Gosford High School Mathematics Extension 1 Preliminary Course Half yearly Exam 2004.

Time: 2 hours plus 5 minutes reading time.

Section A. To be attempted by all students.

Question 1.

a) Solve for
$$x: 8^{3x-1} = 16^{x+1} \times 4^x$$
 (3)

b) Simplify
$$\frac{X^2Z}{Y^4}$$
 if $X = \left(\frac{2}{3}\right)^2$, $Y = \left(\frac{4}{3}\right)^4$ and $Z = \left(\frac{8}{3}\right)^7$ (3)

Give your answer as a fraction.

c) Simplify
$$\frac{2^n + 2^{n+3}}{2^n}$$
 (2)

d) Evaluate
$$\left(3^{\frac{1}{3}} - 2^{\frac{1}{3}}\right) \left(3^{\frac{2}{3}} + 3^{\frac{1}{3}} \cdot 2^{\frac{1}{3}} + 2^{\frac{2}{3}}\right)$$
 (2)

i)
$$x^2 + 6x + 9 - y^2$$

ii)
$$\sqrt{25x} + \sqrt{x^3}$$

f) Given that $x = \sqrt{2} + 1$ show that $x + \frac{1}{x} = 2\sqrt{2}$ and hence find the value of

$$x^2 + \frac{1}{x^2} \,. {3}$$

Question 2.

a) Solve for x

i)
$$\frac{3}{x-2} - \frac{2}{x+3} = \frac{1}{x^2 + x - 6}$$
 (2)

ii)
$$(x-3)(x+2) < 0$$
 (1)

iii)
$$0 \le x^2 - 7x + 12$$
 (2)

$$iv) \quad x^2 \le 5x \tag{2}$$

v)
$$\frac{2}{x+1} < 3$$
 (2)

vi)
$$0 < \frac{x^2 - 4}{r}$$
 (3)

vii)
$$(x-1)^2(x+1) \le 0$$
 (2)

b) On a separate number line graph the solutions to part (a) (ii), (iii) and (vii) (3)

Question 3.

Solve simultaneously
$$2x - y = 4$$

$$8x^3 - y^3 = 28$$
(4)

Question 4.

PQRS is a rectangle with PQ = 6cm and QR = 4cm. T and U lie on the lines SP and SR respectively, so that T, Q and U are collinear, as shown in the diagram. Let PT = xcm and RU = ycm.

- a) Show that triangles TPQ and QRU are similar. (3)
- b) Show that xy = 24 (1)
- c) Show that the area, A, of triangle TSU is given by: $A = 24 + 3x + \frac{48}{x}$ (3)

Question 5.

PQRS is a trapezium with PQ parallel to SR. A and B are the mid-points of SP and RQ respectively.

b) Prove that
$$AB = \frac{1}{2} (PQ + SR)$$
 (3)

SECTION B. To be attempted by 11m1, 11m2, 11m3 and 11m4 only.

Question 1.

If $f(x) = x^3 + 3x^2 - x - 3$ find

a)
$$f(-2)$$
 (1)

b) For what values of x does
$$f(x) = 0$$
? (2)

Question 2.

The function f(x) is defined by the rule

$$f(x) = 6 \qquad \text{for } x < 0$$

$$f(x) = 3x \qquad \text{for } 0 \le x \le 2$$

$$f(x) = x^2 \quad \text{for } 2 < x$$

a) Find
$$f(-1) + f(2) - f(3)$$
 (2)

b) Sketch
$$f(x)$$
 in the domain $-1 \le x \le 3$ (3)

Question 3.

State the largest possible domain and range for the following

$$a) y = \sqrt{9 - x}$$
 (2)

b)
$$y = \frac{3}{2x+1}$$
 (2)

c)
$$y = x^2 - 6x + 8$$
 (2)

d)
$$y = \frac{5}{x^2 - 1}$$
 (2)

e)
$$y = \frac{5}{x^2 + 1}$$
 (2)

f)
$$y^2 = 3 - x$$
 (2)

Question 4.

Do a neat accurate sketch of the following.

a)
$$\frac{x}{2} + \frac{y}{3} = 1$$
 (2)

b)
$$(x-1)^2 + (y+2)^2 = 4$$
 (2)

c)
$$y = \frac{1}{x-1}$$
 (2)

$$d) y = \frac{1}{|x|}$$
 (2)

e)
$$y < \sqrt{9 - x^2}$$
 (2)

f)
$$y = |x+1| + |x-1|$$
 (3)

g) The region for which $x^2 + y^2 \le 16$ and x < y hold simultaneously. (3)

Question 5.

A circle has equation $x^2 + y^2 - 4x + 2y = 0$

b) The line x + 2y = 0 meets the circle in two points A and B. Find the coordinates of A and B. (3)

Question 6.

Let $f(x) = \frac{x}{x^2 - 1}$

a) For what values of
$$x$$
 is $f(x)$ undefined? (1)

b) Show that
$$f(x)$$
 is an odd function. (2)

c) Sketch
$$y = f(x)$$
. (2)

Question 7.

a) Show that
$$\frac{x^2 - x + 1}{x - 1} = x + \frac{1}{x - 1}$$
 (2)

b) hence or otherwise graph
$$y = \frac{x^2 - x + 1}{x - 1}$$
 (3)

Section C. To be attempted by 11m5 only.

Question 1.

If $P(x) = 4x^3 - 5x^2 - x + 7$ and $Q(x) = x^4 - 2x^2 + 5$ find:

a)
$$P(x) - Q(x)$$
 (2)

c)
$$(x+2).P(x)$$
 (2)

d) The degree of
$$Q(x)$$
 (1)

e) The remainder when
$$P(x)$$
 is divided by $(x+1)$ (2)

f) Divide
$$Q(x)$$
 by $(x+2)$ and write your answer in the form $Q(x) = (x+2)R(x) + remainder$ (3)

Question 2.

Do a neat sketch of the following clearly showing all zeros.

a)
$$y = x(x+2)(x-1)$$
 (2)

b)
$$y = (x-1)(x+3)^3$$
 (2)

Question 3.

If
$$P(x) = x^3 + 4x^2 + x - 6$$

a) Show that
$$(x-1)$$
 is a factor of $P(x)$. (2)

b) Fully factorise
$$P(x)$$
. (3)

c) Do a neat sketch of
$$P(x)$$
. (2)

Question 4.

Fully factorise
$$2x^3 - 3x^2 + 1$$
 (4)

Question 5.

If α , β and γ are the roots of the polynomial equation $2x^3 - 14x - 1 = 0$ find:

a)
$$\alpha + \beta + \gamma$$
 (1)

b)
$$\alpha\beta + \alpha\gamma + \beta\gamma$$
 (1)

c)
$$\alpha\beta\gamma$$
 (1)

d)
$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$$
 (2)

e)
$$\alpha^2 + \beta^2 + \gamma^2$$
 (3)

Question 6.

Form a quadratic equation whose roots are $3 + \sqrt{2}$ and $3 - \sqrt{2}$ (2)

Question 7.

$$P(x) = x^3 + ax^2 + bx - 18$$
. Find the values of a and b if $(x+2)$ is a factor of $P(x)$ and -24 is the remainder when $P(x)$ is divided by $(x-1)$. (4)

Question 8.

Consider the equation $x^3 + 6x^2 - x - 30 = 0$. One of the roots of this equation is equal to the sum of the other two roots. Find the value of the three roots. (4)