MASTER

## SYDNEY GRAMMAR SCHOOL



2017 Half-Yearly Examination

# FORM V

# **MATHEMATICS 2 UNIT**

Tuesday 16th May 2017

# **General Instructions**

- Writing time 1 hour 30 minutes
- Write using black pen.
- Board-approved calculators and templates may be used.

# Total – 80 Marks

• All questions may be attempted.

## Section I – 8 Marks

- Questions 1-8 are of equal value.
- Record your answers to the multiple choice on the sheet provided.

## Section II – 72 Marks

- Questions 9–14 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

| 5A: | $\operatorname{RCF}$ | 5B: | SO  |
|-----|----------------------|-----|-----|
| 5E: | LYL                  | 5F: | LJF |
| 5P: | BDD                  | 5Q: | LL  |

# Checklist

- SGS booklets 6 per boy
- Multiple choice answer sheet
- Candidature 190 boys

# Collection

- Write your name, class and Master on each answer booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Write your name, class and Master on this question paper and hand it in with your answers.
- Place everything inside the answer booklet for Question Nine.

| 5C: | BR  | 5D: | $\operatorname{REJ}$ |
|-----|-----|-----|----------------------|
| 5G: | SDP | 5H: | CMDB                 |
| 5R: | TCW |     |                      |

Examiner SDP

# **SECTION I - Multiple Choice**

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

#### **QUESTION ONE**

The expression  $\frac{x}{2} + \frac{x}{3}$  simplifies to which of the following?

(A) 
$$\frac{2x}{5}$$
  
(B)  $\frac{x^2}{6}$   
(C)  $\frac{5x}{6}$   
(D)  $\frac{2x}{6}$ 

# **QUESTION TWO**

Which of the following is NOT equal to  $\sqrt{24}$ ?

- (A)  $2\sqrt{6}$
- (B)  $\sqrt{12} \times \sqrt{2}$
- (C)  $\frac{1}{2}\sqrt{48}$
- (D)  $2\sqrt{3} \times \sqrt{2}$

#### **QUESTION THREE**

What is the natural domain of the function  $f(x) = \frac{1}{x+5}$ ?

- (A) all real values of x, where  $x \neq 5$
- (B) all real values of x, where  $x \neq -5$
- (C) all real values of x, where x < 5
- (D) all real values of x, where x > 5

Examination continues next page ...

# **QUESTION FOUR**



The above diagram shows the graph of y = (x - 3)(x + 2).

Which of the following is the correct solution to the inequation (x-3)(x+2) < 0?

(A) x > 3 or x < -2(B) x > 2 or x < -3(C) -2 < x < 3(D) -3 < x < 2

# **QUESTION FIVE**

Which of the following is the exact value of  $\csc(-60^{\circ})$ ?

(A) 
$$-\frac{2\sqrt{3}}{3}$$
  
(B)  $\frac{2\sqrt{3}}{3}$   
(C) 2  
(D)  $-2$ 

# QUESTION SIX

What is the perpendicular distance between the point (3,5) and the line 3x - y + 2 = 0?

(A) 
$$\frac{8\sqrt{34}}{17}$$
  
(B)  $\frac{3\sqrt{34}}{17}$   
(C)  $\frac{8\sqrt{10}}{5}$   
(D)  $\frac{3\sqrt{10}}{5}$ 

# **QUESTION SEVEN**

Which of the following is the correct factorisation of  $54x^3 + 2y^3$ ?

- (A)  $2(3x y)(9x^2 + 3xy + y^2)$
- (B)  $2(3x+y)(9x^2-3xy+y^2)$
- (C) 2(3x y)(3x + 3xy + y)
- (D) 2(3x+y)(3x-3xy+y)

# **QUESTION EIGHT**

Which of the following is the correct value of a?



End of Section I

Examination continues next page ...

# **SECTION II - Written Response**

Answers for this section should be recorded in the booklets provided.

Show all necessary working.

Start a new booklet for each question.

**QUESTION NINE** (12 marks) Use a separate writing booklet.

- (a) Evaluate  $|2| |-3 \times 4|$ .
- (b) Factorise fully:

(i) 
$$x^2 + 3x - 10$$

(ii) 
$$9x^2 - 16$$

- (c) Express  $\frac{12}{3-\sqrt{6}}$  as a fraction with a rational denominator.
- (d) Find the *x*-intercept of the line y = 3x 6.

(e) Find the acute angle 
$$\theta$$
, given that  $\cos \theta = \frac{\sqrt{3}}{2}$ 

- (f) Expand and simplify  $(x-3)(x^2+3x+9)$ .
- (g) (i) Find the midpoint M of the interval joining the point (4, 2) and the origin.
  (ii) Hence find the equation of the line through the point M with gradient 3.
- (h)



Find the value of  $\theta$  in the diagram above, correct to the nearest degree.

 $\mathbf{2}$ 

Marks

1

Examination continues overleaf ...

QUESTION TEN (12 marks) Use a separate writing booklet.

(a) Find 
$$f(2)$$
 when  $f(x) = \frac{2}{\sqrt{x^2 + 12}}$ .

(b) (i) Write down the domain of 
$$y = \log_2 x$$
.  
(ii) Write down the range of  $y = \log_2 x$ .

(c) Solve the following:

(i) 
$$3 \le 2x + 1 \le 7$$

- (ii) |x 2| = 10
- (d) Find the equation of the line which is parallel to y = 2x 5 and passes through the point (1,5). Give your answer in general form.
- (e) (i) Complete the square for  $f(x) = x^2 + 10x + 17$ . (ii) Hence solve f(x) = 0. Leave your answers in exact form.

(f) Solve 
$$\cos x = \frac{1}{2}$$
 for  $0^{\circ} \le x \le 360^{\circ}$ .

#### **QUESTION ELEVEN** (12 marks) Use a separate writing booklet.

| (a) | Describe the transformation of the circle $x^2 + y^2 = 16$ to the circle |
|-----|--------------------------------------------------------------------------|
|     | $(x+3)^2 + (y-2)^2 = 16.$                                                |

(b) Simplify  $\sqrt{8} + \sqrt{25} + \sqrt{50}$ .

(c) Simplify 
$$\frac{x^2 + 5x + 6}{2x + 4}$$
.

(d) Find the coordinates of the vertex of  $y = x^2 - 4x - 32$ .

(e) Solve 
$$-x^2 - 2x + 15 \ge 0$$
.

(f) Prove 
$$\frac{\sin x}{\cos x} + \frac{\cos x}{\sin x} = \csc x \sec x.$$

(g) Determine whether or not the following lines are concurrent:

$$l_1: y = 2x + 4$$
  $l_2: y = x + 14$   $l_3: y = 3x - 6$ 

Clearly show your working.

## Examination continues next page ...

Marks

|   | <b>2</b> |   |
|---|----------|---|
| Г | 2        | 1 |

1



 $\mathbf{2}$ 

Marks

1

1

 $\mathbf{2}$ 

 $\mathbf{2}$ 

 $\mathbf{2}$ 

 $\mathbf{2}$ 

**QUESTION TWELVE** (12 marks) Use a separate writing booklet.

(a) Solve  $x = \frac{1+4x}{x}$ . Leave your answer in exact form.

(b) Find the value of m such that 
$$\frac{2}{\sqrt{3}-\sqrt{2}} = m(\sqrt{2}+\sqrt{3}).$$

- (c) (i) Solve |x-2| < 22.
  - (ii) Show your solution on a number line.
- (d) (i) Fully factorise  $x^3 7x^2 + 10x$ .
  - (ii) Hence solve  $x^3 7x^2 + 10x = 0$ .
  - (iii) Sketch the curve  $y = x^3 7x^2 + 10x$ , showing any intercepts with the axes.

| QUESTION THIRTEEN | (12  marks) | Use a separate writing booklet. |
|-------------------|-------------|---------------------------------|
|-------------------|-------------|---------------------------------|

(a) Simplify 
$$\frac{6x - 30}{3x^2 - 75} \div \frac{1}{4x + 20}$$
.

- (b) (i) Sketch  $y = \sqrt{9 x^2}$ , showing any intercepts with the axes.
  - (ii) Write down the domain of this function.
  - (iii) Write down the range of this function.
- (c) In  $\triangle ABC$ ,  $\angle BAC = 30^{\circ}$ ,  $\angle BCA = \theta$ , length  $AB = 4\sqrt{2}$  cm and length BC = 4 cm. Find the two possible values of  $\theta$ .
- (d) Find the equation of the perpendicular bisector of the line joining the points (2, 10) and (8, 0). Give your answer in gradient-intercept form.

Marks

 $\mathbf{2}$ 

Marks

 $\mathbf{2}$ 

1

1

3

| <b>QUESTION FOURTEEN</b> (12 marks) Use a separate writing booklet.                                                                                                                                                                     | vlarks      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| (a) Determine whether $f(x) = x(x^2 - 4)$ is odd, even or neither.                                                                                                                                                                      | 1           |
| <ul> <li>(b) (i) Sketch y = 2<sup>x</sup>, showing any intercepts with the axes and any asymptotes.</li> <li>(ii) Hence sketch y = -2<sup>x</sup> + 2 and find the x-intercept.</li> </ul>                                              | 1           |
| <ul> <li>(c) (i) Accurately sketch y = 2 x + 2  and y = x + 5 on the same set of axes.</li> <li>(ii) Write down the coordinates of any points of intersection.</li> <li>(iii) Hence or otherwise, solve 2 x + 2  &lt; x + 5.</li> </ul> | 1<br>1<br>1 |
| (d) Prove $\csc x - \sin x = \cot x \cos x$ .                                                                                                                                                                                           | 2           |
| (e) If $\sqrt{15} = ap^2 + b$ and $p = \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{5}}$ , find the values of a and b, where a and b are rational numbers.                                                                                       | 3           |

End of Section II

\_

# END OF EXAMINATION

NAME: .....

# SYDNEY GRAMMAR SCHOOL



2017 Half-Yearly Examination FORM V MATHEMATICS 2 UNIT Tuesday 16th May 2017

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

| Question One   |       |      |      |  |
|----------------|-------|------|------|--|
| A 🔿            | В ()  | С () | D () |  |
| Question 7     | Γwo   |      |      |  |
| A ()           | В ()  | С () | D () |  |
| Question 7     | Three |      |      |  |
| A ()           | В ()  | С () | D () |  |
| Question 1     | Four  |      |      |  |
| A ()           | В ()  | С () | D () |  |
| Question 1     | Five  |      |      |  |
| A 🔿            | В ()  | С () | D () |  |
| Question Six   |       |      |      |  |
| A ()           | В ()  | С () | D () |  |
| Question Seven |       |      |      |  |
| A 🔿            | В ()  | С () | D () |  |
| Question Eight |       |      |      |  |
| А ()           | В ()  | С () | D () |  |

Solution's Form V 2 Unit Hulz- Yearly 2017 Multiple Choice 1)  $\frac{x}{4} + \frac{x}{3} = \frac{3x}{4} + \frac{3x}{4}$ = 5× 2) A > 250 = J4 + 50 = J2+ ~ B -> JIX + J2 = J2+1 ~  $C \rightarrow \frac{1}{2} \sqrt{48} = \sqrt{\frac{1}{4}} \times \sqrt{48}$  $= \sqrt{12} \times$ D> 253 + 5= 54 + 57 + 57 = Jay! 3) Denominator cannot equal 0. So x+570 x # - 5 B 4) (3x-3)(x+2)<0as less than zero, solutions lie under x-axis

so -2< x<3

7) 
$$54x^{3} + 2y^{3} = 2(27x^{3} + y^{3})$$
  
 $= 2((3x)^{3} + y^{3})$   
 $= 2((3x)^{3} + y^{3})$   
 $= 2((3x + y)((3x)^{2} - (5x))(y) + y^{3})$   
 $= 2((3x + y)((yx^{3} - 3xy + y^{3}))$   
8)  $\cos(ine) = 10e$   
 $a^{2} = b^{2} + c^{2} - 2bc\cos A$   
 $a^{2} = (J^{3})^{2} + y^{2} - 2x(J^{3}) + y + \cos 30$   
 $= 19 - 8J^{3} + y^{3}$   
 $= 19 - 12$   
 $a^{2} = 7$   
so  $a = J^{-1}$   
 $a^{2} = 7$   
So  $a = J^{-1}$   
 $a^{2} = 7$   
 $a^{3} = -12$   
 $= -10$   
 $b_{i} = x^{2} + 3x - 10 = (x + 5)(x - 2)$ 

1)  $p_{3x}^2 - 16 = (3x + 4)(3x - 4)$ c)  $\frac{12}{3-\sqrt{61}} \times \frac{3+\sqrt{61}}{3+\sqrt{61}} = \frac{36+12\sqrt{61}}{9-6}$  $= \frac{36 + 12 \sqrt{51}}{3}$ = 12+ 4067

9d) x-intercept when y=0  $50 \quad 0 = 3x - 6$ 3>= 6 x=2 / allow (2,0) e)  $\cos \Theta = \frac{\sqrt{3}}{2}$ related ayle cost (1) = 30° 5 A 300 + positive and acute angle so 0=30° (x-3)(x<sup>2</sup>+3x+8) = x<sup>3</sup>-27 V (4,2) and (9,0)  $M = \left(\frac{4+0}{2}, \frac{2+0}{2}\right)$ M= (2,1) V 15-)  $y-y_1 = m(x-x_1)$  $4 - 1 = 3(x - \lambda)$ 13-1 = 32 -6 y = 3x-5 / allow 3x-y-5=0 use sin rule  $\frac{sin \sigma}{7} = \frac{sin 70}{12}$  Var similar Y) SIA Q = Frinto  $Q = \sin^{-1}\left(\frac{7\sin^{2}\theta}{1a}\right)$ Q = 33° (norst date) 1

Question 10

(17)

a)  $f(x) = \frac{2}{\sqrt{2^{2} + 12^{1}}}$  $= \frac{2}{\sqrt{4 + 12^{1}}}$  $= \frac{2}{\sqrt{16^{1}}}$  $= \frac{2}{4}$  $= \frac{1}{4}$ 

bi) cannot put negatives into a log

so all real values of x, where x>0 17) can get any value out of logs

so all real values og y

ci)  $3 \le 3x + 1 \le 7$  $2 \le 3x \le 6$  $1 \le x \le 3$ 

|x-a| = 10 x = -x = -10 x = -x = -10 x = -8

10d) parallel so gradiant = 2

$$4 - 5 = 2(x - 1)$$
  
 $4 - 5 = 2x - 2$   
 $4 = 2x + 3$   
 $2x - 4 + 3 = 0$ 

e ; )

 $\begin{aligned} \xi(x) &= x^{2} + 10x + 17 \\ &= (x + 5)^{2} - 25 + 17 \\ &= (x + 5)^{2} - 8 \end{aligned}$ 

(i)  
(i)  

$$0 = (x+s)^{2} - 8$$
  
 $8 = (x+s)^{2}$   
 $x+5 = \sqrt{8}$  or  $x+5 = -\sqrt{8}^{7}$   
 $x+5 = \sqrt{8}$  or  $x+5 = -\sqrt{8}^{7}$ 

allow x =- 5 = 5 = 5

(os 
$$x = \frac{1}{2}$$
  
related agle  $x = \cos^{-1}(\frac{1}{2})$   
 $= 60^{\circ}$   
 $\int \frac{1}{60^{\circ}} \frac{1}{4}$   
 $+ \int \frac{1}{300^{\circ}} \frac{1}{2}$   
So  $x = 60^{\circ}$  or  $300^{\circ}$ 

| Question                                                                              |
|---------------------------------------------------------------------------------------|
|                                                                                       |
| a) Shift 1.+ 3                                                                        |
| Shirt was 2 V both                                                                    |
| чр ч                                                                                  |
| b) $\sqrt{8} + \sqrt{25} + \sqrt{50} = 2\sqrt{2} + 5 + 5\sqrt{2}$                     |
| = 5+7/2                                                                               |
| ad 15++6 (11) (12) (astronia top                                                      |
| c) $\frac{3(x+3)(x+3)}{2x+4} = \frac{(x+3)(x+3)}{2(x+3)} = \frac{(x+3)(x+3)}{2(x+3)}$ |
| ~+3                                                                                   |
| $=$ $\frac{1}{3}$ $\vee$                                                              |
|                                                                                       |
| $d \qquad y = x^2 - 4y - 3\lambda$                                                    |
|                                                                                       |
| vertex >= - ad                                                                        |
| (-+)                                                                                  |
| 2 = - 2+1                                                                             |
| 2 - 4                                                                                 |
|                                                                                       |
|                                                                                       |
| when $x=2$ $x=2^{2}-4x^{2}-32$                                                        |
| 4-4-8-32                                                                              |
| 4 = - 36 V                                                                            |
|                                                                                       |
| vortex (2, -36)                                                                       |
|                                                                                       |
|                                                                                       |
|                                                                                       |
|                                                                                       |
|                                                                                       |
|                                                                                       |
|                                                                                       |

a)

 $-x^2 - 2x + 15 \ge 0$ x 2+ 2x -15 \$ 0 (×+5)(×-3) & O



-5 < x < 3

f)

11e)

| $\frac{\sin x}{\cos x} + \frac{\cos x}{\sin x}$ | 5 Cosec or sec or                                          |                                |
|-------------------------------------------------|------------------------------------------------------------|--------------------------------|
| LHS =                                           | $\frac{51\lambda 3r}{\cos x} + \frac{\cos x}{s \lambda x}$ |                                |
| -                                               | SIAX X SIAX +                                              | cos x x (os )e<br>s (à x cos x |
| =                                               | $\frac{\sin^2 x + \cos^2 x}{\sin x \cos x}$                | V                              |
|                                                 | sit x ces x                                                |                                |
| 0                                               | SINCE COSX                                                 |                                |
| -                                               | Cosec x sec x                                              |                                |

R# S

| 11g) li y= 2x+4 concurrent = all intersect at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\Lambda_2:-(\gamma=x+14)$ same point $X$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Q = 2e = 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2c = 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $l_{m} = 10, l_{1} = y = 2 + 10 + 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 12=24 V both x and y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| x = 10, y = 24 in $13: y = 3x - 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| LHS = 3x - 6 $RHS = y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| = 3 + 10 - 6 = 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| = 30-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| = 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| LHS=RHS SO Li, by by concurrent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Question 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| a) $2c = \frac{1+4y}{2c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $x^{2} = 1 + 4_{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $x^{2} = 1 + 4x$<br>$x^{2} - 4x - 1 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $x^{2} = 1 + 4x$<br>$x^{2} - 4x - 1 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $x^{2} = 1 + 4x$ $x^{2} - 4x - 1 = 0$ $(x - 3)^{2} - 4 - 1 = 0$ $(2 - 3)^{2} - 5 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $x^{2} = 1 + 4x$ $x^{2} - 4x - 1 = 0$ $(x - x)^{2} - 4 - 1 = 0$ $(x - x)^{2} - 5 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $x^{2} = 1 + 4x$ $x^{2} - 4x - 1 = 0$ $(x - x)^{2} - 4 - 1 = 0$ $(x - x)^{2} - 5 = 0$ $x - \lambda = \sqrt{5}^{1}  \text{or}  x - 2 = -\sqrt{5}^{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $x^{2} = 1 + 4x$ $x^{2} - 4x - 1 = 0$ $(x - a)^{2} - 4 - 1 = 0$ $(x - a)^{2} - 5 = 0$ $x - a = \sqrt{5}$ or $x - 2 = -\sqrt{5}$ $x = 2 + \sqrt{5}$ both                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $x^{2} = 1 + 4x$ $x^{2} - 4x - 1 = 0$ $(x - 2)^{2} - 4 - 1 = 0$ $(x - 2)^{2} - 4 - 1 = 0$ $(x - 2)^{2} - 5 = 0$ $x - 2 = \sqrt{5}^{2}$ or $x - 2 = \sqrt{5}^{2}$ $x = 2 + \sqrt{5}^{2}$ $x = 2 - \sqrt{5}^{2}$ $y = both$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $x^{2} = 1 + 4x$ $x^{2} - 4x - 1 = 0$ $(x - 2)^{2} - 4 - 1 = 0$ $(x - 2)^{2} - 4 - 1 = 0$ $(x - 2)^{2} - 5 = 0$ $x - 2 = \sqrt{5}^{1}  \text{or}  x - 2 = -\sqrt{5}^{1}$ $x = 2 + \sqrt{5}^{1} \qquad x = 2 - \sqrt{5}^{1} \qquad both$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $x^{2} = 1 + 4x$ $x^{2} - 4x - 1 = 0$ $(x - 2)^{2} - 4 - 1 = 0$ $(x - 2)^{2} - 4 - 1 = 0$ $(x - 2)^{2} - 5 = 0$ $x - 2 = \sqrt{5}^{1}$ or $x - 2 = \sqrt{5}^{1}$ $x = 2 + \sqrt{5}^{1}$ $x = 2 - \sqrt{5}^{1}$ $y = 2 - \sqrt{5}^{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $x^{2} = 1 + 4x$ $x^{2} - 4x - 1 = 0$ $(x - 3)^{2} - 4 - 1 = 0$ $(x - 3)^{2} - 5 = 0$ $x - 3 = \sqrt{5}$ or $x - 2 = -\sqrt{5}$ $x = 2 + \sqrt{5}$ $x = 2 - \sqrt{5}$ $V = both$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $x^{2} = 1 + 4x$ $x^{2} - 4x - 1 = 0$ $(x - x)^{2} - 4 - 1 = 0$ $(x - x)^{2} - 5 = 0$ $x - \lambda = \sqrt{5}^{2}  \text{or}  x - \lambda = -\sqrt{5}^{2}$ $x = 2 + \sqrt{5}^{2}  x = 2 - \sqrt{5}^{2}  \sqrt{b} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2$ |

$$(12b) \quad \sqrt{3}, \sqrt{12} = m(\sqrt{3}, \sqrt{3})$$

$$(\sqrt{3}, \sqrt{2}, \sqrt{12}) = m \qquad (\sqrt{3}, \sqrt{3}) + \sqrt{3}$$

$$(\sqrt{3}, \sqrt{3}, \sqrt{3}) + \sqrt{3}$$

$$m = \frac{3}{3} = \frac{3}{2}$$

$$m = \frac{3}{1} = \frac{3}{2} (\sqrt{3}, \sqrt{3}) + \sqrt{3}$$

$$m = \frac{3}{1} = \frac{3}{2} (\sqrt{3}, \sqrt{3}) + \sqrt{3}$$

$$m = \frac{3}{1} = \frac{3}{2} (\sqrt{3}, \sqrt{3}) + \sqrt{3}$$

$$m = \frac{3}{1} = \frac{3}{2} (\sqrt{3}, \sqrt{3}) + \sqrt{3}$$

$$m = \frac{3}{1} = \frac{3}{2} (\sqrt{3}, \sqrt{3}) + \sqrt{3}$$

$$m = \frac{3}{1} = \frac{3}{2} (\sqrt{3}, \sqrt{3}) + \sqrt{3}$$

$$m = \frac{3}{1} = \frac{3}{2} (\sqrt{3}, \sqrt{3}) + \sqrt{3}$$

$$m = \frac{3}{1} = \frac{3}{2} (\sqrt{3}, \sqrt{3}) + \sqrt{3}$$

$$m = \frac{3}{1} = \frac{3}{2} (\sqrt{3}, \sqrt{3}) + \sqrt{3}$$

$$m = \frac{3}{1} = \frac{3}{2} (\sqrt{3}, \sqrt{3}) + \sqrt{3}$$

$$m = \frac{3}{1} = \frac{3}{2} (\sqrt{3}, \sqrt{3}) + \sqrt{3}$$

$$m = \frac{3}{1} = \frac{3}{2} (\sqrt{3}, \sqrt{3}) + \sqrt{3}$$

$$m = \frac{3}{1} = \frac{3}{2} (\sqrt{3}, \sqrt{3}) + \sqrt{3}$$

$$m = \frac{3}{1} = \frac{3}{2} (\sqrt{3}, \sqrt{3}) + \sqrt{3}$$

$$m = \frac{3}{1} = \frac{3}{2} (\sqrt{3}, \sqrt{3}) + \sqrt{3}$$

$$m = \frac{3}{1} = \frac{3}{2} (\sqrt{3}, \sqrt{3}) + \sqrt{3}$$

$$m = \frac{3}{1} = \frac{3}{2} (\sqrt{3}, \sqrt{3}) + \sqrt{3}$$

$$m = \frac{3}{1} = \frac{3}{2} (\sqrt{3}, \sqrt{3}) + \sqrt{3}$$

$$m = \frac{3}{1} = \frac{3}{2} (\sqrt{3}, \sqrt{3}) + \sqrt{3}$$

$$m = \frac{3}{1} = \frac{3}{2} (\sqrt{3}, \sqrt{3}) + \sqrt{3}$$

$$m = \frac{3}{1} = \frac{3}{2} (\sqrt{3}, \sqrt{3}) + \sqrt{3}$$

$$m = \frac{3}{1} = \frac{3}{2} (\sqrt{3}, \sqrt{3}) + \sqrt{3}$$

$$m = \frac{3}{1} = \frac{3}{2} (\sqrt{3}, \sqrt{3}) + \sqrt{3}$$

$$m = \frac{3}{2$$





Question 14



| 14.000) | $\lambda  x+\lambda  = \lambda$                                                                                                                                                                                  | c+ 5                                                                                                                                            |              |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|         | $\lambda(x+\lambda)=x+5$                                                                                                                                                                                         | - 2(x+)                                                                                                                                         | ) = x + 5    |
|         | 2x++=x+5                                                                                                                                                                                                         | -2x-                                                                                                                                            | 4 = x + 5    |
|         | x = 1                                                                                                                                                                                                            | -                                                                                                                                               | 9 = 3x       |
|         | 4=6                                                                                                                                                                                                              |                                                                                                                                                 | x = - 3      |
|         |                                                                                                                                                                                                                  |                                                                                                                                                 | y = 2        |
|         |                                                                                                                                                                                                                  |                                                                                                                                                 | •            |
|         | (1,6) and                                                                                                                                                                                                        | (-3,2)                                                                                                                                          |              |
| in)     | where 13=212+21                                                                                                                                                                                                  | is helow                                                                                                                                        | y=x+5        |
|         | -3 < >< <                                                                                                                                                                                                        |                                                                                                                                                 |              |
| 4)      | cosec x -sin x - cot                                                                                                                                                                                             | x (05)2                                                                                                                                         |              |
|         | LHS = cosm                                                                                                                                                                                                       | x - s h x                                                                                                                                       |              |
|         | $= \frac{1}{\frac{1}{5/x}}$                                                                                                                                                                                      | $\frac{si\lambda x}{x} = \frac{si\lambda x}{si\lambda x}$ $\frac{1}{x} = \frac{si\lambda x}{si\lambda x}$ $\frac{1 - si\lambda x}{si\lambda x}$ | $\checkmark$ |
|         | = <u>co</u>                                                                                                                                                                                                      | COSZOC<br>SIAX<br>JAC X COSOC                                                                                                                   |              |
|         | = c                                                                                                                                                                                                              | other cos or                                                                                                                                    |              |
| e )     | $P^{\lambda} = \left(\frac{1}{\sqrt{y}} + \frac{1}{\sqrt{y}}\right)^{\lambda}$ $= \frac{1}{3} + \frac{1}{5} + \frac{1}{\sqrt{15}}$ $= \frac{8}{15} + \frac{1}{\sqrt{15}}$ $= \frac{8}{15} + \frac{1}{\sqrt{15}}$ | -                                                                                                                                               |              |
|         | = 8+20157                                                                                                                                                                                                        |                                                                                                                                                 |              |
|         | J15' = ap2+b                                                                                                                                                                                                     |                                                                                                                                                 | ->           |

14 e continued...)

so  $\sqrt{15} = ap^2 + b = \frac{8a}{15} + \frac{2\sqrt{15}a}{15} + b$ compare irrational numbers: JIS = 2JIS + d  $a = \frac{15}{2}$ compate rational numbers: b+ 30 = 0 b+4= 0 6=-4 50 a= 15 and b=-4.