

2017 Preliminary Half Yearly Examination

Mathematics Extension I

General Instructions

- Reading time 5 minutes
- Working time 1 hour and 30 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- In Questions 11 14, show relevant mathematical reasoning and/or calculations

Total marks – 54

(Section I) Pages 2-4

10 marks

- Attempt Questions 1 10
- Allow about 15 minutes for this section

Section II) Pages 5 - 8

44 marks

- Attempt Questions 11 14
- Allow about 1 hour and 15 minutes for this section

Section I

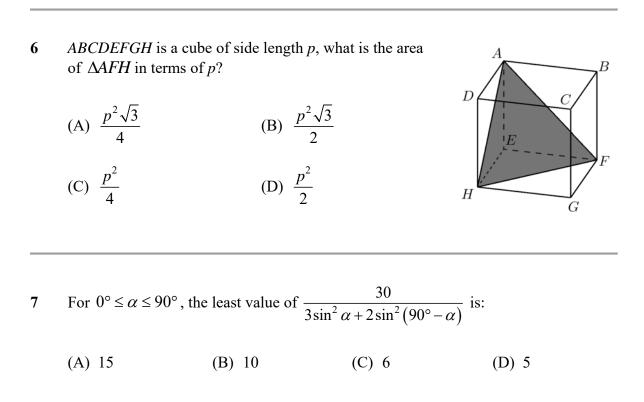
10 marks Attempt Questions 1 – 10 Allow about 15 minutes for this section

Use the multiple-choice answer page in the writing booklet for Questions 1 - 10.

- How many numbers greater than 40000 can be formed with the digits 2, 3, 4, 5 and 6 if no digit is used more than once?
 (A) 48 (B) 72 (C) 96 (D) 120
 In how many ways can a family of eight sit around a circular table if the two youngest family members want to sit together?
 (A) 7! (B) 2×5! (C) 2×6! (D) 2×7!
- 3 What is the domain of the function $y = \frac{1}{\sqrt{4 x^2}}$? (A) x > 2 (B) x < 2(C) -2 < x < 2 (D) x < -2 or x > 2
- 4 If $2 \sec \theta + 3 = 0$, and $\cot \theta > 0$, what is the exact value of $\sin \theta$?

(A)
$$-\frac{\sqrt{5}}{3}$$
 (B) $-\frac{\sqrt{5}}{2}$ (C) $\frac{\sqrt{5}}{3}$ (D) $\frac{\sqrt{5}}{2}$

- 5 How many value(s) of θ , for $0^\circ \le \theta \le 360^\circ$, satisfy the equation $\sin \theta \cos \theta = \sin \theta$?
 - (A) 2 (B) 3 (C) 4 (D) 5



8 When solving $\frac{x-1}{\sqrt{x}} > \frac{2}{x-1}$ within the natural domain, three students obtain the following inequalities:

Student 1: $(x-1)^2 > 2\sqrt{x}$ Student 2: $(x-1)^3 > 2(x-1)\sqrt{x}$ Student 3: $(x-1)^3\sqrt{x} > 2x(x-1)$

Which student(s) will obtain the correct solution to the original inequality?

- (A) Student 1 only (B) Student 2 only
- (C) Student 3 only (D) Both students 2 and 3

- 9 If $f(x+1) = x^4 2x + 1$, what is the value of f(0)? (A) 0 (B) 1 (C) 2 (D) 4
- 10 Given that *n* and *r* are both positive integers such that $n \ge r$, which of the following is **NOT** always true?

(A)
$${}^{n}P_{1} = {}^{n}C_{1}$$
 (B) ${}^{n}P_{n} = {}^{n}C_{n}$

(C)
$${}^{n}P_{r} = {}^{n}C_{r} \times r!$$
 (D) ${}^{n}P_{r} \ge {}^{n}C_{r}$

Section II

44 marks Attempt Questions 11 – 14 Allow about 1 hour and 15 minutes for this section

Answer each question in the appropriate section of the writing booklet. Extra writing paper is available.

In Questions 11 - 14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (11 marks) Use the Question 11 section of the writing booklet.

(a) Solve
$$\frac{x}{x-4} \le 5$$
. 3

(b) The letters A, E, I, O and U are vowels. In how many ways can the letters of the word **MATHEMATICS** be arranged in a line if:

(i)	there are no restrictions?	1
(ii)	the vowels are all together?	1
(iii)	both the letter M 's must be immediately followed by the letter A ?	1

(c)

(i) Solve
$$x^4 - 4x^2 + 3 = 0$$
. 1

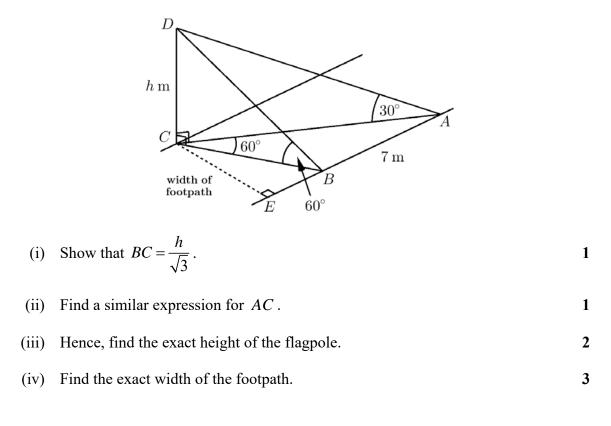
- (ii) Hence, or otherwise, solve $\tan^4 \theta 4\tan^2 \theta + 3 = 0$ for $0^\circ \le \theta \le 360^\circ$. 2
- (d) Sketch the region on the Cartesian plane satisfying the inequality $y < -\sqrt{x-1}$. 2

End of Question 11

Question 12 (11 marks) Use the Question 12 section of the writing booklet.

(a) A footpath on horizontal ground has two parallel edges. *CD* is a vertical flagpole of height *h* metres which stands with its base, *C*, on one edge of the footpath. *A* and *B* are two points on the other edge of the footpath such that AB = 7 m and $\angle ACB = 60^{\circ}$.

From A and B, the angles of elevation of the top of the flagpole, D, are 30° and 60° respectively.



(b) From a group of 6 men and 8 women, a committee of 5 people is to be chosen, how many ways can this committee be formed if:

(i)	there are no restrictions?	1
(ii)	the committee consists of 2 men and 3 women?	1
(iii)	the committee must have at least 1 woman?	1
(iv)	the entire committee is of the same gender?	1

End of Question 12

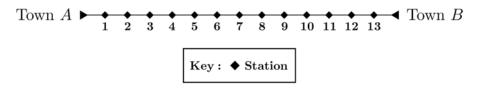
Question 13 (11 marks) Use the Question 13 section of the writing booklet.

(a)	Cons	ider the function $f(x) = x^2 - 2x - 3$.	
	(i)	Show that $f(x)$ is an even function.	1
	(ii)	Hence, or otherwise, sketch the graph of $y = f(x)$, showing all intercepts.	2
	(iii)	What is the range of $y = f(x)$?	1
(b)	(i)	On the same set of axes, sketch the graphs of $y = 2x-4 $ and $y = x+1 $, showing all intercepts.	2
	(ii)	Hence, or otherwise, solve the inequality $ 2x-4 \le x+1 $.	2
(c)	(i)	Fully factorise $64k^6 - 1$ as a difference of two squares and as a difference of two cubes.	2
	(ii)	Hence, or otherwise, factorise $16k^4 + 4k^2 + 1$.	1

End of Question 13

Question 14 (11 marks) Use the Question 14 section of the writing booklet.

(a) A train is leaving Town *A*, heading towards Town *B* without turning around. There are 13 train stations between the two towns:



- (i) In how many ways can the train stop at 4 of the 13 stations?
- (ii) In how many ways can the train stop at 4 of the 13 stations if the train does1 not stop at consecutive stations?

(b) Show that
$$\frac{\left(\sin^2 \alpha - \cos^2 \alpha\right)(1 - \sin \alpha \cos \alpha)}{\cos \alpha (\sec \alpha - \csc \alpha) (\sin^3 \alpha + \cos^3 \alpha)} = \sin \alpha .$$
 3

(c) It can be shown that:

$$\tan(A+B+C) = \frac{\tan A + \tan B + \tan C - \tan A \tan B \tan C}{1 - \tan A \tan B - \tan B \tan C - \tan C \tan A}$$
 (DO NOT PROVE THIS.)

- (i) For any $\triangle ABC$, explain why $\tan A + \tan B + \tan C = \tan A \tan B \tan C$. 2
- (ii) It is given, for ΔXYZ , that $\frac{\tan X}{5} = \frac{\tan Y}{6} = \frac{\tan Z}{7} = k$ for some constant k, **3** show that $k = \sqrt{\frac{3}{35}}$.
- (iii) Hence calculate the size of the smallest angle in ΔXYZ correct to the nearest 1 minute.

End of Paper

YEAR 11 HALF YEARLY EXAMINATION 2017 MATHEMATICS EXTENSION 1 MARKING GUIDELINES

Section I

Multiple-choice Answer Key

Question	Answer
1	В
2	С
3	С
4	А
5	В

Question	Answer
6	В
7	В
8	D
9	D
10	В

Questions 1 – 10

Sam	Sample solution			
1.	Number over $40000 = 3 \times 4!$			
	= 72			
	∴ 72 numbers are greater than 40000.			
2.	2 ways to arrange the two youngest family members			
	6! ways to arrange the remaining six family members as well as the group of two around a circular table.			
3.	$4 - x^2 > 0$			
	$4 > x^2$			
	$\therefore -2 < x < 2$			
4.	$\cot \theta > 0$ if $\tan \theta > 0$			
	$2 \sec \theta + 3 = 0$			
	$\sec \theta = \frac{-3}{2}$ $\cos \theta = \frac{2}{-3}$			
	$\cos \theta = \frac{-3}{-3}$			
	$\therefore \cos \theta < 0 \text{ and } \tan \theta > 0 \text{ (i.e. } \theta \text{ is in quadrant 3)} \qquad -\sqrt{5}$			
	$\sin\theta = -\frac{\sqrt{5}}{3}$			
	$\sin \theta = -\frac{1}{3}$			
5.	$\sin\theta\cos\theta = \sin\theta$			
	$\sin\theta(\cos\theta-1)=0$			
	$\therefore \sin \theta = 0 \text{ or } \cos \theta = 1$			
	For $0^{\circ} \le \theta \le 360^{\circ}$, $\theta = 0^{\circ}, 180^{\circ}, 360^{\circ}$			
6.	$AH = AF = FH$ (equal diagonals of the square faces) ie. ΔAFH is equilateral.			
	By Pythagoras' theorem, $AH = p\sqrt{2}$.			
	Using the sine rule for area,			
	$A_{\Delta AFH} = \frac{1}{2} \times p\sqrt{2} \times p\sqrt{2} \times \sin 60^{\circ}$			
	-			
	$=\frac{p^2\sqrt{3}}{2}$			

7.	30 30
/.	$\frac{30}{3\sin^2 \alpha + 2\sin^2 (90^\circ - \alpha)} = \frac{30}{3\sin^2 \alpha + 2\cos^2 \alpha}$
	$=\frac{30}{\sin^2 \alpha + 2}$
	Least value occurs when denomiator is largest, i.e. $\sin^2 \alpha = 1$.
	30 30
	Least value of $\frac{30}{\sin^2 \alpha + 2} = \frac{30}{1+2}$
	= 10
8.	Student 1 multiplied both sides by $(x-1)$, which could be negative, the inequality sign may needed to have been flipped.
	Student 2 multiplied both sides by $\sqrt{x}(x-1)^2$, which is positive, the inequality is ok.
	Student 3 multiplied both sides by $(\sqrt{x})^2 (x-1)^2$, which is positive, the extra \sqrt{x} does not introduce any extra
	solutions in the natural domain, the inequality is ok.
9.	Let $x = -1$:
	$f(0) = (-1)^4 - 2 \times (-1) + 1$
	= 1 + 2 + 1
	= 4
10.	The number of ways of choosing 1 item from a set of <i>n</i> items does not depend on order, so ${}^{n}P_{1} = {}^{n}C_{1}$.
	By definition,
	${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$
	$=\frac{1}{r!}^{n}P_{r}$
	${}^{n}C_{r} \times r! = {}^{n}P_{r}$
	The number of ways of choosing r items from a set of n items where order is important is always more than the number
	of ways of choosing r items from a set of n items where order is not important, i.e. ${}^{n}P_{r} \ge {}^{n}C_{r}$, with equality when
	r = 1.
	By elimination, ${}^{n}P_{n} \neq {}^{n}C_{n}$ is not always true. (Note: For the given conditions, this statement is only true for $n = 1$.)

Section II

Question 11

Samp	ole solution	Suggested marking criteria	
(a)	Natural domain for $\frac{x}{x-4}$: $x \neq 4$ $\frac{x}{x-4} \leq 5$	 3 - correct solution 2 - correctly identifies the two critical points x = 4 and x = 5 	
	$x(x-4) \le 5(x-4)^{2}$ $0 \le (x-4) [5(x-4)-x]$ $0 \le 4(x-4)(x-5)$ $\therefore x < 4 \text{ or } x \ge 5$	 1 – attempts to solve the inequation using a suitable method recognises a restriction in the domain 	
(b)	(i) $\frac{11!}{2!2!2!} = 4\ 989\ 600$	• 1 – correct answer, or equivalent numerical expression	
	(ii) There are $\frac{4!}{2!} = 12$ ways of arranging the vowels.	• 1 – correct answer, or equivalent numerical expression	
	Treating the vowels as a single entity, the number of ways to arrange the remaining 7 letters and the single group of vowels is: $\frac{8!}{2!2!} = 10\ 080$		
	Total number of arrangements = $10\ 080 \times 12$ = $120\ 960$		
	(iii) Treating MA as a single entity, the number of ways to arrange (MA) THE (MA) TICS in a line is: $\frac{9!}{2!2!} = 90\ 720$	• 1 – correct answer, or equivalent numerical expression	
(c)	(i) Let $u = x^2$: $u^2 - 4u + 3 = 0$ (u - 3)(u - 1) = 0 u = 1 or $u = 3x^2 = 1 x^2 = 3x = \pm 1 x = \pm \sqrt{3}$	• 1 – correct solution	
	(ii) Using the results from (i), and letting $x = \tan \theta$: $\tan \theta = \pm 1$ or $\tan \theta = \pm \sqrt{3}$ $\theta = 45^{\circ}, 135^{\circ}, 225^{\circ}, 315^{\circ}$ $\theta = 60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$ $\therefore \theta = 45^{\circ}, 60^{\circ}, 120^{\circ}, 135^{\circ}, 225^{\circ}, 240^{\circ}, 300^{\circ}, 315^{\circ}$	 2 - correct solution 1 - correct attempt at solving an appropriate trigonometric equation 	
(d)	$y = -\sqrt{x-1}$	 2 - correct region and boundaries 1 - significant progress towards the correct region and boundaries 	

Question 12

Samj	ple solu	ition	Suggested marking criteria
(a)	(i)	In ΔDBC ,	• 1 – correct solution
		$\tan 60^\circ = \frac{h}{BC}$	
		$BC = \frac{h}{\tan 60^{\circ}}$	
		$=\frac{h}{\sqrt{3}}$	
	(ii)	In ΔDAC ,	• 1 – correct solution
		$\tan 30^\circ = \frac{h}{AC}$	
		$AC = \frac{h}{\tan 30^{\circ}}$ $= h\sqrt{3}$	
	(iii)	In $\triangle ABC$,	• 2 – correct solution
		$AB^2 = BC^2 + AC^2 - 2 \times BC \times AC \times \cos 60^\circ$	• 1 – uses cosine rule, showing appropriate substitution
		$49 = \left(\frac{h}{\sqrt{3}}\right)^2 + \left(h\sqrt{3}\right)^2 - \cancel{2} \times \frac{h}{\cancel{3}} \times h\cancel{3} \times \frac{1}{\cancel{2}}$	- finds AC in terms of h
		$49 = \frac{h^2}{3} + 3h^2 - h^2$	
		$49 = \frac{7h^2}{3}$	
		$21 = h^2$	
		$h = \sqrt{21} (\text{since } h > 0)$	
	(iv)	By sine area rule, $A_{\Delta ABC} = \frac{1}{2} \times \frac{h}{\sqrt{3}} \times h \sqrt{3} \times \sin 60^{\circ}$ $A_{\Delta ABC} = \frac{1}{2} \times 7 \times CE$ $\frac{21\sqrt{3}}{4} = \frac{7}{2} \times CE$	 3 – correct solution 2 – finds the area of ΔABC
		$A_{\Delta ABC} = \frac{1}{2} \times \frac{h}{\sqrt{3}} \times h \sqrt{3} \times \sin 60^{\circ} \qquad \qquad \frac{21\sqrt{3}}{4} = \frac{7}{2} \times CE$	 significant progress towards solution using
		$=\frac{h^2}{2} \times \frac{\sqrt{3}}{2} \qquad \qquad$	$\cos \angle CBA = \frac{1}{2\sqrt{7}}$ or
		$=\frac{21\sqrt{3}}{4}$	$\sin \angle CAB = \frac{\sqrt{21}}{14}$, or
		4	equivalent merit1 – attempts to use the sine
			area rule to find the area of ΔABC
(b)	(i)	$^{14}C_5 = 2002$	• 1 – correct answer, or equivalent numerical expression
	(ii)	${}^{6}C_{2} \times {}^{8}C_{3} = 840$	• 1 – correct answer, or equivalent numerical expression
	(iii)	There are ${}^{6}C_{5} = 6$ committees that consist of men only.	• 1 – correct answer, or equivalent numerical
		Therefore, there are $2002 - 6 = 1996$ committees with at least 1 woman.	expression
	(iv)	There are ${}^{6}C_{5} = 6$ committees that consist of men only.	• 1 – correct answer, or equivalent numerical
		There are ${}^{8}C_{5} = 56$ committees that consist of women only.	expression
		Therefore, there are $56+6=62$ committees that are entirely made up of members of the same gender.	

Sample solution			Suggested marking criteria	
(a)	(i)	$f(-x) = (-x)^{2} - -2x - 3$ = $x^{2} - 2x - 3$ (since $ -A = A $ for all A) = $f(x)$ Therefore, $f(x)$ is an even function.	• 1 – correct solution	
	(ii)	-3 0 3 $(-1, -4)$ $(1, -4)$	 2 - correct solution 1 - correctly sketches one branch of y = f(x) 	
	(iii)	The vertex of the parabola $y = x^2 - 2x - 3$ is $(1, -4)$. By symmetry of the even function, the range of $f(x) = x^2 - 2x - 3$ is $y \ge -4$.	• 1 – correct solution	
(b)	(i)	y = x + 1 $y = 2x - 4 $ (5,6)	 2 – correct graphs 1 – one correct graph 	
	(ii)	$1 \le x \le 5$	 2 – correct solution 1 – correctly identifies two critical points 	
(c)	(i)	By difference of two cubes, $64k^{6} - 1 = (4k^{2} - 1)(16k^{4} + 4k^{2} + 1)$ $= (2k + 1)(2k - 1)(16k^{4} + 4k^{2} + 1)$ By difference of two squares, $64k^{6} - 1 = (8k^{3} + 1)(8k^{3} - 1)$ $= (2k + 1)(4k^{2} - 2k + 1)(2k - 1)(4k^{2} + 2k + 1)$	 2 – correct solution 1 – correct expression for one of the factorisations 	
	(ii)	$16k^{4} + 4k^{2} + 1 = (4k^{2} - 2k + 1)(4k^{2} + 2k + 1)$	• 1 – correct solution	

Question 14

Sample solution			Suggested marking criteria	
(a)	(i)	$^{13}C_4 = 715$	• 1 – correct answer, or equivalent numerical expression	
	(ii)	Let S represent a "stop" and P represent a "pass". The problem is equivalent to arranging 9 P 's and 4 S 's so that no S is adjacent to one another.	• 1 – correct answer, or equivalent numerical expression	
		With 9 <i>P</i> 's, there are 10 spaces that the 4 <i>S</i> 's could go: $P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_P_$		
		Number of ways = ${}^{10}C_4$ = 210		
(b)	(i)	LHS = $\frac{\left(\sin^2 \alpha - \cos^2 \alpha\right) (1 - \sin \alpha \cos \alpha)}{\cos \alpha (\sec \alpha - \csc \alpha) (\sin^3 \alpha + \cos^3 \alpha)}$	 3 – correct solution 2 – significant progress 	
			towards a valid solution	
		$=\frac{(\sin\alpha+\cos\alpha)(\sin\alpha-\cos\alpha)(1-\sin\alpha\cos\alpha)}{\cos\alpha(\sec\alpha-\csc\alpha)(\sin\alpha+\cos\alpha)(\sin^2\alpha-\sin\alpha\cos\alpha+\cos^2\alpha)}$	• 1 – correctly factorises the difference of two squares – correctly factorises the	
		$=$ $\frac{\sin \alpha - \cos \alpha}{\cos \alpha}$	sum of two cubes – correctly simplifies	
		$=\frac{\sin\alpha-\cos\alpha}{\cos\alpha\left(\frac{1}{\cos\alpha}-\frac{1}{\sin\alpha}\right)}$	$\cos \alpha (\sec \alpha - \csc \alpha)$	
		$=\frac{\sin\alpha-\cos\alpha}{\cos\alpha\left(\frac{\sin\alpha-\cos\alpha}{\sin\alpha\cos\alpha}\right)}$		
		$=\sin\alpha$		
		= RHS		
(c)	(i)	In any $\triangle ABC$, $A + B + C = 180^{\circ}$	• 2 – correct solutions	
		$\therefore \tan\left(A+B+C\right)=0$	• 1 - recognising $\tan(A+B+C) = 0$	
		$\frac{\tan A + \tan B + \tan C - \tan A \tan B \tan C}{1} = 0$		
		$1 - \tan A \tan B - \tan B \tan C - \tan C \tan A$		
		$\tan A + \tan B + \tan C - \tan A \tan B \tan C = 0$		
		$\tan A + \tan B + \tan C = \tan A \tan B \tan C$		
	(ii)	$\frac{\tan X}{5} = \frac{\tan Y}{6} = \frac{\tan Z}{7} = k$	• 3 – correct solution	
		Therefore, $\tan X = 5k$, $\tan Y = 6k$ and $\tan Z = 7k$.	 2 – justifies why k is positive 1 – attempts to solve for k using an appropriate 	
		$\tan X + \tan Y + \tan Z = \tan X \tan Y \tan Z$	method	
		$5k + 6k + 7k = 5k \times 6k \times 7k$		
		$18k = 210k^3$		
		$0 = 6k\left(35k^2 - 3\right)$		
		$k \neq 0$ as this implies $\tan X = \tan Y = \tan Z = 0$, which yields a degenerate		
		triangle. $k \neq 0$ as X, Y and Z cannot be all obtuse, therefore $k = \sqrt{\frac{3}{35}}$		
	(iii)	$\tan X = 5\sqrt{\frac{3}{35}}$	• 1 – correct solution	
		$X = 55^{\circ}40'$		