SYDNEY GRAMMAR SCHOOL

2014 Half-Yearly Examination

FORM V MATHEMATICS 2 UNIT

Wednesday 14th May 2014

General Instructions

- Writing time 1 hour 30 minutes
- Write using black or blue pen.
- Board-approved calculators and templates may be used.

Total – 80 Marks

• All questions may be attempted.

Section I – 8 Marks

- Questions 1–8 are of equal value.
- Record your solutions to the multiple choice on the sheet provided.

Section II – 72 Marks

- Questions 9–14 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

5A: BDD

5E: PKH

5Q: NL

5B: MLS

5R: TCW

5F: BR

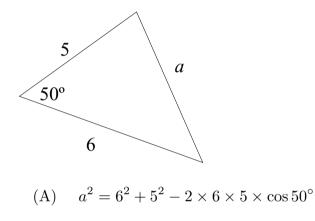
Collection

- Write your name, class and master on each booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place your multiple choice answer sheet inside the answer booklet for Question Nine.
- Write your name and master on this question paper and submit it with your answers.

$5\mathrm{C}$:	LYL	5D:	LRP
5G:	SG	5P:	REJ

Checklist

- SGS booklets 6 per boy
- Multiple choice answer sheet


Examiner PKH

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

Which statement is true for the diagram below?

- (B) $a^2 = 6^2 + 5^2 + 2 \times 6 \times 5 \times \cos 50^\circ$
- (C) $a^2 = 6^2 + 5^2 + 2 \times 6 \times 5 \times \sin 50^\circ$
- (D) $a^2 = 6^2 + 5^2 2 \times 6 \times 5 \times \sin 50^\circ$

QUESTION TWO

What is the exact value of $\sqrt{50} - \sqrt{18}$?

(A) $\sqrt{32}$ (B) 2.828 (C) $2\sqrt{2}$ (D) $2\sqrt{5} - 2\sqrt{3}$

QUESTION THREE

Which of the following is the natural domain of $\sqrt{x-4}$?

(A) $x \ge 4$ (B) x > 4 (C) $x \le 4$ (D) x < 4

QUESTION FOUR

The expression $\frac{K^6 + K^3}{K^3}$ can be simplified to : (A) K^6 (B) $2K^3$ (C) $K^3 + 1$ (D) $K^2 + 1$

Exam continues next page ...

SGS Half-Yearly 2014 Form V Mathematics 2 Unit Page 3

QUESTION FIVE

The solution to the equation $\tan \theta = -1$ for $0^{\circ} \le \theta \le 360^{\circ}$ is :

(A)
$$\theta = -45^{\circ} \text{ or } \theta = 45^{\circ}$$

(B) $\theta = -45^{\circ}$
(C) $\theta = 135^{\circ} \text{ or } \theta = 225^{\circ}$
(D) $\theta = 135^{\circ} \text{ or } \theta = 315^{\circ}$

QUESTION SIX

What is the gradient of the line passing through A(-1, 6) and B(4, -4)?

(A) -2 (B) $-\frac{1}{2}$ (C) $\frac{3}{2}$ (D) $-\frac{3}{2}$

QUESTION SEVEN

Which of the following expressions is equal to $a^3 - b^3$?

(A)
$$(a-b)(a^2+b^2)$$

(B) $(a+b)(a^2-ab+b^2)$
(C) $(a-b)(a^2+2ab+b^2)$
(D) $(a-b)(a^2+ab+b^2)$

QUESTION EIGHT

Which of the following is equivalent to $\sin \theta$?

(A)
$$\cos(90^\circ + \theta)$$
 (B) $\cos(90^\circ - \theta)$

(C)
$$\frac{1}{\sec\theta}$$
 (D) $-\sin(180^\circ - \theta)$

End of Section I

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.

Show all necessary working.

Start a new booklet for each question.

QUESTION NINE (12 marks) Use a separate writing booklet.	Marks
(a) Find $\sqrt{12645674}$ correct to 3 significant figures.	1
(b) Find θ correct to the nearest degree if $\cos \theta = 0.6$ and θ is acute.	1
(c) Expand $(3x-2)^2$.	1
(d) Find the mid-point of the interval joining $A(-1,5)$ and $B(3,-3)$.	1
(e) Evaluate $ 6 - -12 $.	1
(f) Factorise the following:	
(i) $4x^2 - 9$	1
(ii) $2x^2 - 3x + 1$	1
(g) Write $\frac{2x+1}{x^2} + \frac{x-2}{x}$ as a single fraction in simplest form.	1
(h) Solve the following equations:	
(i) $\frac{4x}{3} = x + 1$	1
(ii) $-2(x+3) = 5(2x-3)$	2
(i) Solve the inequation $-3a - 2 \le -8$.	1

SGS Half-Yearly 2014 Form V Mathematics 2 Unit Page 5

QUESTION TEN (12 marks) Use a separate writing booklet.

- (a) Find the distance between the points C(2, -3) and D(-5, 1). Leave your answer as a surd.
- (b) Expand and simplify $(2 3\sqrt{3})^2$. 2

(c) Rationalise the denominator of
$$\frac{4}{3-\sqrt{7}}$$
 and simplify. 2

- (d) Solve $x = \frac{2-x}{x}$. 2
- (e) Solve the quadratic inequation $x^2 2x 8 \le 0$.

(f) Solve
$$|x+6| = 12$$
.

- (a) If $g(x) = 5x 3x^2$ find the value of g(-2).
- (b) Sketch neat graphs of the following functions on separate axes showing any intercepts with the axes:
 - (i) $y = -\frac{1}{2}x + 3$ (ii) $y = 16 - x^2$ (iii) $y = \frac{1}{x+2}$ (iv) $y = -\sqrt{9 - x^2}$ 2
- (c) Write down the natural domain and range of the function $y = 3^x$.
- (d) Sketch the graph of y = |x 2|.

Marks

 $\mathbf{2}$

Marks

1

 $\mathbf{2}$

1

QUESTION TWELVE (12 marks) Use a separate writing booklet.

Marks

 $\mathbf{2}$

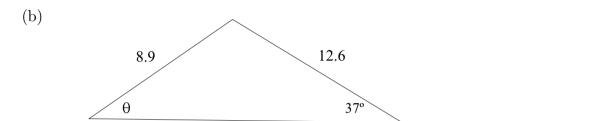
 $\mathbf{2}$

 $\mathbf{2}$

 $\mathbf{2}$

Marks

1


3

 $\mathbf{2}$

3

In the diagram above find x correct to two decimal places.

In the diagram above find the acute angle θ correct to the nearest minute.

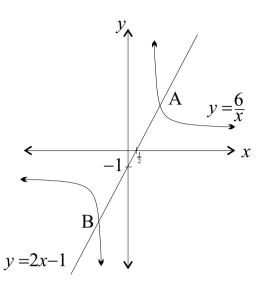
- (c) Find the exact value of $\cos 225^{\circ}$.
- (d) Solve $\sin \theta = -\frac{\sqrt{3}}{2}$ for $0^{\circ} \le \theta \le 360^{\circ}$.
- (e) Draw a neat sketch of $y = \cos x$ for $-180^{\circ} \le x \le 180^{\circ}$. Label the intercepts with the axes.
- (f) Find the equation of the line through P(-2, 4) which is perpendicular to $y = \frac{1}{2}x$.

QUESTION THIRTEEN (12 marks) Use a separate writing booklet.

(a) Which of the following numbers are rational?

$$\sqrt{7}, \pi, 0.\dot{7}, \sqrt{81}, 7^{\frac{1}{7}}$$

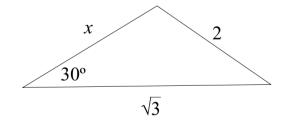
(b) Given that $\cos \theta = -\frac{1}{4}$ and θ is obtuse, find the exact value of $\tan \theta$.


(c) Prove that
$$\frac{\sec\theta\tan\theta}{1+\tan^2\theta} = \sin\theta.$$
 3

- (d) Find the perpendicular distance from the point A(-1,5) to the line 3x 4y + 2 = 0.
- (e) Sketch the region in the number plane which simultaneously satisfies $y \le 3 x$ and $y \ge x^2 1$. There is no need to find the points of intersection of the graphs.

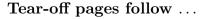
Exam continues next page ...

QUESTION FOURTEEN (12 marks) Use a separate writing booklet. Marks



In the diagram above the line y = 2x - 1 and the hyperbola $y = \frac{6}{x}$ are drawn. The points of intersection of the line and the hyperbola are labelled A and B.

- (i) Use algebra to find the co-ordinates of A and B.
- (ii) Hence solve $2x 1 \le \frac{6}{x}$.
- (b) Two ships leave port P. One travels 90 km on a bearing of 030° T and anchors at A. The other ship travels 40 km on a bearing of 120° T and anchors at B.
 - (i) Represent this situation on a neat diagram.
 - (ii) Find the bearing of B from A to the nearest degree.



In the diagram above:

- (i) Show that $x^2 3x 1 = 0$.
- (ii) Find the exact area of the triangle.

End of Section II

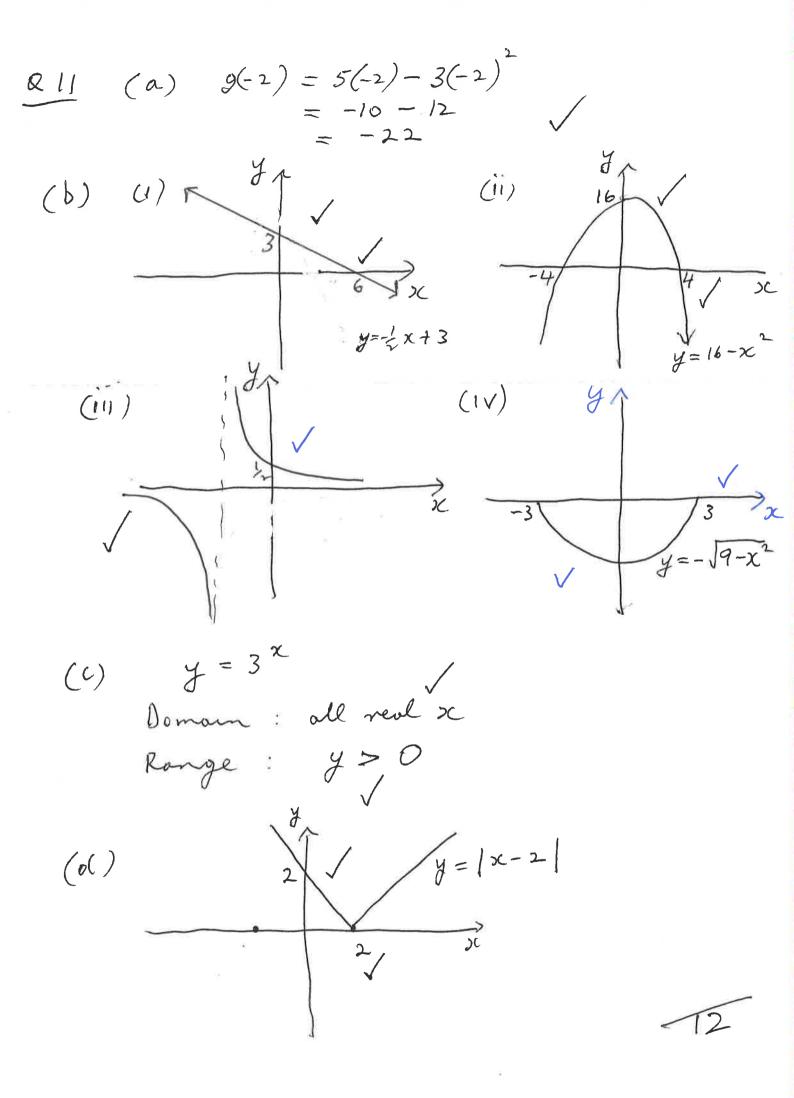
END OF EXAMINATION

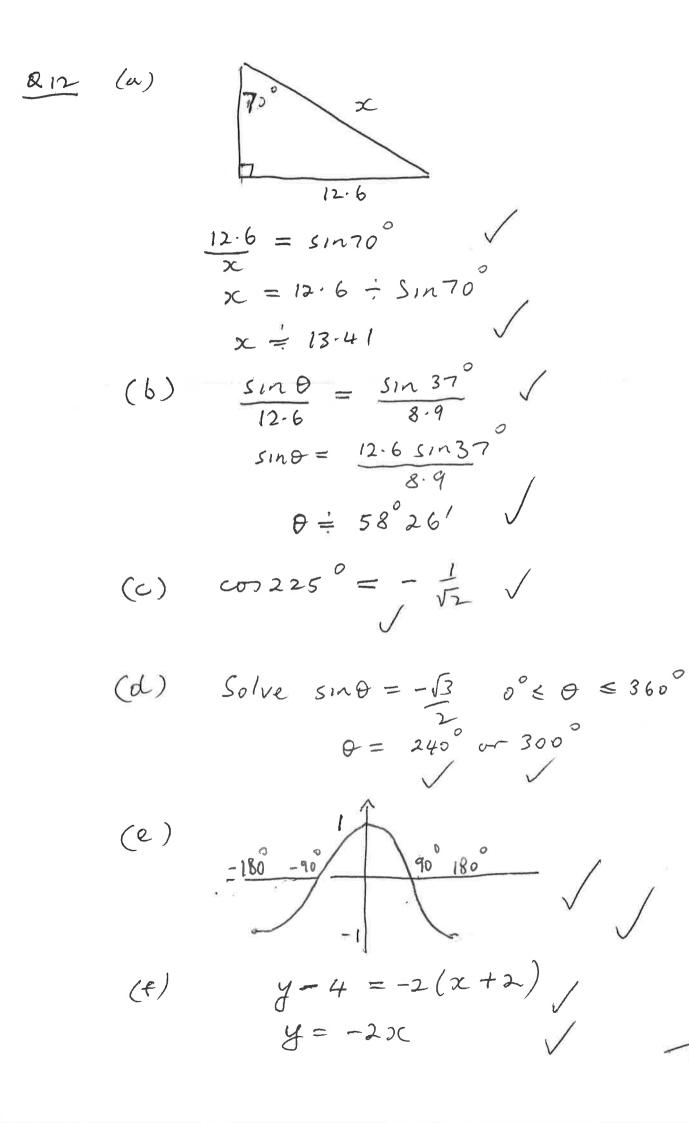
1	
2	

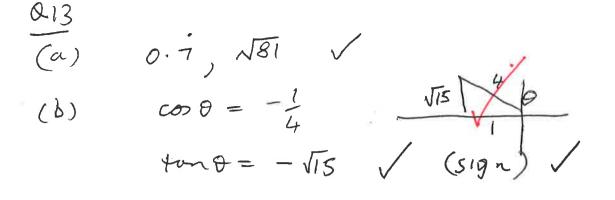
SGS Half-Yearly 2014 Form V Mathematics 2 Unit Page 8

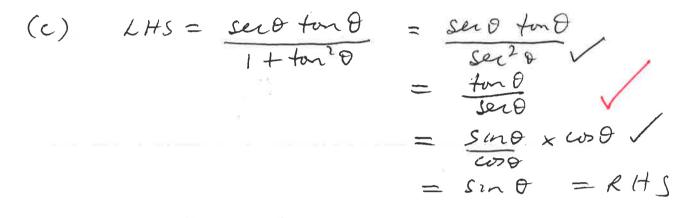
BLANK PAGE

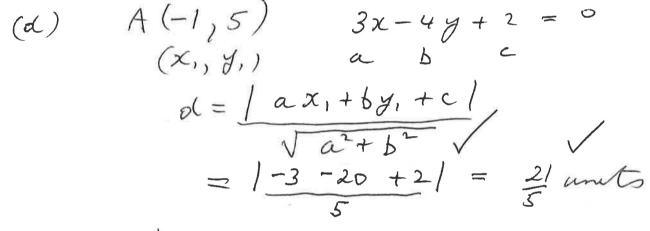
SYDNEY GRAMMAR SCHOOL

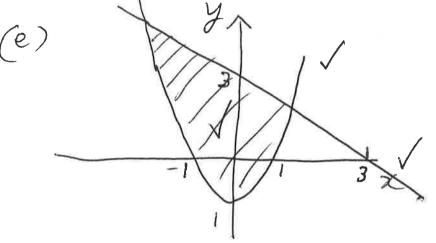

2014
Half-Yearly Examination
FORM V
MATHEMATICS 2 UNIT
Wednesday 14th May 2014


•	Record your multiple choice answers
	by filling in the circle corresponding
	to your choice for each question.


- Fill in the circle completely.
- Each question has only one correct answer.


Question One			
А ()	В ()	С ()	D ()
Question '	Γwo		
А ()	В ()	С ()	D ()
Question Three			
А ()	В ()	С ()	D 🔘
Question Four			
А ()	В ()	С ()	D ()
Question Five			
А ()	В ()	С ()	D ()
Question Six			
А ()	В ()	СО	D ()
Question Seven			
А ()	В ()	С ()	D ()
Question Eight			
А ()	В ()	С ()	D ()


PRH	JOLV MAN 10 -0000 11 1	65
Muttiple C	hoice 80	
L. A 🔹	2 c 3 A 4 c 5 D /8	
6 A	7 D 8 B	
Q9 (a,	$) \sqrt{12645674} = 3560 $	
(6)	$\begin{array}{c} \cos \theta = 0.6 \\ \theta = 53 \end{array}$	
(c)	$(3x-2)^2 = 9x^2 - 12x + 4$	
(d)	$M = \left(\frac{3-1}{2}, \frac{5-3}{2}\right) = (1,1)$	
	6 - -12 = 6 - 12 = -6	
(+)	(i) $4\chi^2 - 9 = (2\chi - 3)(2\chi + 3)$	
	(ii) $2\pi^2 - 3x + 1 = (2x - 1)(x - 1)$	•
(9)	$\frac{2s(t+1)}{s(t^2)} + \frac{s(t^2-2s)}{s(t^2)} = \frac{s(t+1)}{s(t^2)} \sqrt{\frac{s(t+1)}{s(t^2)}}$	
(h)	(i) $\frac{4x}{3} = x + 1$	
	4x = 3x + 3 $x = 3$	
	(11) - 2(x+3) = 5(2x-3) -2x=6 = 10x - 15	
	$x = -\frac{3}{4}$	
(Ľ)	$-3\alpha - 2 \leq -8$ $-3\alpha \leq -6$ $\alpha \geq 2$ 1	2



 β_{14} (a) (i) Pts of A where $2\pi - 1 = \frac{6}{\pi}$ $2\pi^{2} - x = 6$ (ii) Solution 15 J.1 $2x^2 - x - b = 0$ (22x+3)(x-2)=0x < - 3 or 0 < x < 2 $x = -\frac{3}{2} = -\frac{3}{2}$, 4= y = -460, (6) $tun \theta = \frac{4}{9}$ Now Ø=24° Bearing & from A 15 P 40 B 186 T. (c). By the course rule, $4 = \chi^{2} + 3 - 2\sqrt{3} \chi \cos 30^{\circ} \sqrt{30^{\circ}}$ (1) $4 = x^2 + 3 - 2\sqrt{3} x \cdot \sqrt{3}$ $4 = 1c^{2} + 3 - 3c$ $yc^{2} - 3yc - 1$ V3 $x = \frac{3 \pm \sqrt{9 + 4}}{2}$ (1) $x = \frac{3 + \sqrt{13}}{2}$ Aren = { a b sin 30 $=\frac{1}{2}\sqrt{3}\left(\frac{3+\sqrt{3}}{2}\right)$ 353+ 539 R