

FORM V

MATHEMATICS 2 UNIT

Tuesday 16th May 2017

General Instructions

- Writing time - 1 hour 30 minutes
- Write using black pen.
- Board-approved calculators and templates may be used.

Total - 80 Marks

- All questions may be attempted.

Section I-8 Marks

- Questions 1-8 are of equal value.
- Record your answers to the multiple choice on the sheet provided.

Section II - 72 Marks

- Questions 9-14 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Collection

- Write your name, class and Master on each answer booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Write your name, class and Master on this question paper and hand it in with your answers.
- Place everything inside the answer booklet for Question Nine.

5A: RCF	5B: SO	5C: BR	5D: REJ
5E: LYL	5F: LJF	5G: SDP	5H: CMDB
5P: BDD	5Q: LL	5R: TCW	

Checklist

- SGS booklets - 6 per boy
- Multiple choice answer sheet

Examiner SDP

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

The expression $\frac{x}{2}+\frac{x}{3}$ simplifies to which of the following?
(A) $\frac{2 x}{5}$
(B) $\frac{x^{2}}{6}$
(C) $\frac{5 x}{6}$
(D) $\frac{2 x}{6}$

QUESTION TWO

Which of the following is NOT equal to $\sqrt{24}$?
(A) $2 \sqrt{6}$
(B) $\sqrt{12} \times \sqrt{2}$
(C) $\frac{1}{2} \sqrt{48}$
(D) $2 \sqrt{3} \times \sqrt{2}$

QUESTION THREE

What is the natural domain of the function $f(x)=\frac{1}{x+5}$?
(A) all real values of x, where $x \neq 5$
(B) all real values of x, where $x \neq-5$
(C) all real values of x, where $x<5$
(D) all real values of x, where $x>5$

QUESTION FOUR

The above diagram shows the graph of $y=(x-3)(x+2)$.
Which of the following is the correct solution to the inequation $(x-3)(x+2)<0$?
(A) $x>3$ or $x<-2$
(B) $x>2$ or $x<-3$
(C) $-2<x<3$
(D) $-3<x<2$

QUESTION FIVE

Which of the following is the exact value of $\operatorname{cosec}\left(-60^{\circ}\right)$?
(A) $-\frac{2 \sqrt{3}}{3}$
(B) $\frac{2 \sqrt{3}}{3}$
(C) 2
(D) -2

QUESTION SIX

What is the perpendicular distance between the point $(3,5)$ and the line $3 x-y+2=0$?
(A) $\frac{8 \sqrt{34}}{17}$
(B) $\frac{3 \sqrt{34}}{17}$
(C) $\frac{8 \sqrt{10}}{5}$
(D) $\frac{3 \sqrt{10}}{5}$

QUESTION SEVEN

Which of the following is the correct factorisation of $54 x^{3}+2 y^{3}$?
(A) $2(3 x-y)\left(9 x^{2}+3 x y+y^{2}\right)$
(B) $2(3 x+y)\left(9 x^{2}-3 x y+y^{2}\right)$
(C) $2(3 x-y)(3 x+3 x y+y)$
(D) $2(3 x+y)(3 x-3 x y+y)$

QUESTION EIGHT

Which of the following is the correct value of a ?

(A) $\sqrt{31}$
(B) $\sqrt{13}$
(C) $\sqrt{7}$
(D) 1

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.
Show all necessary working.
Start a new booklet for each question.

QUESTION NINE (12 marks) Use a separate writing booklet.
(a) Evaluate $|2|-|-3 \times 4|$.
(b) Factorise fully:
(i) $x^{2}+3 x-10$
(ii) $9 x^{2}-16$
(c) Express $\frac{12}{3-\sqrt{6}}$ as a fraction with a rational denominator.
(d) Find the x-intercept of the line $y=3 x-6$.
(e) Find the acute angle θ, given that $\cos \theta=\frac{\sqrt{3}}{2}$.
(f) Expand and simplify $(x-3)\left(x^{2}+3 x+9\right)$.
(g) (i) Find the midpoint M of the interval joining the point $(4,2)$ and the origin.
(ii) Hence find the equation of the line through the point M with gradient 3.
(h)

Find the value of θ in the diagram above, correct to the nearest degree.

QUESTION TEN (12 marks) Use a separate writing booklet.
(a) Find $f(2)$ when $f(x)=\frac{2}{\sqrt{x^{2}+12}}$.
(b) (i) Write down the domain of $y=\log _{2} x$.
(ii) Write down the range of $y=\log _{2} x$.
(c) Solve the following:
(i) $3 \leq 2 x+1 \leq 7$
(ii) $|x-2|=10$
(d) Find the equation of the line which is parallel to $y=2 x-5$ and passes through the point $(1,5)$. Give your answer in general form.
(e) (i) Complete the square for $f(x)=x^{2}+10 x+17$.
(ii) Hence solve $f(x)=0$. Leave your answers in exact form.
(f) Solve $\cos x=\frac{1}{2}$ for $0^{\circ} \leq x \leq 360^{\circ}$.

QUESTION ELEVEN (12 marks) Use a separate writing booklet.
(a) Describe the transformation of the circle $x^{2}+y^{2}=16$ to the circle $(x+3)^{2}+(y-2)^{2}=16$.
(b) Simplify $\sqrt{8}+\sqrt{25}+\sqrt{50}$.
(c) Simplify $\frac{x^{2}+5 x+6}{2 x+4}$.
(d) Find the coordinates of the vertex of $y=x^{2}-4 x-32$.
(e) Solve $-x^{2}-2 x+15 \geq 0$.
(f) Prove $\frac{\sin x}{\cos x}+\frac{\cos x}{\sin x}=\operatorname{cosec} x \sec x$.
(g) Determine whether or not the following lines are concurrent:

$$
l_{1}: y=2 x+4 \quad l_{2}: y=x+14 \quad l_{3}: y=3 x-6
$$

Clearly show your working.

QUESTION TWELVE (12 marks) Use a separate writing booklet. Marks
(a) Solve $x=\frac{1+4 x}{x}$. Leave your answer in exact form.
(b) Find the value of m such that $\frac{2}{\sqrt{3}-\sqrt{2}}=m(\sqrt{2}+\sqrt{3})$.
(c) (i) Solve $|x-2|<22$.
(ii) Show your solution on a number line.
(d) (i) Fully factorise $x^{3}-7 x^{2}+10 x$.
(ii) Hence solve $x^{3}-7 x^{2}+10 x=0$.
(iii) Sketch the curve $y=x^{3}-7 x^{2}+10 x$, showing any intercepts with the axes.

QUESTION THIRTEEN (12 marks) Use a separate writing booklet.
(a) Simplify $\frac{6 x-30}{3 x^{2}-75} \div \frac{1}{4 x+20}$.
(b) (i) Sketch $y=\sqrt{9-x^{2}}$, showing any intercepts with the axes.
(ii) Write down the domain of this function.
(iii) Write down the range of this function.
(c) In $\triangle A B C, \angle B A C=30^{\circ}, \angle B C A=\theta$, length $A B=4 \sqrt{2} \mathrm{~cm}$ and length $B C=4 \mathrm{~cm}$. Find the two possible values of θ.
(d) Find the equation of the perpendicular bisector of the line joining the points $(2,10)$ and $(8,0)$. Give your answer in gradient-intercept form.
(a) Determine whether $f(x)=x\left(x^{2}-4\right)$ is odd, even or neither.
(b) (i) Sketch $y=2^{x}$, showing any intercepts with the axes and any asymptotes.
(ii) Hence sketch $y=-2^{x}+2$ and find the x-intercept.
(c) (i) Accurately sketch $y=2|x+2|$ and $y=x+5$ on the same set of axes.
(ii) Write down the coordinates of any points of intersection.
(iii) Hence or otherwise, solve $2|x+2|<x+5$.
(d) Prove $\operatorname{cosec} x-\sin x=\cot x \cos x$.
(e) If $\sqrt{15}=a p^{2}+b$ and $p=\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{5}}$, find the values of a and b, where a and b are rational numbers.
\qquad

2017
Half-Yearly Examination
FORM V
MATHEMATICS 2 UNIT
Tuesday 16th May 2017

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

Question One

A
B \qquad
C
D

Question Two

AB
C
D \bigcirc

Question Three

AB \bigcircD \bigcirc

Question Four

$\mathrm{A} \bigcirc$
B \bigcirc
C

D \bigcirc

Question Five

AB
C
D \bigcirc

Question Six

A \bigcirc
BD \bigcirc

Question Seven

AB \bigcircD

Question Eight

$\mathrm{A} \bigcirc$
B \qquad
C
\bigcirc
D

Solution's Form $V 2$ Unit Halg-Yearly 2017

Multiple Choice
1)

$$
\begin{aligned}
\frac{x}{2}+\frac{x}{3} & =\frac{3 x}{6}+\frac{2 x}{6} \\
& =\frac{5 x}{6}
\end{aligned}
$$

2)

$$
\begin{aligned}
A \rightarrow 2 \sqrt{6} & =\sqrt{4}+\sqrt{6} \\
& =\sqrt{2 t}
\end{aligned}
$$

$$
\begin{aligned}
B \rightarrow \sqrt{12} \times \sqrt{2} & =\sqrt{24} \vee \\
C \rightarrow \frac{1}{2} \sqrt{48} & =\sqrt{\frac{1}{4}}+\sqrt{48} \\
& =\sqrt{12} x
\end{aligned}
$$

$$
\begin{aligned}
D \rightarrow 2 \sqrt{3}+\sqrt{2} & =\sqrt{4}+\sqrt{3}+\sqrt{2} \\
& =\sqrt{24}
\end{aligned}
$$

3) Denominator cannot equal 0 . So

$$
\begin{aligned}
x+5 & \neq 0 \\
x & \neq-5
\end{aligned}
$$

4) $(x-3)(x+2)<0$
as less than zane, solutions lie under x-axis

so $\quad-2<x<3$
(C)
5) $\operatorname{cosec}(-60)=\frac{1}{\sin (-60)}$

related and $=60^{\circ}$
negative sin quadrant
so

$$
\begin{aligned}
\sin (-60) & =-\sin (60) \\
& =-\frac{\sqrt{3}}{2}
\end{aligned}
$$

so $\operatorname{cosec}(-60)=\frac{1}{-\frac{\sqrt{3}}{2}}$

$$
=-\frac{2}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}
$$

$$
=-\frac{2 \sqrt{3}}{3}
$$

6) perp. distance $=\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}}$

$$
\begin{array}{rl}
x_{1}=3 & a=3 \\
y_{1}=5 & b=-1 \\
c=2 \\
& =\frac{|3 \times 3+(-1) \times 5+2|}{\sqrt{3^{2}+(-1)^{2}}} \\
& =\frac{|9-5+2|}{\sqrt{8+1}} \\
& =\frac{|6|}{\sqrt{10}} \\
& =\frac{6}{\sqrt{10}} \times \frac{\sqrt{10}}{\sqrt{10}} \\
& =\frac{6 \sqrt{10}}{10}
\end{array}
$$

7)

$$
\begin{align*}
54 x^{3}+2 y^{3} & =2\left(27 x^{3}+y^{3}\right) \\
& =2\left((3 x)^{3}+y^{3}\right) \\
& =2(3 x+y)\left((3 x)^{2}-(3 x)(y)+y^{2}\right) \\
& =2(3 x+y)\left(9 x^{2}-3 x y+y^{2}\right) \tag{B}
\end{align*}
$$

8) cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$

$$
\begin{aligned}
a^{2} & =(\sqrt{3})^{2}+4^{2}-2 \times \sqrt{3} \times 4 \times \cos 30 \\
& =19-8 \sqrt{3}+\frac{\sqrt{3}}{2} \\
& =19-12 \\
a^{2} & =7
\end{aligned}
$$

$$
\text { so } a=\sqrt{7}
$$

Question 9
a)

$$
\begin{aligned}
|2|-1-3 \times 4 \mid & =|2|-|-12| \\
& =2-12 \\
& =-10
\end{aligned}
$$

bi) $x^{2}+3 x-10=(x+5)(x-2)$
ii) $8 x^{2}-16=(3 x+4)(3 x-4)$
c)

$$
\begin{aligned}
\frac{12}{3-\sqrt{6}} \times \frac{3+\sqrt{6}}{3+\sqrt{6}} & =\frac{36+12 \sqrt{6}}{9-6} \\
& =\frac{36+12 \sqrt{6}}{3} \\
& =12+4 \sqrt{6}
\end{aligned}
$$

9d) x-intercent when $y=0$

$$
\text { so } \quad \begin{aligned}
0 & =3 x-6 \\
3 x & =6 \\
x & =2
\end{aligned}
$$

e) $\quad \cos \theta=\frac{\sqrt{3}}{2}$
relat ande $\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)=30^{\circ}$

positive and acute anyle so $\sigma=30^{\circ} \mathrm{V}$
f) $(x-3)\left(x^{2}+3 x+8\right)=x^{3}-27$
g i) $(4,2)$ and $(0,0) \quad M=\left(\frac{4+0}{2}, \frac{2+0}{2}\right)$

$$
M=(2,1)
$$

15.)

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-1 & =3(x-2) \\
y-1 & =3 x-6 \\
y & =3 x-5 \quad \text { allon } 3 x-y-5=0
\end{aligned}
$$

h) use \sin rule $\frac{\sin \theta}{7}=\frac{\sin 70}{12}$ For similar

$$
\begin{aligned}
& \sin \theta=\frac{7 \sin 70}{12} \\
& \partial=\sin ^{-1}\left(\frac{z \sin 70}{12}\right)
\end{aligned}
$$

$$
\theta=33^{\circ} \quad \text { (nemerst dghe) }
$$

Question 10
a)

$$
\begin{aligned}
f(2) & =\frac{2}{\sqrt{2^{2}+12}} \\
& =\frac{2}{\sqrt{4+12}} \\
& =\frac{2}{\sqrt{16}} \\
& =\frac{2}{4} \\
& =\frac{1}{2}
\end{aligned}
$$

bi) cannot put negatives into a log
so all real values of x, where $x>0$
17.) can get any value out of logs
so all real values of y a
(i)

$$
\begin{gathered}
3 \leqslant 2 x+1 \leqslant 7 \\
2 \leqslant 2 x \leqslant 6 \\
1 \leqslant x \leqslant 3
\end{gathered}
$$

ii)

$$
\begin{aligned}
&|x-2|=10 \\
& / \quad \mid \\
& x-2=10 \quad-(x-2)=10 \\
& x=12 \quad x-2=-10 \\
& x=-8 \\
& x=12 \quad \text { or } \quad x=-8
\end{aligned}
$$

10d)
parallel so gradiont $=2$

$$
\begin{aligned}
4-5 & =2(x-1) \\
y-5 & =2 x-2 \\
y & =2 x+3 \\
2 x-y+3 & =0
\end{aligned}
$$

$2 i)$

$$
\begin{aligned}
f(x) & =x^{2}+10 x+17 \\
& =(x+5)^{2}-25+17 \\
& =(x+5)^{2}-8
\end{aligned}
$$

$1 i)$

$$
\begin{array}{rlr}
0 & =(x+5)^{2}-8 \\
8 & =(x+5)^{2} & \\
x+5 & =\sqrt{8} & x+5=-\sqrt{8} \\
x+5 & =2 \sqrt{2} & x+5=-2 \sqrt{2} \\
x & =-5+2 \sqrt{2} &
\end{array}
$$

f)

$$
\cos x=\frac{1}{2}
$$

related aybe $x=\cos ^{-1}\left(\frac{1}{6}\right)$

$$
=60^{\circ}
$$

$$
\text { so } x=60^{\circ} \text { or } 300^{\circ}
$$

Question 11
a)

$$
\begin{array}{ccc}
\text { Shigt lest } & 3 \\
\text { Shigt } & \text { up } & 2
\end{array}
$$

\checkmark both
b)

$$
\begin{aligned}
\sqrt{8}+\sqrt{25}+\sqrt{50} & =2 \sqrt{2}+5+5 \sqrt{2} \\
& =5+7 \sqrt{2}
\end{aligned}
$$

c)

$$
\begin{aligned}
\frac{x^{2}+5 x+6}{2 x+4} & =\frac{(x+2)(x+3)}{2(x+2)} \text { - gactirise top } \\
& =\frac{x+3}{2}
\end{aligned}
$$

d)

$$
y=x^{2}-4 x-32
$$

vertax

$$
\begin{aligned}
& x=-\frac{b}{2 d} \\
& x=-\frac{(-4)}{2 x 1} \\
& x=\frac{4}{2} \\
& x=2
\end{aligned}
$$

when $x=2$,

$$
\begin{aligned}
& y=2^{2}-4 \times 2-32 \\
& y=4-8-32 \\
& y=-36
\end{aligned}
$$

vertox $(2,-36)$

$$
\text { 11e) } \quad \begin{aligned}
-x^{2}-2 x+15 & \geqslant 0 \\
x^{2}+2 x-15 & \leqslant 0 \\
(x+5)(x-3) & \leqslant 0
\end{aligned}
$$

f)

$$
\begin{aligned}
\frac{\sin x}{\cos x}+\frac{\cos x}{\sin x} & =\operatorname{cosec} x \sec x \\
C H S & =\frac{\sin x}{\cos x}+\frac{\cos x}{\sin x} \\
& =\frac{\sin x+\sin x}{\sin x \cos x}+\frac{\cos x+\cos x}{\sin x \cos x} \\
& =\frac{\sin ^{2} x+\cos ^{2} x}{\sin x \cos x} \\
& =\frac{1}{\sin x \cos x} \\
& =\frac{1}{\sin x \times \frac{1}{\cos x}} \\
& =\operatorname{cosec} x \sec x \\
& =R H \operatorname{SH}
\end{aligned}
$$

II) $\quad \lambda_{1}: y=2 x+4 \quad$ concurrent \rightarrow all inter soot at $\Lambda_{2}:-(y=x+14)$ same paint

$$
\begin{aligned}
& 0=x-10 \\
& x=10
\end{aligned}
$$

when $x=10, \quad \lambda_{1}: \quad y=2+10+4$

$$
y=24
$$

\checkmark both x and

$$
\begin{aligned}
x=1, y=24 & \text { in } \lambda_{3}: y=3 x-6 \\
L H S & =3 x-6 \quad \text { RH }=y \\
& =3+10-6 \\
& =30-6 \\
& =24
\end{aligned}
$$

$\angle H S=$ RHS so $\lambda_{1}, \lambda_{2}, \lambda_{3}$ concurrent

Question 12
a) $x=\frac{1+4 x}{x}$

$$
\begin{aligned}
x^{2} & =1+4 x \\
x^{2}-4 x-1 & =0 \\
(x-2)^{2}-4-1 & =0 \\
(x-2)^{2}-5 & =0 \\
x-2 & =\sqrt{5} \quad \text { or } \quad x-2=-\sqrt{5} \\
x & =2+\sqrt{5} \quad x=2-\sqrt{5} \quad \text { both }
\end{aligned}
$$

12b) $\frac{2}{\sqrt{3}-\sqrt{2}}=m(\sqrt{2}+\sqrt{3})$

$$
\begin{aligned}
& \frac{2}{(\sqrt{3}-\sqrt{2})(\sqrt{2}+\sqrt{3})}=m \\
& m=\frac{2}{3-2} \\
& m=\frac{2}{1} \\
& m=2
\end{aligned}
$$

$$
\begin{aligned}
& \frac{2}{\sqrt{3}-\sqrt{2}}+\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}+\sqrt{2}} \\
= & \frac{2 \sqrt{3}+\sqrt{2}}{3-2} \\
= & 2(\sqrt{2}+\sqrt{3})
\end{aligned}
$$

so $m=2$ by inspection
ci)

$$
\begin{aligned}
&|x-2|<22 \\
& x-2<22 \\
& x<24-(x-2)
\end{aligned}
$$

$$
\text { so }-20<x<24
$$

17)

di)

$$
\begin{aligned}
x^{3}-7 x^{2}+10 x & =x\left(x^{2}-7 x+10\right) \\
& =x(x-2)(x-5)
\end{aligned}
$$

(i)

$$
0=x(x-2)(x-5)
$$

$x=0$ or $x-2=0$ or $x-5=0$
$x=0$ or $x=2$ or $x=5$ all 3

12 diii) when $x=\ln , y=400$ so (not)

Question 13
a)

$$
\begin{aligned}
\frac{6 x-30}{3 x^{2}-75} \div \frac{1}{4 x+20} & =\frac{6(x-5)}{3\left(x^{2}-25\right)} \times \frac{4 x+20}{1} \\
& =\frac{6(x-5)}{3(x+5)(x-5)}+\frac{4(x+5)}{1} \\
& =\frac{6+4}{3+1} \\
& =\frac{24}{3} \\
& =8
\end{aligned}
$$

bi)

$\sqrt{ }$ shape
$\sqrt{ }$ intercepts
ii) values on x-axis, so

Domain: all real values of x, where $-3 \leqslant x \leqslant 3$
iii) values on y-axis, so

Range: all real values of y, where $0 \leqslant y \leqslant 3$,
$13 c)$

Use sine rule

$$
\begin{aligned}
\frac{\sin \theta}{4 \sqrt{2}} & =\frac{\sin 30}{4} \\
\sin \theta & =\frac{4 \sqrt{2} \sin 30}{4} \\
\sin \theta & =\frac{4 \sqrt{2} \times \frac{1}{2}}{4} \\
& =\frac{2 \sqrt{2}}{4} \\
\sin \theta & =\frac{\sqrt{2}}{2}
\end{aligned}
$$

$$
\begin{aligned}
\text { related ate } \theta & =\sin ^{-1}\left(\frac{\sqrt{1}}{2}\right) \\
& =45^{\circ}
\end{aligned}
$$

$$
\text { so } \theta=45^{\circ} \text { or } 135^{\circ}
$$

d)

$$
\begin{aligned}
M & =\left(\frac{2+8}{2}, \frac{10+0}{2}\right) \\
& =(5,5)^{2}
\end{aligned}
$$

gradient

$$
\begin{aligned}
m & =\frac{10-0}{2-8} \\
& =-\frac{10}{6} \\
& =-\frac{5}{3}
\end{aligned}
$$

perrendicaler yradiat $=\frac{3}{5}$

$$
\begin{aligned}
y-5 & =\frac{3}{5}(x-5) \\
y-5 & =\frac{3}{5} x-3 \\
y & =\frac{3}{5} x+2
\end{aligned}
$$

Question 14
a)

$$
\begin{aligned}
f(x) & =x\left(x^{2}-4\right) \\
\delta^{(-x)} & =-x\left((-x)^{2}-4\right) \\
& =-x\left(x^{2}-4\right) \\
& =-8(x) \quad \text { so ODD }
\end{aligned}
$$

bi)

\checkmark shape and intercept
${ }^{-}$)

$$
y=-2^{x}+2
$$

first respect in x-attis

than shift up by 2:

$\sqrt{ }$ shape
$\checkmark x$-intricept
(i)

$\sqrt{ }$ both shape

14cii)

$$
\begin{aligned}
& 2|x+2|=x+5 \\
& 2(x+2)=x+5 \\
& -2(x+2)=x+5 \\
& 2 x+4=x+5 \\
& -2 x-4=x+5 \\
& x=1 \\
& y=6 \\
& -9=3 x \\
& x=-3 \\
& y=2
\end{aligned}
$$

$(1,6)$ and $(-3,2)$
iii) where $y=2|x+2|$ is below $y=x+5$

$$
-3<x<1
$$

d)

$$
\begin{aligned}
\operatorname{cosec} x-\sin x & =\cot x \cos x \\
\text { LIt } s & =\cos x-\sin x \\
& =\frac{1}{\sin x}-\frac{1}{\sin x} \\
& =\frac{1}{\sin x}-\frac{1-\sin ^{2} x}{\sin x} \\
& =\frac{\cos ^{2} x}{\sin x} \\
& =\frac{\cos x}{\sin x} x \cos x \\
& =\cot x \cos x
\end{aligned}
$$

e)

$$
\begin{aligned}
p^{2} & =\left(\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{55}}\right)^{2} \\
& =\frac{1}{3}+\frac{1}{5}+\frac{2}{\sqrt{15}} \\
& =\frac{8}{15}+\frac{2}{\sqrt{15}} \\
& =\frac{8}{15}+\frac{2 \sqrt{15}}{15} \\
& =\frac{8+2 \sqrt{15}}{15} \\
\sqrt{15} & =a p^{2}+b
\end{aligned}
$$

14 e continued...)

$$
\text { so } \sqrt{15}=a p^{2}+b=\frac{8 a}{15}+\frac{2 \sqrt{15} a}{15}+b
$$

compare irrational numbers: $\quad \sqrt{15}=\frac{2 \sqrt{15}}{15} \times d$

$$
a=\frac{15}{2}
$$

compare rational numbers: $\quad b+\frac{80}{15}=0$

$$
\begin{aligned}
b+4 & =0 \\
b & =-4
\end{aligned}
$$

so $a=\frac{15}{2}$ and $b=-4$.

