BAULKHAM HILLS HIGH SCHOOL

Half -Yearly 2013
YEAR 11 TASK 1

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time - 1 hour and 30 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- Show all necessary working in Questions 6-11
- Marks may be deducted for careless or badly arranged work

Total marks - 51
Exam consists of 5 pages.
This paper consists of TWO sections.

Section 1 - Page 2 (5 marks)

- Attempt Question 1-5

Section II - Pages 3-5 (46 marks)

- Attempt questions 6-11

Answer all questions in the appropriate space in the Answer booklet provided.

Section I - Multiple Choice - 5 marks

1. $a+b \sqrt{2}=\frac{2}{3+\sqrt{2}}$ find a and b.
(A) $a=\frac{6}{7}, b=-\frac{2}{7}$
(B) $a=\frac{6}{7}, b=\frac{2}{7}$
(C) $a=\frac{6}{5}, b=\frac{2}{5}$
(D) $a=\frac{6}{5}, b=-\frac{2}{5}$
2.

In the diagram $A C=$
(A) $12 \times \frac{\sin 20^{\circ}}{\sin 40^{\circ}}$
(B) $10 \times \frac{\sin 40^{\circ}}{\sin 20^{\circ}}$
(C) $12 \times \frac{\sin 40^{\circ}}{\sin 20^{\circ}}$
(D) $10 \times \frac{\sin 20^{\circ}}{\sin 40^{\circ}}$
3. If P divides $A B$ externally in the ratio $5: 2$, then B divides $P A$ in the ratio
(A) $3: 2$
(B) $3:-2$
(C) $2: 3$
(D) $2:-3$
4. Determine the number of solutions for $\cos x-4 \sec x=0$ for $-180^{\circ} \leq x \leq 180^{\circ}$.
(A) 0
(B) 1
(C) 2
(D) 3
5. There are p triangles that can be formed from the 8 vertices of a given cube, and q of these triangles are equilateral. The values of p and q are:
(A) $p=56, q=6$
(B) $p=20, q=6$
(C) $p=56, q=8$
(D) $p=20, q=8$

End of Section 1

Section II - Extended Response
Attempt questions 6-11.
All necessary working should be shown in every question.
Question 6 (8 marks)
a) Solve $\frac{4}{x-1} \geq 1$
b) Simplify $\frac{a^{n}+a^{n-2}}{a^{n-1}}$
c) Solve $2 \cos ^{2} x-\sin x-1=0$ for $0^{\circ} \leq x \leq 360^{\circ}$

Question 7 (9 marks)
a) The point $(6, k)$ is 8 units from the straight line, $3 x+4 y+2=0$, find k.
b) Given the points $A(-5,1)$ and $B(11,9)$, find the point P which divides the interval $A B$
externally in the ratio 5:3
c) (i) Sketch $y=|2 x-4|$
(ii) Find the values for c for which $|2 x-4|=x+c$ has two solutions.

Question 8 (8 marks)
a) A committee of 6 people is to be selected from 6 men and 4 women
(i) How many different committees can be formed?
(ii) How many committees are possible if the men outnumber the women?
b) If $4 x^{2}+4 x y+y^{2}=0$ find the value of $\frac{x-y}{x+y}$ where $x \neq y$
c) Prove that

$$
\frac{1+\cos \theta}{1-\sin \theta}-\frac{1-\cos \theta}{1+\sin \theta}=2 \sec \theta(1+\tan \theta)
$$

a) From the top of a tower T, two markers A and B can be seen on horizontal ground.

Marker A lies on a bearing of $047^{\circ} \mathrm{T}$ from the tower. Marker B has a bearing of $349^{\circ} \mathrm{T}$ from the tower.
The angles of elevation from of A and B to the top of the tower are 41° and 37° respectively. If $A B$ is 450 m , find h, the height of the tower, to the nearest metre.
b) (i) How many different arrangements of the letters of the word PARALLEL are there?
(ii) How many of these arrangements begin and end with the letter L?

Question 10 (6 marks)

a) A

Given triangle $A B C$ where D is a point on $A B$ such that $C D \perp A B, \angle A C D=\alpha$ and $\angle D C B=\beta$.
C Prove that

$$
D B=\frac{A D \cos \alpha \sin \beta}{\cos \beta \sin \alpha}
$$

b) Given x and y are rational, solve the following for x and y.

$$
x y+\sqrt{9 x^{2}+y^{2}}=8+2 \sqrt{13}
$$

a) (i) Graph the function $y=2|x-1|+|x-4|$
(ii) Use your graph to solve $2|x-1|+|x-4| \leq 6$
b)

Three identical cubes of side 1 cm are placed together as shown in the diagram.
(i) Find the exact length of $A B \quad 2$
(ii) Find $\angle A B C$ to the nearest degree.

BANK

9 Solve $\quad \frac{12}{x^{2}-x} \leq 1$
3 If $\frac{4}{x-1} \geq 1$ then
(A) $x<1$ or $x \geq 5$
(B) $1 \leq x \leq 5$
(C) $1<x \leq 5$
(D) $x \leq 1$ or $x \geq 5$

7b By graphing the function $y=|x-2|+|x-4|$ or otherwise
solve $|x-2|+|x-4|=6$

7a Find the distance between the two straight lines
$3 x-5 y+11=0$ and
$5 y-3 x+6=0$
A group of 12 people is to be seated at a long table with 6 seats each side.
There are 4 people who wish to be on one side of the table and 3 people who wish to be on the other side. How many seating arrangements are there?

9b The letters AAA B B CC D EE FFF are arranged in all possible ways.
If one of the arrangements is choosen at random what is the probability that it starts with ABCD

How many sets of 5 bands can be formed from 5 lead guitars, 5 bass guitars, 5
drummers and 5 pianists, if each band has to have at least one player of each instrument.

If $\frac{12}{x^{2}-x} \geq 1$ then
(A) $-3 \leq x \leq 0$ or $1 \leq x \leq 4$
(B) $-3 \leq x \leq 0$
(C) $-3 \leq x<0$ or $1<x \leq 4$
(D) $x \leq-3,0<x<1$ or $x \geq 4$
year 11 Exti
ASSES $1 \geqslant 013$
(1)

$$
\begin{aligned}
a+b \sqrt{2} & =\frac{2}{3+\sqrt{2}} \times \frac{3-\sqrt{2}}{3-\sqrt{2}} \\
& =\frac{6-2 \sqrt{2}}{9-2} \\
& =\frac{6}{7}-\frac{2 \sqrt{2}}{7} \\
a & =\frac{6}{7} \quad b=-\frac{2}{7}
\end{aligned}
$$

IEACH
(2)

$$
\begin{align*}
\frac{A C}{m 40} & =\frac{10}{m 20} \\
A C & =\frac{10 \operatorname{m~} 40}{m 20} \tag{B}
\end{align*}
$$

$$
P B: B A=2: 3
$$

(3)

5

$$
P=8 c_{3}=56
$$

ench divin $\rightarrow 2 \Delta O$
\therefore enel ferce $\rightarrow 2 \times h=400$
Gperes $\times 4=24 \quad \div 3$ (repucletin

$$
q=8
$$

$M C 1-A$

$$
\begin{aligned}
& 4-A \\
& S-C
\end{aligned}
$$

(a)

$$
\begin{aligned}
& \frac{4}{x-1} \geqslant 1 \quad x \neq 1 \quad 1 \\
& 4(x-1) \geqslant(x-1)^{2} \\
& (x-1)^{2}-4(x-1) \leqslant 0 \\
& (x-1)(x-5) \leqslant 0 \\
& 1<x \leqslant 5
\end{aligned}
$$

6b)

$$
\begin{aligned}
& \frac{a^{n}+a^{n-2}}{a^{n-1}} \\
= & \frac{a^{n-2}\left(a^{2}+1\right)}{a^{n-1}} \\
= & \frac{a^{2}+1}{a} a r=a+\frac{1}{a}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& 2 \cos ^{2} x-\sin -1=0 \\
& 2\left(1-m^{2} x\right)-\sin -1=0 \\
& 2 m^{2} x+\sin -1=0 \\
& (2 \pi x-1)(m x+1)=0 \\
& \min =1 \\
& \therefore x=30^{\circ} 1150^{\circ} \text { or } 270^{\circ}
\end{aligned}
$$

a)

$$
\begin{aligned}
& D=\left|\frac{A x_{1}+B u_{1}+C}{\sqrt{A^{2}+B^{2}}}\right| \\
& =\left|\frac{3 \times 6+4 \times k+2}{\sqrt{3^{2}+4^{2}}}\right|=0 \\
& =\left|\frac{20+4 k_{2}}{5}\right| \quad 1 \\
& \therefore\left|\frac{20+4 h}{5}\right|=8 \\
& \therefore|20+4 k|=40 \\
& (5+k)=\mp 10 \quad 1 \quad 1 \\
& k=5 \text { or }-15 \text {. } \\
& k=5 \text { or }-15 \\
& 2 \text { muls. }
\end{aligned}
$$

b) $\quad A(-5,1) \quad B(11,9) \quad m: n=5:-3$

$$
\begin{array}{rlrl}
x= & \frac{n x_{1}+m x_{2}}{m+n} & y & =\frac{n 4_{1}+m 4_{2}}{m+n} \\
& =\frac{-3 \times-5+5 \times 11}{5-3} \\
& =\frac{70}{2} & & =\frac{-3 \times 1+5 \times 9}{5-3} \\
& =35 \quad 1 \quad \frac{42}{2} 1 \\
& \therefore 21 & & =2 \text { puit }(35,21)
\end{array}
$$

c)

$84)$

1) ${ }^{10} C_{6}=210$
2)

$$
\begin{aligned}
& 4 m 2 w+5 m 1 w+6 m \\
= & { }^{6} C_{4} \cdot{ }^{4} C_{2}+{ }^{6} C_{r}{ }^{4} c_{1}+{ }^{6} C_{6} \\
= & 15 \times 6+6 \cdot 4+1 \\
= & 90+24+1 \\
= & 115
\end{aligned}
$$

b)

$$
\begin{gathered}
4 x^{2}+4 x y+y^{2}=0 \\
2 x+y=0 \\
y=-2 x
\end{gathered}
$$

$$
\therefore \frac{x-y}{x+y}=\frac{x--2 x}{x-2 x}
$$

$$
=\frac{3 x}{-x}
$$

$$
=-3
$$

c)

$$
\begin{aligned}
\text { LHS } & =\frac{1+\cos \theta}{1-\sin \theta} \cdot \frac{1-\cos \theta}{1+\sin \theta} \\
& =\frac{(1+\cos \theta)(1+\sin \theta)-(1-\cos \theta)(1-\sin \theta)}{1-\operatorname{m}^{2} \theta} \\
& \left.=\frac{1+\cos \theta+\sin \theta+\cos \theta \sin \theta-1+\sin \theta+\cos \theta-\sin \sin \theta}{\cos ^{2} \theta}\right) \\
& =\frac{2}{\cos \theta}\left(\frac{\cos \theta+\sin \theta}{\cos \theta}\right. \\
& =\frac{2}{\cos \theta}(1+\tan \theta) \\
& =R 1
\end{aligned}
$$

$$
\tan =\frac{h}{A C}
$$

$$
\operatorname{ta} 37=\frac{h}{B C}
$$

$$
\therefore A C=h \hbar 49^{\circ}
$$

$$
B C=h t 53^{\circ}
$$

$b 1)$

$$
\begin{gathered}
\text { PARCE } \\
A L \\
L
\end{gathered}
$$

$$
N_{0}=\frac{8!}{2!\cdot 3!} 1 \quad=33601
$$

11) $L \ldots \operatorname{lam}^{2!}=360^{1}$

$$
\begin{aligned}
& \angle A C B=47+11=58^{\circ} . \\
& A B^{2}=A C^{2}+B C^{2}-2 \cdot A C \cdot B C \cdot \cos \angle A C B . \\
& \therefore \quad 450^{2}=h^{2} t^{2} 49^{\circ}+h^{2} t^{2} 53^{\circ}-2 . h^{2} \tan 453 \cos 88^{\circ} 1 \\
& =h^{2}\left(t^{2} 49+t^{2} 53^{\circ}-2 \operatorname{th} 49 \tan \cos 58^{\circ}\right) \\
& \therefore h=\frac{450}{\sqrt{t^{2} 89+t^{2} 50-2 t 49 t 53 \cos 68^{\circ}}} \\
& =372 \mathrm{~m} .
\end{aligned}
$$

(10) a)

$$
\begin{aligned}
& \therefore \triangle A D C \quad \hbar \alpha=\frac{A D}{D C} \\
& \therefore D C=\frac{A D}{\hbar \alpha} \\
& -A D \frac{\cos \alpha}{\operatorname{si\alpha }} \quad 1 \\
& \operatorname{n} \triangle B D \operatorname{th} B=\frac{D B}{D C} \\
& \therefore D C=\frac{D B}{\hbar A B} \\
& =\frac{D B C O B}{N B} \\
& \therefore \frac{D B \operatorname{Cn} B}{\operatorname{Ni} B}=\frac{A D \cos \alpha}{\operatorname{si\alpha }} \\
& D B=A D \frac{\cos \alpha \sin }{\sin B \operatorname{si\alpha }}
\end{aligned}
$$

b) $\quad x_{y}=8$-(1)

$$
\begin{equation*}
9 x^{2}+y^{2}=52 \tag{2}
\end{equation*}
$$

$$
\therefore y=\mp 6 \quad \mp 4 \operatorname{fin}(t)
$$

Subse $y=\frac{8}{x}$

$$
\begin{aligned}
& \therefore 9 x^{2}+\frac{64}{x^{2}}=52 \\
& \therefore 9 x^{4}-52 x^{2}+64=0 \\
& \left.\left(9 x^{2}-16\right)\left(x^{2}-4\right)=0 \quad \text { (oret } y=x^{2} \text { et }\right) \\
& \therefore x^{2}=\frac{16}{9} \text { or } 4 \quad \text { i } \\
& x=7 \frac{4}{3} \text { ar } \times 2
\end{aligned}
$$

$$
\begin{aligned}
& \text { (} \\
& \text { 11) } \\
& 0 \leq x \leq 4 \\
& A B^{2}=2^{2}+2^{2}+1^{2}=9 \\
& \therefore A B=3 \\
& B C^{2}=2^{2}+1^{2}+1^{2}=6 \\
& \therefore B C=\sqrt{6} \\
& 1
\end{aligned}
$$

$$
\begin{aligned}
& \cos \angle A B C=\frac{(\sqrt{6})^{2}+3^{2}-1}{2.3 \sqrt{6}} \\
& =\quad-14 \\
& \therefore \angle A B C=17.7^{\circ} \\
& =18^{\circ} \text { \& nemest dyenee. }
\end{aligned}
$$

