(a) Factorise fully: $a^{2} c-b^{2} c-a b c^{2}+a b . \quad 2$
(b) Evaluate: $\quad \operatorname{Lim}_{x \rightarrow 0} \frac{x \cos x}{\sin 3 x}$.
(c) Find the equation of the line that passes through the point of intersection
of the lines $7 x-3 y+6=0,4 x+11 y-5=0$ and the point $(1,1)$.
(d) Given $G(x)=3^{2 x}$, find $G^{\prime}(0)$.
(e) The point P divides the interval $A B$ externally in the ratio 1:2.

Find the coordinates of P when $A=(-2,1)$ and $B=(1,-5)$.
(f) Shade the region, on the Cartesian number plane, that satisfies both

$$
y \leq \sqrt{9-x^{2}} \text { and } y \geq x^{3} \text { simultaneously. }
$$

(g) Solve for x : $3 \tan 2 x=\sqrt{3}$, for $0 \leq x \leq \pi$.

Question 2.

[START A NEW PAGE]
(a) Simplify: $\quad \sin (A+B) \sin (A-B)+\cos (A+B) \cos (A-B)$.
(b) Given the function: $\quad H(x)=x\left(\frac{2^{x}-1}{2^{x}+1}\right)$, show that $H(x)$ is an even function. 2
(c) Solve for $x: \quad|x-3|<1+|x|$.

In the diagram, triangles $A B C$ and $A D E$ are equilateral, and $\angle C A E=x^{0}$.

Not to scale
Copy the diagram onto your writing paper and Prove that: $\quad \triangle B A E \equiv \triangle C A D$.
(e) Find $\frac{d y}{d x}$ for: (i) $y=e x$.
(ii) $y=\sec 3 x$.
(f) Given $y=x e^{-x}+3, \quad y^{\prime}=(1-x) e^{-x}$ and $y^{\prime \prime}=(x-2) e^{-x}$,
(i) Show that the curve $y=x e^{-x}+3$ has a point of inflection. 2
(ii) Find the equation of the inflectional tangent. $\mathbf{2}$
(a) (i) Find the derivative of $\sqrt{1+6 x}$. 1
(ii) Hence, or otherwise, differentiate $x^{3} \sqrt{1+6 x}$.
(b) Find $\frac{d y}{d x}$ when: $y=\ln \left[\frac{x^{4}}{x-1}\right]$.
(c) For what values of x is the curve: $y=\frac{5}{2} x^{2}-\frac{1}{3} x^{3}+1$ increasing?
(d) Solve for x : $\frac{4}{x^{2}-4}-\frac{1}{x-2}=1$.
(e) Show, by sketching, that: $\pi \sin x \geq 2 x$ in the interval $0 \leq x \leq \frac{\pi}{2}$.
(f) Solve for x, given that $a>1: a^{2 x}+a=(1+a) a^{x}$. 2
(g) Find the simplified result of: $\frac{d}{d x}\left[\frac{x \sin x}{1+\cos x}\right]$.
(a) Show that $\log _{a^{n}} 3=\frac{1}{n} \log _{a} 3$, for $a>0$ and $n \neq 0$.
(b) In $\triangle A B C, A P \perp B C$ at P and $B Q \perp A C$ at Q, as shown in the diagram.

Not to scale

Copy the diagram onto your writing paper and
(i) Prove that $\triangle A Q R\|\| B P R$.
(ii) If $A Q=12, Q R=9$ and $B P=8$, find the area of $\triangle A B R$.
(c) Given the function: $f(x)=\frac{27(x-1)^{2}}{(x+1)^{3}}$.
(i) Show that: $f^{\prime}(x)=\frac{27(x-1)(5-x)}{(x+1)^{4}}$.
(ii) Find the stationary points of the function $y=f(x)$.
(iii) Determine the nature of these stationary points.2
(iv) Sketch the curve $y=f(x)$, showing any asymptotes, intercepts 3 and turning points.

THE END
$\because \because \because$ 気

MATHEMATICS Extension 1 : Question. / ...		
Suggested Solutions	Marks	Marker's Comments
$\begin{aligned} & a^{2} c-b^{2} c-a b c^{2}+a b \\ = & a^{2} c-a b c^{2}+a b-b^{2} c \\ = & a c(a-b c)+b(a-b c) \\ = & (a-b c)(a c+b) \end{aligned}$	1	
$\begin{aligned} \lim _{x \rightarrow 0} \frac{x \cos x}{\sin 3 x} & =\lim _{x \rightarrow 0} \frac{3 x}{3 \sin 3 x} \cdot \cos x \\ & =\frac{1}{3} \cdot \lim _{x \rightarrow 0} \frac{3 x}{\sin 3 x} \cdot \cos x \\ & =\frac{1}{3} \times 1 \times \cos 0 \\ & =\frac{1}{3} \end{aligned}$	1	other olethoods - subse $\theta=3 x$ - Simear l copprox.
) Let the line be: $\begin{array}{r} 7 x-3 y+6+k(4 k+11 y-5)=0 \\ \begin{array}{r} 7 a+i s+i=3 \\ \therefore 7-3+6+k(4+11-5)=0 \\ 10+10 k \quad k=-1 \\ \therefore \quad 7 x-3 y+6-1(4 k+11 y-5)=0 \\ \text { so } \quad 3 x-14 y+11=0 \end{array} \end{array}$	1	Pount of intersecfi $\begin{aligned} & \left(-\frac{51}{89}, \frac{59}{89}\right) \\ & \mu=\frac{3}{14} \\ & y-1=\frac{3}{14}(x-1) \end{aligned}$
$\begin{aligned} & a(x)=3^{2 x}=9^{x} \\ & 4^{\prime}(x)=3^{2 x} \cdot \ln 9 \\ & 4^{\prime}(0)=3^{\circ} \cdot \ln 9=\ln 9=3 \ln 2 \end{aligned}$		
$\begin{aligned} & A(-2,1)-1: 2 \quad B(1,-5) \\ & P=\left(\frac{-1 x 1+2 x-2}{-1+2}, \frac{-1 x-5)+2 x}{-1+2}\right) \\ & P=(-5,7) \end{aligned}$	1,1	
$\begin{array}{l\|l} & \text { (g) } \\ & 3 \operatorname{ten} 2 x=\sqrt{3} \\ & \operatorname{ten} 2 x=\frac{1}{\sqrt{3}} \\ \text { cuave } \\ & 0 \leq x \leqslant \pi \\ & \leq 5 x=2 \pi \\ \therefore & 2 x=\frac{\pi}{6} \text { or } \pi+\frac{\pi}{6} \\ \therefore & x=\frac{\pi}{12} \text { or } \frac{7 \pi}{12} \\ \text { (2) } \end{array}$	1,1	

ercury'staffhomeSIWOHVAdmin_M Fachassessment infolSuggested Mk solns template_V2.doc

MATHEMATICS Extension 1 : Question ?		
Suggested Solutions	Marks	Marker's Comments
$\text { (a) } \begin{aligned} & \sin (A+B) \sin (A-B)+\cos (A+B) \cos (A-B) \\ & =\cos [(A+B)-(A-B)] \\ & =\cos 2 B \end{aligned}$	1	Method 2: Exparsion of Lets cend $\sin ^{2} \theta+\cos ^{2} \theta \equiv 1$
$\text { (b) } \begin{aligned} H(-x) & =(-x) \frac{\left(2^{-x}-1\right)}{\left(2^{-x}+1\right)} \equiv-x \cdot \frac{\left(1-2^{+x}\right)}{\left(1+2^{x}\right)} \\ & =-x \cdot-\frac{1\left(2^{x}-1\right)}{2^{x}+1}=x \cdot\left(\frac{2^{x}-1}{2^{x}+1}\right) \\ \text { w.e } H(-x) & =H(x) \end{aligned}$ (b) $\therefore H(x)$ is an EVEN FUNCTION	1 1	-
(c) $\|x-3\|<1+\|x\|$ Grerphiceclly: $\begin{aligned} -x+3 & =1+x \\ 2 & =2 x \\ \therefore x & =1 \end{aligned}$ $\therefore x>1$	1 1	$\begin{aligned} & \text { Algebraic: }\|x-3\|-\|x\|<1 \\ & \frac{x<0}{x} \\ & \hline 1<x<3 \\ & \hline 1<x<3 \end{aligned}\left\|\frac{x \geqslant 3}{x \geqslant 3}\right\|$
(d) In \triangle S BAE cand CAD 1. $A E=A D$ (given data) 2. $\angle B A E=\angle C A D=(60-x)^{\circ}$ (All angles in equilateral A 3. $A B=A C$ (given) are $60^{\circ} \mathrm{sech}$) $\therefore \triangle B A E \equiv \triangle C A D \text { (SHS) }$		
(e) $\begin{aligned} & \text { (i) } y=e x \\ & \therefore \frac{d y}{d x}=e \end{aligned}$ (ii) $y=\sec 3 x$ $\therefore \frac{d y}{d x}=3 \sec 3 x \tan 3 x$	1 each	
(f) (i) For possible pounts of inflection $y^{\prime \prime}=0$ $\begin{aligned} & \therefore \quad(x-2) e^{-x}=0 \\ & \therefore \frac{x}{y}=2 \text { ces } e^{-x} \neq 0 \\ & y=2 e^{-2}+3 \end{aligned}$ TEST: since y is cont + difflble over $1.5^{\circ} \leq x \leqslant 2.5^{+}$ and $y^{\prime \prime}$ changes mign $(-0+)$ \therefore choonge in concarity \therefore - a Por at $x=2$ (ii) Ciresesient of Tangert: MT $=-1 \bar{e}^{-2}$		\therefore Equation $\begin{aligned} & y-\left(2 e^{-2}+3\right)=-1 e^{-2} \\ & y=-e^{-2} x+3+4 e^{-2} \end{aligned}$

IercurylstaffhomeSiWOHVAdm in_M FachAssessment in folSu ggested Mk solns template_V2.doc

IImercury\staffhomeSiWOHAdmin_M Fachassessment infolSuggested Mk solns template_V2.doc

TuryistaffhomeSIWOHVAdm in_M FachAssessment in fol Suggested Mk solns template_ V2.doc

IImercuryistaffhomeSIWOHMAdm in_M Fac\A ssessment in folSuggested Mk solns template_V2.doc

