| Student Name: | *************************************** | |---------------|---| |---------------|---| # **BAULKHAM HILLS HIGH SCHOOL** ## **Higher School Certificate** 2011 **Half-Yearly Examination** # Mathematics Extension 1 #### **General Instructions** - Exam time 1.5 hours and 5 mins reading time - Start each question on a new page - All necessary working should be shown, marks maybe deducted for careless or badly arranged work. - Write your student name at the top of each page of your answer booklet - Board approved calculators may be used - Write using black or blue pen Total Marks: 72 Attempt ALL questions Question 1 (9 marks) a) Solve the inequality $$x^2 - 5x < -6$$ b) Factorise $x^3 - 4x + 5x^2y - 20y$ c) If $\cos \theta = \frac{-3}{7}$ and $\sin \theta > 0$, find an exact value for $\cot \theta$ 2 d) Solve for $-90^\circ \le x \le 90^\circ$ to the nearest degree. 3 ### Question 2 (9 marks) - Start a new page $4\sin^2 x - 1 = 0$ - a) Express 4.015 as a rational number showing all working. - b) Factorise $8x^3 (x-1)^3$ - c) Solve $\frac{4}{x-3} \ge 1$ - d) A committee of 3 men and 5 women is to be formed from a group of 7 men and 8 women. Write an expression for the number of ways this can be done. #### Question 3 (9 marks) - Start a new page - a) How many nine-letter arrangements can be made using the letters of the word ISOSCELES? - b) Find the number of ways in which 3 girls and 4 boys can be seated in a row so that the girls are next to each other. - c) Find the greatest possible domain of (i) $x = 9 - y^2$ (ii) $$y = \frac{2\sqrt{x+3}}{x-7}$$ d) Prove the identity $\frac{\sin^3 x}{\cos x} + \sin x \cos x \equiv \tan x$ _ #### Question 4 (9 marks) - Start a new page Marks - a) Solve for $0^{\circ} \le x \le 360^{\circ}$ to the nearest degree. - (i) $\sin(x 10^\circ) = 6\cos(x 10^\circ)$ 2 (ii) $\sin(540^{\circ} - x)\cos x + \sin(90^{\circ} - x) = 0$ 3 b) Find θ to the nearest degree. 4 #### Question 5 (9 marks) - Start a new page a) Solve the simultaneous equations $$x + y = 2 \text{ and}$$ $$2x^2 + xy - y^2 = 8$$ 2 b) Determine if the following functions are odd, even or neither (Show all working) (i) $$f(x) = x^3 - \sin x$$ 2 (ii) $f(x) = (x^3 - 2x)^{\frac{2}{3}}$ 2 c) Solve for x $\sqrt{4x-4} + \sqrt[4]{x-1} = 3$ 3 ## Question 6 (9 marks) - Start a new page - a) Eight people are to be seated at a round table. - (i) How many seating arrangements are possible? 1 (ii) Two people, Shelley and Hong, refuse to sit next to each other. How many seating arrangements are then possible? 2 b) (i) On the same axes sketch the graphs of y = |x| and $y = 6 - x^2$, clearly labelling an points of intersection. 3 (ii) Hence solve $|x| \ge 6 - x^2$ 1 The circle $x^2 + y^2 = 64$ and the parabola $y = ax^2 - b$ (where a and b are both positive) meet on both the x and y axes. Find a and b 2 4 #### (9 marks) - Start a new page Question 7 Marks Draw a neat sketch of $$y = \frac{2x^2 - 50}{x - 5}$$ 3 - b) A four digit number is to be made from the digits 2, 3, 4, 5, 7 and 9. If no digit may be used more than once in the same number: - (i) how many four digit numbers can be made? 1 (ii) how many ways can an odd four digit number can be made? 2 (iii) how many four digit numbers less than 3400 be made? 3 Question 8 (9 marks) - Start a new page If $f(x) = 9^x$ and if f(x + 2) = kf(x), find k 2 b) It is given that 3AD + BD = 2AB 2 Show that: $$3\sin x - \cos x = 2$$ c) The new Baulkham Hills High School pole, CD of height h metres, near the office, stands with base C on horizontal ground. A is a point on the ground due west of C and B is a point on the ground 40 metres dues south of A. From A and B the angles of elevation to the top of the pole are 20° and 10° respectively. (i) Show that $AC = \cot 20^{\circ}$ and find a similar expression for BC 2 (ii) Show that $$h = \frac{40}{\sqrt{\cot^2 10^\circ - \cot^2 20^\circ}}$$ 2 1 (iii) Hence find the height of the pole to the nearest metre. | Que | stion 1 (9 marks) | Mk | Comments | |-----|---|----|--| | a) | $ \begin{array}{c cccc} x^2 - 5x + 6 < 0 \\ (x - 3)(x - 2) < 0 \\ 2 < x < 3 \end{array} $ | 2 | 1 Mark • Correctly factorised | | b) | $x^{2} - 4x + 5x^{2}y - 20y$ $= [x(x^{2} - 4) + 5y(x^{2} - 4)]$ $= (x^{2} - 4)(x + 5y)$ $= (x + 2)(x - 2)(x + 5y)$ | 2 | 1 MarkPartially factorises | | c) | in the 2 nd quadrant $\cot \theta = -\frac{7}{\sqrt{40}}.$ | 2 | 1 Mark Correctly identifies quadrant/sign Finds √40 | | d) | $\sin^2 x = \frac{1}{4}$ $\sin x = \pm \frac{1}{2}$ Acute $x = 30^\circ$ $x = \pm 30^\circ$ | 3 | 2 Mark Correct solution over another domain containing at least 2 answers 1 Mark Correct soln for sin x = 1/2 sin x = ±1/2 | | Qu | estion 2 (9 marks) - Start a new page | | | | a) | $10x = 40.\dot{1}\dot{5}$ $1000x = 4015.\dot{1}\dot{5}$ $990x = 3975$ $x = \frac{3975}{990} = \frac{265}{66} = 4\frac{1}{66}$ | 2 | 1 MarkUses a correct methodNot simplified | | b) | $8x^{3} - (x - 1)^{3}$ $= [2x - (x - 1)][4x^{2} + 2x(x - 1) + (x - 1)^{2}]$ $= [x + 1][7x^{2} - 4x + 1]$ | 2 | 1 Mark Correctly factorises a³ - b³ Simplifies the factorisation Finds one correct factor | | c) | $\frac{4}{x-3} \ge 1 x \ne 3$ $4(x-3) \ge (x-3)^2$ $0 \ge (x-3)^2 - 4(x-3)$ $(x-3)(x-3-4) \le 0$ $(x-3)(x-7) \le 0 \text{ but } x \ne 3$ $3 < x \le 7$ | 3 | 2 Marks Bald answer Identifies 2 critical points via a correct method Correct conclusion to their critical points obtained using a correct method 1 Mark Uses a correct method Acknowledges x ≠ 3 0 Mark Solves like an eqn with no consideration of the denominator | | d) | $^{7}C_{3} \times {}^{8}C_{5} = 1960$ | 2 | Unsimplified answer is ok 1 Mark • ⁷ C ₃ or ⁸ C ₅ involved in answer • Bald answer | | Que | estion 3 (9 marks) - Start a new page | | | |-----|--|---|---| | a) | $\frac{9!}{3! 2!} = 30240$ | 2 | 1 MarkCorrectly handles a multiple letter. | | b) | $5! \times 3! = 720$ | 2 | 1 Mark • Correctly arranges all the people (eg.5!) | | c) | (i) $x = 9 - y^2$ $\underline{Domain} : x \le 9$ | 1 | (i) | | | Find the greatest possible domain of (ii) $y = \frac{2\sqrt{x+3}}{x-7}$ $x \neq 7$ $x + 3 \geq 0$ Domain: $x \geq -3$ except $x \neq 7$ | 2 | (ii) 1 Mark
• $x \neq 7$
• $x \geq -3$ | | d) | $LHS = \frac{\sin^3 x}{\cos x} + \frac{\sin x \cos^2 x}{\cos x}$ $= \frac{\sin x (\sin^2 x + \cos^2 x)}{\cos x}$ $= \frac{\sin x}{\cos x}$ $= \tan x$ $= RHS$ | 2 | 1 Mark • Uses $\sim \sin^2 x + \cos^2 x = 1$ $\sim \frac{\sin x}{\cos x} = \tan x$ to simplify the expression • Expressed as a common factor | | Qu | estion 4 (9 marks) - Start a new page | | | | a) | (i) $\sin(x - 10^{\circ}) = 6\cos(x - 10^{\circ})$ for $0^{\circ} \le x \le 360^{\circ}$
$\tan(x - 10^{\circ}) = 6$
Acute $(x - 10^{\circ}) = 80^{\circ}32' = 81^{\circ}$
$x - 10^{\circ} = 81^{\circ}$ or 261°
$x = 91^{\circ}$ or 271° | 2 | (i) 1 Mark tan(x - 10°) = 6 Correctly finds one soln Finds the acute angle | | | (ii) $\sin(540^{\circ} - x)\cos x + \sin(90^{\circ} - x) = 0$
$for \ 0^{\circ} \le x \le 360^{\circ}$
$\sin(180^{\circ} - x)\cos x + \cos x = 0$
$\cos x(\sin x + 1) = 0$
$\cos x = 0 \ or \sin x = -1$
$x = 90^{\circ}, 270^{\circ}$ | 3 | (ii) 2 Mark Factorises to cos x(sin x + 1) = 0 Solves the eqn using a correct method 1 Mark Transforms sin(540° - x) or sin(90° - x) Bald answer | | b) | $c^{2} = 12^{2} + 7^{2} - 2 \times 7 \times 12 \times \cos 15^{\circ}$ $c = 5.54 \dots$ $\frac{\sin \theta}{12} = \frac{\sin 15^{\circ}}{5.54}$ $\sin \theta = 0.56$ $\theta = 34^{\circ} \text{ or } 146^{\circ} \text{ (nearest degree)}$ But θ is opposite the longest side $\therefore \theta \neq 34^{\circ}$ $ie. \theta = 146^{\circ}$ | 4 | 3 Mark θ = 34° 2 Mark Uses the correct method to find θ, but gets the wrong acute angle 1 Mark Finds the third side Considers θ is obtuse Uses Sine Rule correctly | _ | Que | estion 5 (9 marks) - Start a new page | | | |-----|---|---|--| | a) | x + y = 2 | 2 | 1 Mark Finds x or y Substitutes to find the second value correctly | | b) | | 2 | (i) 1 Mark • Attempts to find $f(-x)$ | | | (ii) $f(x) = (x^3 - 2x)^3 = \sqrt{(x^3 - 2x)^2}$
$f(-x) = \sqrt[3]{[(-x)^3 - 2(-x)]^2}$
$= \sqrt[3]{(-x^3 + 2x)^2}$
$= \sqrt[3]{(x^3 - 2x)^2}$
= f(x)
$\therefore f(x)$ is even | 2 | (ii) 1 Mark Attempts to find $f(-x)$ | | c) | $\sqrt{4x - 4} + \sqrt[4]{x - 1} = 3$ $2\sqrt{x - 1} + \sqrt[4]{x - 1} = 3$ $2(x - 1)^{\frac{1}{2}} + (x - 1)^{\frac{1}{4}} - 3 = 0$ $Let (x - 1)^{\frac{1}{4}} = a$ $2a^{2} + a - 3 = 0$ $(2a + 3)(a - 1) = 0$ $a = -\frac{3}{2} or a = 1$ $\sqrt{x - 1} = -\frac{3}{2} or \sqrt{x - 1} = 1$ No soln or $x - 1 = 1$ $\therefore x = 2$ | 3 | 2 Marks Reduces it to a quadratic 1 Mark Simplifies √4x - 4 Bald answer 0 marks Simplified question to (4x - 4)² + (x - 1) = 3 [or equivalent] | | | | | | | Qu | estion 6 (9 marks) - Start a new page | | | |----|---|---|--| | a) | (i) 7! = 5040
(ii) sit together = 6! × 2 = 1440
Do not sit together = 7! - 6! × 2
= 3600 | 1 | (i) Unsimplifed answer is ok (ii) 1 Mark Correctly subtracts for total Finds sit together = 6! × 2 | | b) | Points of intersection When $x > 0$ $x = 6 - x^2$ $x^2 + x - 6 = 0$ $x = 2 \text{ or } x = -3 \text{ (not in domain)}$ When $x < 0$ by symmetry $x = -2 \text{ or } x = 3 \text{ (not in domain)}$ $x = 2 \text{ or } x = 2 \text{ or } x = 3 \text{ (not in domain)}$ points of intersection are $(2, 2)$ and $(-2, 2)$ (ii) $x < -2 \text{ or } x \ge 2$ | 1 | (i) 2 Marks 2 correct graphs and important info 1 correct graph with pts of intersection 1 Mark One correct graph Finds and shows the points of intersection. | | c) | Parabola $y = a(x - 8)(x + 8)$
$y = ax^2 - 64a$ (1)
y - int when x = 0
-64a = -8
$a = \frac{1}{8}$
Sub $a \to (1)$
$\therefore y = \frac{1}{8}x^2 - 8$
$\therefore a = \frac{1}{8}, b = 8$ | 2 | 1 Mark • Finds a or b | | Que | stion 7 (9 marks) - Start a new page | | | |-----|--|---|--| | a) | $y = \frac{2x^2 - 50}{x - 5}$ $y = \frac{2(x + 5)(x - 5)}{x - 5}$ $\therefore y = 2(x + 5) \text{ where } x \neq 5$ Ie. It is discontinuous at (5, 20) | 3 | 2 Marks Draws y = x + 5 Establishes function is equivalent to y = x + 5 1 Mark Identifies x = 5 is discontinuous | | b) | (i) $6 \times 5 \times 4 \times 3 = 360$ | 1 | (i) unsimplified is ok | | | (ii) $4 \times 5 \times 4 \times 3 = 240$ | 2 | (ii) 1 Mark • Considers last digit is odd | | | (iii) Less than $3000 = 1 \times 5 \times 4 \times 3 = 60$
Between 3000 and $3400 = 1 \times 1 \times 4 \times 3 = 12$
Total = 72 | 3 | (iii) 2 Mark Considers both cases (starting with 32 and 2) 1 Mark Considers one of the above cases | | Question 8 (9 marks) - Start a new page | | | |---|--------------|---| | a) $f(x) = 9^{x}$ $f(x+2) = 9^{x+2}$ $f(x+2) = kf(x)$ $9^{x+2} = k \times 9^{x}$ $k = \frac{9^{x+2}}{9^{x}}$ $k = 9^{2}$ $k = 81$ | 2 | 1 Mark Correctly finds f(x + 2) Correctly finds k from their f(x + 2) | | b) $\angle ABD = 180^{\circ} - x \text{ (straight line)}$ $\sin(180^{\circ} - x) = \frac{AD}{AB}$ $\sin x = \frac{AD}{AB}$ $\cos(180^{\circ} - x) = \frac{BD}{AB}$ $-\cos x = \frac{BD}{AB}$ $\cos x = -\frac{BD}{AB}$ given that $3AD + BD = 2AB - (1)$ Show that: $3\sin x - \cos x = 2$ $LHS = 3\frac{AD}{AB} - \frac{BD}{AB}$ $= \frac{3AD + BD}{AB}$ $= \frac{3AD + BD}{AB}$ $= \frac{2AB}{AB} \sim from(1)$ $= 2$ $= RHS$ | 2 | 1 Mark • Identifies $\sin(180^{\circ} - x) = \frac{AD}{AB}$ and $\cos(180^{\circ} - x) = \frac{BD}{AB}$ • Substitutes $\sin(180 - x) = \sin x$ or $\cos(180 - x) = -\cos x$ | | c) i) $\tan 20^{\circ} = \frac{h}{AC}$ $\tan 10^{\circ} = \frac{h}{BC}$ $BC = h \cot 10^{\circ}$ $BC = h \cot 10^{\circ}$ (ii) Show that $h = \frac{40}{\sqrt{\cot^{2} 10^{\circ} - \cot^{2} 20^{\circ}}}$ $40^{2} = BC^{2} - AC^{2}$ (by Pythag) $40^{2} = h^{2} \cot^{2} 20^{\circ} - h^{2} \cot^{2} 10^{\circ}$ $40^{2} = h^{2}(\cot^{2} 20^{\circ} - \cot^{2} 10^{\circ})$ $h^{2} = \frac{40^{2}}{\cot^{2} 20^{\circ} - \cot^{2} 10^{\circ}}$ $h = \frac{40}{\sqrt{\cot^{2} 20^{\circ} - \cot^{2} 10^{\circ}}}$ (iii) $h = 6.347 \dots$ $h = 6.35m$ | 2 | (i) 1 Mark Shows AC Writes a correct expression for BC (ii) 1 Mark Uses Pythagoras in an attempt to show h or equivalent (iii) | | End of Exam | | |