Sinclair Lee Bamford Au Sing Webb Bartlett Hay

Name:	
Class:	11MTX
Teacher:	

CHERRYBROOK TECHNOLOGY HIGH SCHOOL

2013

YEAR 11

AP1 EXAMINATION

MATHEMATICS EXTENSION 1

Time allowed - 1 HOUR (Plus 5 minutes reading time)

DIRECTIONS TO CANDIDATES:

- > Attempt all questions. Marks are indicated to the right of each question.
- ➤ Each question is to be commenced on a new page clearly marked Question 1, Question 2, etc on the top of the page. Each page should show your name and class.
- > If you do not attempt a question, you must submit a blank page clearly indicating the question number, your name and class.
- > All questions should be stapled together in order Question 1 to 3.
- All necessary working should be shown in every question. Full marks may not be awarded for careless or badly arranged work.
- Approved calculators may be used.

MARKER'S USE ONLY

Q1	Q2	Q3	TOTAL
/15	/15	/15	/45

a) Write down the expansion of $(x + 5)^4$.

1

b) Solve these equations simultaneously

3

2

$$x + y = 3$$

$$x - 2y + 3z = -6$$

$$2x + 3y + z = 7$$

- c) By squaring both sides of $\sqrt{a} + \sqrt{b} = \sqrt{9 + \sqrt{56}}$, evaluate a and b.
- d) Solve the inequality $\frac{x-5}{x} \ge 6$.
- e) If $x = \frac{1}{\sqrt{2} + 1}$, find in rational form,
 - i) $x + \frac{1}{x}$
 - ii) $x^2 + \frac{1}{x^2}$.
- f) i) Draw the graphs of y = |2x 1| and y = |x + 1| on the same number plane, showing clearly the intersecting points between the two graphs.
 - ii) Hence, solve |2x-1| > |x+1|.

Marks

a) i) Prove that
$$\frac{\sin 2A}{1-\cos 2A} = \cot A.$$

b) Using
$$t = \tan\frac{\theta}{2}$$
, find the exact value of $\frac{1-\tan^2 15^\circ}{1+\tan^2 15^\circ}$.

c) Using
$$t = \tan \frac{\theta}{2}$$
, simplify $\sin \theta - 3 \cos \theta$.

d) The line
$$y = mx + b$$
 is inclined at 45° to $y = 3 - 2x$. Find two possible values of m.

e) If
$$\sin A = \frac{2}{3}$$
, $90^{\circ} < A < 180^{\circ}$ and $\tan B = \frac{2}{3}$, $180^{\circ} < B < 270^{\circ}$, show that

$$\cos(A+B) = \frac{3\sqrt{5}+4}{3\sqrt{13}}$$

f) i) Sketch the graph
$$y = 2sec \ 2x \text{ from } 0^{\circ} \le x \le 360^{\circ}$$
.

ii) Hence find the **number** of solutions for
$$2sec2x - 4 = 0$$
. (DO NOT SOLVE)

a) Prove that
$$\frac{\sin 2\theta \cos \theta - \cos 2\theta \sin \theta}{\cos 2\theta \cos \theta + \sin 2\theta \sin \theta} = \tan \theta$$

b) PT is an observation tower 50m high. The bearings of two points A and B from P are 025° T and 125° T respectively. The angles of elevation from these points to the top of the tower are 35° and 50° respectively.

- Copy the diagram onto your writing paper and find $\angle APB$. i)
- 1

1

2

ii) Express BP and AP in terms of $\cot \theta$.

iii) Hence, show that AB =
$$50\sqrt{\cot^2 35^\circ + \cot^2 50^\circ - 2 \cot 35^\circ \cot 50^\circ \cos 100^\circ}$$
 2

c) Solve
$$\cot x = \cot^2 x$$
 for $-180^\circ \le x \le 180^\circ$.

d) Solve
$$2 + \cos 2x = 5\sin x$$
 for $0^{\circ} \le x \le 360^{\circ}$

- i) Express $\sin A + \sqrt{3} \cos A$ in the form of $R \sin(A + \alpha)$, where R > 0 and $0^{\circ} \le A \le 90^{\circ}$. 2
 - ii) Hence, solve $\sin A + \sqrt{3} \cos A = -\sqrt{2}$ for $0^{\circ} \le A \le 360^{\circ}$. 2

End of Paper