

BAULKHAM HILLS HIGH SCHOOL

Half -Yearly 2013 YEAR 11 TASK 1

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 1 hour and 30 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- Show all necessary working in Questions 6-11
- Marks may be deducted for careless or badly arranged work

Total marks – 51 Exam consists of 5 pages.

This paper consists of TWO sections.

Section 1 – Page 2 (5 marks)

• Attempt Question 1-5

Section II – Pages 3-5 (46 marks)

• Attempt questions 6-11

Answer all questions in the appropriate space in the Answer booklet provided.

Section I – Multiple Choice - 5 marks

	L			
1.	$a + b\sqrt{2} = \frac{2}{3 + \sqrt{2}}$ find a	a and b.		
	(A) $a = \frac{6}{7}, b = -\frac{2}{7}$		(B) $a = \frac{6}{7}$, $b = \frac{2}{7}$	
	(C) $a = \frac{6}{5}, b = \frac{2}{5}$		(D) $a = \frac{6}{5}$, $b = -\frac{2}{5}$	
2.		A	In the diagram $AC =$	
			(A) $12 \times \frac{\sin 20^{\circ}}{\sin 40^{\circ}}$	
	/		(B) $10 \times \frac{\sin 40^\circ}{\sin 20^\circ}$	
			(C) $12 \times \frac{\sin 40^{\circ}}{\sin 20^{\circ}}$	
	<u>40°</u> В 10m С	<u></u> 12m D	(D) $10 \times \frac{\sin 20^{\circ}}{\sin 40^{\circ}}$	
			SII140 ⁴	
3.	If <i>P</i> divides AB externa (A) 3:2	lly in the ratio 5:2, ther (B) 3:-2	B divides <i>PA</i> in the rat	tio (D) 2:-3
		~ /	~ ~	<i>、</i> ,
4.	Determine the number $\cos x - 4 \sec x = 0$ for	t of solutions for $-180^\circ \le x \le 180^\circ$.		
	(A) 0	(B) 1	(C) 2	(D) 3
5.	There are p triangles that can be formed from the 8 vertices of a given cube, and q of these triangles are equilateral. The values of p and q are:			n cube, and q of these
	(A) $p = 56, q = 6$		(B) $p = 20$, $q = 6$	
	(C) $p = 56, q = 8$		(D) $p = 20, q = 8$	
	End of Section 1			

Section II – Extended Response Attempt questions 6-11. All necessary working should be shown in every question.

Question 6 (8 marks)		Marks
a)	Solve $\frac{4}{x-1} \ge 1$	3
b)	Simplify $\frac{a^n + a^{n-2}}{a^{n-1}}$	2
c)	Solve $2\cos^2 x - \sin x - 1 = 0$ for $0^\circ \le x \le 360^\circ$	3

Question 7 (9 marks)

a)	The point (6, k) is 8 units from the straight line, $3x + 4y + 2 = 0$, find k .	3
b)	Given the points $A(-5,1)$ and $B(11,9)$, find the point P which divides the interval AB externally in the ratio 5:3	3
c)	(i) Sketch $y = 2x - 4 $	1
	(ii) Find the values for <i>c</i> for which $ 2x - 4 = x + c$ has two solutions.	2

Que	stion 8 (8 marks)	
a)	 A committee of 6 people is to be selected from 6 men and 4 women (i) How many different committees can be formed? (ii) How many committees are possible if the men outnumber the women? 	1 2
b)	If $4x^2 + 4xy + y^2 = 0$ find the value of $\frac{x-y}{x+y}$ where $x \neq y$	2
c)	Prove that $\frac{1 + \cos \theta}{1 - \sin \theta} - \frac{1 - \cos \theta}{1 + \sin \theta} = 2 \sec \theta (1 + \tan \theta)$	3

Que	estion 9 (7 marks)	Marks
a)	From the top of a tower <i>T</i> , two markers <i>A</i> and <i>B</i> can be seen on horizontal ground T Not to scale $\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $. 3 Э°Т
b)	 (i) How many different arrangements of the letters of the word PARALLEL ar there? (ii) How many of these arrangements begin and end with the letter L? 	e 2
		2

Que	estion 11 (8 marks)	Marks
a)	(i) Graph the function $y = 2 x - 1 + x - 4 $ (ii) Use your graph to solve $2 x - 1 + x - 4 \le 6$	3 1
b)	B Three identical cubes of side 1cm are placed together as shown in the diagram.(i) Find the exact length of AB (ii) Find $\angle ABC$ to the nearest degree.	2 2

End of Exam

	BANK	
9	Solve $\frac{12}{x^2 - x} \le 1$	4
3	If $\frac{4}{x-1} \ge 1$ then (A) $x < 1$ or $x \ge 5$ (B) $1 \le x \le 5$ (C) $1 < x \le 5$ (D) $x \le 1$ or $x \ge 5$	
7b	By graphing the function $y = x - 2 + x - 4 $ or otherwise solve $ x - 2 + x - 4 = 6$	3
7a	Find the distance between the two straight lines $3x - 5y + 11 = 0$ and $5y - 3x + 6 = 0$ A group of 12 people is to be seated at a long table with 6 seats each side.There are 4 people who wish to be on one side of the table and 3 people who wish to be on the other side. How many seating arrangements are there?	
9b	The letters AAA BB CC D EE FFF are arranged in all possible ways. If one of the arrangements is choosen at random what is the probability that it starts with ABCD	3
	How many sets of 5 bands can be formed from 5 lead guitars, 5 bass guitars, 5 drummers and 5 pianists, if each band has to have at least one player of each instrument.	3
	If $\frac{12}{x^2 - x} \ge 1$ then (A) $-3 \le x \le 0$ or $1 \le x \le 4$ (B) $-3 \le x \le 0$ (B) $-3 \le x \le 0$ (C) $-3 \le x < 0$ or $1 < x \le 4$ (B) $-3 \le x \le 0$ (D) $x \le -3, 0 < x < 1$ or $x \ge 4$	

$$y_{ERE II} = Ext i$$

$$h_{MER II} = 2013$$
() $a + b\sqrt{2} = \frac{2}{3+\sqrt{2}} \times \frac{3-\sqrt{2}}{3-\sqrt{2}}$

$$= \frac{6}{3-\sqrt{2}}$$

$$= \frac{6-2\sqrt{2}}{7-2}$$

$$= \frac{6}{7} - 2\sqrt{2}$$

$$= \frac{6}{7} - 2\sqrt{2$$

ý (

$$\begin{array}{rcl} 6 & b \end{array} & \begin{array}{c} a^{n} + a^{n-2} \\ \hline a^{n-1} \end{array} \\ &= \begin{array}{c} a^{n} \left(a^{2} + i \right) \\ \hline a^{n-1} \end{array} \\ &= \begin{array}{c} a^{2} + i \\ \hline a^{n} \end{array} \\ &= \begin{array}{c} a^{2} + i \\ \hline a^{n} \end{array} \\ &= \begin{array}{c} a^{2} + i \\ \hline a^{n} \end{array} \\ \end{array}$$

.

$$\begin{aligned} b(c) & 2(n^2n - nn - 1 = 0) \\ & 2(1 - n^2n) - nn - 1 = 0 \\ & 2n^nn + nn - 1 = 0 \\ & (2nn + 1)(nn + 1) = 0 \\ & nn = \frac{1}{2} \quad or - 1 \\ & \vdots n = \frac{30^n}{2} \cdot 150^n \text{ or } 210^n \end{aligned}$$

.

. •

a)
$$D = \left| \frac{\pi_{1} + \beta_{1} + c}{\sqrt{\lambda^{2} + b^{2}}} \right|$$

$$= \left| \frac{3 \times c}{\sqrt{\lambda^{2} + b^{2}}} \right|$$

$$= \frac{3 \times c}{\sqrt{\lambda^{2} + b^{2}}} = \frac{1}{2}$$

$$= \frac{1}{2}$$

$$=$$

$$P(x) = 1 \int \frac{10}{C_{6}} = 210$$

$$= \frac{4}{C_{4}} \frac{1}{C_{2}} + \frac{6}{C_{7}} \frac{1}{C_{4}} + \frac{6}{C_{6}} = 1$$

$$= \frac{4}{17} \times \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$$

$$= \frac{1}{17} \times \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 0$$

$$2\pi + \frac{1}{2} = 0$$

$$2\pi + \frac{1}{2} = 0$$

$$2\pi + \frac{1}{2} = 0$$

$$\frac{1}{2\pi + \frac{1}{2}} = \frac{1}{2\pi - 2\pi}$$

$$= \frac{3\pi}{2\pi}$$

$$= \frac{3\pi}{2\pi}$$

$$= -3$$

$$C) LHS = \frac{11}{100} - \frac{1-600}{1100}$$

$$= \frac{11}{100} \frac{1}{100} - \frac{1-600}{1100} \frac{1}{100} + \frac{1}{100} - \frac{1}{100} \frac{1}{100}$$

$$= \frac{11}{100} \frac{1}{100} - \frac{1}{100} - \frac{1}{100} + \frac{1}{100} - \frac{1}{100} - \frac{1}{100} + \frac{1}{100} - \frac{1}{100} - \frac{1}{100} + \frac{1}{100} - \frac{1}{100} - \frac{1}{100} - \frac{1}{100} + \frac{1}{100} - \frac{1}{100} - \frac{1}{100} + \frac{1}{100} - \frac$$

•

$$h = \frac{k}{Ac} \qquad k = \frac{k}{Ac} \qquad k = \frac{k}{Bc}$$

$$k = \frac{k}{Ac} \qquad k = \frac{k}{Bc} \qquad k = \frac{k}{Bc}$$

$$k = \frac{k}{Ac} \qquad k = \frac{k}{Bc} \qquad k = \frac{k}{Bc}$$

$$k = \frac{k}{Ac} = \frac{k}{Bc} \qquad k = \frac{k}$$

.

(b) a)

$$m \Box AW \quad f d = \frac{AD}{DC}$$

$$\therefore DC = \frac{AD}{f d d}$$

$$= AD \int Cod \\ \overline{Md} \qquad 1$$

$$A \Box BD \quad f R = \frac{DR}{DC}$$

$$\therefore DC = \frac{DR}{TR}$$

$$= \frac{DRC_{R}}{TR}$$

$$= \frac{DRC_{R}}{TR}$$

$$= \frac{DRC_{R}}{TR}$$

$$DR = ADC_{R}$$

