3+3 \times(-2)-1 \neq 0$
$\therefore(3,-2)$ is not on the line $2 x+3 y-1=0$
g) i)

$$
\begin{aligned}
& x^{2}-4=0 \\
& (x+2)(x-2)=0 \\
& x=2 \text { or } x=-2
\end{aligned}
$$

ii) $|x|=7$

$$
\therefore x=7 \text { or } x=-7
$$

h)

$$
\begin{aligned}
\frac{8 a b}{5} \div \frac{4 a b}{15} & =\frac{8 a b}{5} \times \frac{15}{4 a b} \\
& =6
\end{aligned}
$$

i)

$$
\begin{aligned}
7 x-9 & \leq 26 \\
7 x & \leq 35 \\
x & \leq 5
\end{aligned}
$$

Q2. a) $3 \sqrt{45}=9 \sqrt{5}$
b) i)

ii) $\cos 210^{\circ}$

$$
\begin{aligned}
& =-\cos 30^{\circ} \\
& =-\frac{\sqrt{3}}{2}
\end{aligned}
$$

c) shifted left 4 units
d)

$$
\begin{aligned}
& \text { i) }|x+3| \leqslant 5 \\
& x \\
& x+3 \leqslant 5 \text { and }-x-3 \leqslant 5
\end{aligned}
$$

$$
\begin{gathered}
x \leqslant 2 \\
\text { and } \begin{array}{c}
-x
\end{array} \quad 8 \\
x \geqslant-8
\end{gathered} \quad \begin{gathered}
\text { one answer } \\
\text { only }
\end{gathered}
$$

$\therefore-8 \leqslant x \leqslant 2 \checkmark$ both solutions and interval
e) i)

$$
\begin{aligned}
P(3) & =9-9+2 \quad \text { ii) } P(a)+3 \\
= & =a^{2} \\
& =a^{2} \\
\text { iii) } P(a+3) & =(a+3)^{2}-3(a+3)+2 \\
& =a^{2}+6 a+9-3 a-9+2 \\
& =a^{2}+3 a+2
\end{aligned}
$$

$$
\text { ii) } P(a)+3=a^{2}-3 a+2+3
$$

$$
=a^{2}-3 a+5
$$

f)

$$
\begin{aligned}
\frac{1}{x}-\frac{1}{x+1} & =\frac{x+1-x}{x(x+1)} \\
& =\frac{1}{x(x+1)}
\end{aligned}
$$

g)

$$
\begin{aligned}
(\sqrt{3}+1)^{2} & =3+2 \sqrt{3}+1 \\
& =4+2 \sqrt{3}
\end{aligned}
$$

h) i) $\tan ^{-1}(1.4)=54^{\circ}$ (to nearest degree)
ii)

$$
\begin{aligned}
\operatorname{cosec}^{-1}(1.3) & =\frac{1}{\sin ^{-1}(1.3)} \\
& =50^{\circ} \text { (to nearest de gree) }
\end{aligned}
$$

Q3. a) $3 b^{3}-3 c^{3}=3(b-c)\left(b^{2}+b c+c^{2}\right)$
b) i)

$$
\begin{aligned}
x+1 & \neq 0 & \text { ii) } \begin{aligned}
7-x & \geqslant 0 \\
\therefore x & \neq-1
\end{aligned} & x
\end{aligned}
$$

c) i) y-intercept: $y=-8$
ii) x-intercept:

$$
\begin{aligned}
& x^{2}+2 x-8=0 \\
& (x+4)(x-2)=0
\end{aligned}
$$

$\therefore x=-4$ and $x=2$
iii) vertex: $x=\frac{-b}{2 a}$

$$
=-1
$$

$$
\begin{aligned}
\therefore y & =(-1)^{2}+2 \times(-1)-8 \\
& =-9
\end{aligned}
$$

\therefore vertex is $(-1,-9)$
iv)

v)

$$
\begin{aligned}
& x^{2}+2 x-8>0 \\
& \therefore x<-4 \text { or } x>2
\end{aligned}
$$

d) i)

$$
\text { i) } \begin{aligned}
\sqrt{27}+\sqrt{75}-\sqrt{48} & =3 \sqrt{3}+5 \sqrt{3}-4 \sqrt{3} \\
& =4 \sqrt{3}
\end{aligned}
$$

$$
\text { ii) } \begin{aligned}
(2 \sqrt{6}+3)(2 \sqrt{6}-3) & =24-9 \\
& =15
\end{aligned}
$$

e) $\sin x=\frac{1}{\sqrt{2}} \quad \therefore x=45^{\circ}$ or $x=135^{\circ}$
f) $x=0$

Q4. a) Let the smaller number be x.

$$
\begin{aligned}
& x^{2}+(x+5)^{2}=233 \\
& x^{2}+x^{2}+10 x^{4}+25=233 \\
& 2 x^{2}+10 x-208=0 \\
& (x+13)(2 x-16)=0
\end{aligned}
$$

$\therefore x=8$ or $x=-13$ (not a solution to the problem)
Hence the two numbers are 8 and 13 .
b)

$$
\begin{aligned}
\alpha= & 18^{\circ} \text { (alternate angles on parallel ling } \\
\tan 18^{\circ} & =\frac{16}{x} \\
x & =\frac{16}{\tan 18^{\circ}} \\
& =49.24 \mathrm{~m}
\end{aligned}
$$

c)

$$
\begin{aligned}
3 x^{2}-10 x-8 & =3 x^{2}-12 x+2 x-8 \\
& =3 x(x-4)+2(x-4) \\
& =(3 x+2)(x-4)
\end{aligned}
$$

d) i) $\frac{\sqrt{2}}{\sqrt{3}}=\frac{\sqrt{6}}{3}$
ii)

$$
\begin{aligned}
\frac{1}{\sqrt{5}-\sqrt{3}} & =\frac{\sqrt{5}+\sqrt{3}}{5-3} \\
& =\frac{\sqrt{5}+\sqrt{3}}{2}
\end{aligned}
$$

iii) $\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}=\frac{(\sqrt{3}+\sqrt{2})^{2}}{3-2}$

$$
=3+2 \sqrt{6}+2
$$

$$
=5+2 \sqrt{6}
$$

e) $f(-x)=(-x)^{3}-(-x)$
$=-x^{3}+x, \quad \therefore f(x)=-f(-x)$ and $f(x)$ is odd.
f) from the graph: $6 x-x^{2}<x$ when $x<0$ or $x>5$.
g) Bearing of ranger from the camp: $127+180=307^{\circ} \mathrm{T}$.
05°.

$$
\text { a) } \begin{aligned}
x & =1 . \dot{603} \\
1000 x & =1603.603 \\
\therefore 999 x & =1602 \\
x & =\frac{178}{111}
\end{aligned}
$$

b)

$$
\text {) } \begin{aligned}
\frac{x+1}{x^{2}-6 x+5}-\frac{x-4}{x^{2}+4 x-5}+\frac{1}{x^{2}-25} & =\frac{x+1}{(x-5)(x-1)}-\frac{x-4}{(x+5)(x-1)}+\frac{1}{(x+5)(x-5)} \\
& =\frac{(x+1)(x+5)-(x-5)(x-4)+(x-1)}{(x+5)(x-5)(x-1)} \\
& =\frac{x^{2}+6 x+5-x^{2}+9 x-20+x-1}{(x+5)(x-5)(x-1)} \\
& =\frac{16 x-16}{(x+5)(x-5)(x-1)} \\
& =\frac{16}{(x+5)(x-5)}
\end{aligned}
$$

c)

$$
\begin{aligned}
\cos \theta=\frac{\sqrt{5}}{3} \quad \therefore \cos ^{2} \theta & =\frac{5}{9} \\
\therefore \sin ^{2} \theta & =\frac{4}{9} \\
& \sin \theta
\end{aligned}= \pm \frac{2}{3}
$$

$\tan \theta<0$

d) i)

$$
\begin{aligned}
& x^{2}-4 x+y^{2}+2 y=4 \\
& (x-2)^{2}+(y+1)^{2}=9
\end{aligned}
$$

\therefore circle of centre $(2,-1)$ and radius $=3$
ii) range is centre \pm radius

$$
\therefore-4 \leq y \leq 2
$$

Q25. cont.
e) i)

ii) intersection: $|x-3|=|x+1|$

Shen $x=1$
f) LHS:

$$
\begin{aligned}
\cos \theta+\tan \theta \sin \theta & =\cos \theta+\frac{\sin ^{2} \theta}{\cos \theta} \\
& =\frac{\cos ^{2} \theta}{\cos \theta}+\frac{\sin ^{2} \theta}{\cos \theta} \\
& =\frac{1}{\cos \theta} \\
& =\text { RHS } \backslash
\end{aligned}
$$

Q6. a) $y=\frac{1}{x+2}-1$, is the curve $y=\frac{1}{x}$ shifted left 2 units

b)

\checkmark boundaries
\checkmark dotted/full
\checkmark lines/curves/ shading
d) $\cot 2 \alpha=-1$: let $u=2 \alpha$
$\therefore \cot u=-1,0^{\circ} \leqslant u \leqslant 720^{\circ}$
$\tan u=-1 \quad(Q 2$ and Q4)

$$
\begin{array}{rlrl}
u & =135^{\circ} & \alpha & =67.5^{\circ} \\
\text { or } \begin{aligned}
& =315^{\circ}
\end{aligned} \therefore \text { or } \alpha & =157.5^{\circ} \\
\text { or } u & =495^{\circ} & \text { or } \alpha & =247.5^{\circ} \\
\text { or } u & =675^{\circ} & \text { or } \alpha & =337.5^{\circ}
\end{array}
$$

and down 1 unit.
\checkmark hyperbola
c)

$\alpha=50^{\circ}$ (adjacent angles)
$\beta=42^{\circ}$ (adjacent angles)
$\therefore \gamma=88^{\circ}$ (angle sum of triangle

$$
\begin{aligned}
\therefore \frac{x}{\sin \alpha}=\frac{6}{\sin \gamma} \therefore x & =\frac{6 \sin 58^{\circ}}{\sin 88^{\circ}} \\
& =4.60 \mathrm{~km}^{\prime}(2 \text { dep. }
\end{aligned}
$$

Q6. cont.
e) i)
ii)

iii)

$$
\begin{aligned}
& \left(4-x^{2}\right)=-\sqrt{16-x^{2}} \\
& \left(4-x^{2}\right)^{2}=16-x^{2} \\
& 16-8 x^{2}+x^{4}=16-x^{2} \\
& x^{4}-7 x^{2}=0 \\
& x^{2}\left(x^{2}-7\right)=0 \\
& \therefore x^{2}=0 \quad \text { or } \quad x^{2}=7 \\
& x=0 \quad x= \pm \sqrt{7}
\end{aligned}
$$

not a solution two solutions (see graph) only
iv) from graph: $-\sqrt{7} \leq x \leq \sqrt{7}$

