Question 1.

(a) Factorise fully:
$$a^2c - b^2c - abc^2 + ab$$
. 2

(b) Evaluate:
$$\lim_{x \to 0} \frac{x \cos x}{\sin 3x}$$
. 2

(c) Find the equation of the line that passes through the point of intersection 2 of the lines 7x-3y+6=0, 4x+11y-5=0 and the point (1, 1).

(d) Given
$$G(x) = 3^{2x}$$
, find $G'(0)$. 2

(e) The point *P* divides the interval *AB* externally in the ratio 1:2. **2** Find the coordinates of *P* when A = (-2, 1) and B = (1, -5).

(f) Shade the region, on the Cartesian number plane, that satisfies both
$$y \le \sqrt{9-x^2}$$
 and $y \ge x^3$ simultaneously. 3

(g) Solve for x: $3 \tan 2x = \sqrt{3}$, for $0 \le x \le \pi$. 2

Question 2. [START A NEW PAGE]

(a) Simplify:
$$\sin(A+B)\sin(A-B) + \cos(A+B)\cos(A-B)$$
. 2

(b) Given the function:
$$H(x) = x \left(\frac{2^x - 1}{2^x + 1} \right)$$
, show that $H(x)$ is an even function. 2

(c) Solve for x:
$$|x-3| < 1+$$

or x:
$$|x-3| < 1+|x|$$
.

In the diagram, triangles *ABC* and *ADE* are equilateral, and $\angle CAE = x^0$. Not to scale

Copy the diagram onto your writing paper and Prove that: $\Delta BAE \equiv \Delta CAD$.

(e) Find
$$\frac{dy}{dx}$$
 for: (i) $y = ex.$ 1
(ii) $y = \sec 3x.$ 1

(f) Given
$$y = xe^{-x} + 3$$
, $y' = (1 - x)e^{-x}$ and $y'' = (x - 2)e^{-x}$,
(i) Show that the curve $y = xe^{-x} + 3$ has a point of inflection. 2

(ii) Find the equation of the inflectional tangent.

Marks

3

2

Question 3.

[START A NEW PAGE]

Marks

- (a) (i) Find the derivative of $\sqrt{1+6x}$. 1
 - (ii) Hence, or otherwise, differentiate $x^3\sqrt{1+6x}$. 1

(b) Find
$$\frac{dy}{dx}$$
 when: $y = \ln\left[\frac{x^4}{x-1}\right]$. 2

(c) For what values of x is the curve:
$$y = \frac{5}{2}x^2 - \frac{1}{3}x^3 + 1$$
 increasing? 2

(d) Solve for x:
$$\frac{4}{x^2 - 4} - \frac{1}{x - 2} = 1.$$
 2

(e) Show, by sketching, that:
$$\pi \sin x \ge 2x$$
 in the interval $0 \le x \le \frac{\pi}{2}$. 2

(f) Solve for x, given that
$$a > 1$$
: $a^{2x} + a = (1+a)a^x$. 2

(g) Find the simplified result of:
$$\frac{d}{dx} \left[\frac{x \sin x}{1 + \cos x} \right]$$
 3

Question 4.

[START A NEW PAGE]

(a) Show that
$$\log_a n 3 = \frac{1}{n} \log_a 3$$
, for $a > 0$ and $n \neq 0$. 1

(b) In $\triangle ABC$, $AP \perp BC$ at P and $BQ \perp AC$ at Q, as shown in the diagram.

(i)

Not to scale

Copy the diagram onto your writing paper and Prove that $\Delta AQR \parallel \Delta BPR$.

3

(ii) If AQ = 12, QR = 9 and BP = 8, find the area of $\triangle ABR$. 2

(c) Given the function:
$$f(x) = \frac{27(x-1)^2}{(x+1)^3}$$
.
(i) Show that: $f'(x) = \frac{27(x-1)(5-x)}{(x+1)^4}$.

(ii)	Find the stationary points of the function $y = f(x)$.	2
(iii)	Determine the nature of these stationary points.	2

(iv) Sketch the curve y = f(x), showing any asymptotes, intercepts 3 and turning points.

Marks

YII HALFYEALY M. EXTI, 2006

ercury\staffhome\$\WOH\Admin_M Fac\Assessment in fo\Suggested Mk solns template_V2.doc

MATHEMATICS Extension 1 : Question Suggested Solutions	Marks	Marker's Comments
(4) $\sin(A+B) \sin(A-B) + \cos(A+B) \cos(A-B)$		Method Z : Expansion of Lus
$= \cos \left[(A+B) - (A-B) \right]$ = $\cos 2B$	1	and sinto+costo=
(b) $H(-x) = (-x) \left(\frac{x^{-k}}{(x^{-k}+1)} \right) = -x \cdot \left(\frac{(-2^{+k})}{(1+2^{k})} \right)$ $= -x \cdot -\frac{(2^{-k}+1)}{2^{k}+1} = x \cdot \left(\frac{2^{k}-1}{2^{k}+1} \right)$ i.e $H(-x) = H(x)$ i. $H(x)$ is an Even function	1	10
(c) $ x-3 < + x $. $ x $ (c) $ x-3 < + x $. $ x $ (c) $ x-3 < + x $. $ x $ (c) $ x-3 < + x $ (c) $ x-3 < + x $ (c) $ x-3 < + x $. $ x $ (c) $ x-3 < + x $. $ x $ (c) $ x-3 < + x $. $ x $ (c) $ x-3 < + x $. $ x $ (c) $ x-3 < + x $. $ x $ (c) $ x-3 < + x $. $ x $ (c) $ x-3 < + x $. $ x $ (c) $ x-3 < + x $. $ x $ (c) $ x-3 < + x $. $ x $ (c) $ x-3 < - x $ (c) $ x-$	١	Algebraic: $ x-3 - x < 1$ $\frac{x_{40}}{x}$ $0 \le x < 3$ $\frac{x_{33}}{x}$ $\frac{x_{33}}{x}$ $1 < x < 3$ x_{33} $\Rightarrow x > 1$
 a) In &s BAE and CAD i. AE = AD (given data) z. LBAE = LCAD = (60-x)^o (All angles in equivalenteral A 3. AB = Ac (given) ase 60^o 2 ach) ABAE = LCAD (SHS) 	5	A Go - x - C B C I For #100 3 I. Fos explaining I For SAS.
(e) (i) y = ex $(ii) y = sac 3x$		
(f) (i) For possible points of inflection $y''=0$ $\therefore (k-2)e^{-k} = 0$ $\therefore k=2$ $e^{-k} \neq 0$ $y = 2e^{-2} + 3$ TEST: $ k 1.5 2 2.5 $	۰	ten somet Somet
Since y is cond + diffiche over (15 5×22.5" and y" changes sign (-0+)	J .	i. Equation
(ii) Circadient of Tangent : Mr = -le-2	-	$y = (2e^{-2}+3) = -1e^{-1}$ $y = -e^{-2}x + 3 + 4e^{-1}$

/

1ercury\staffhome\$\WOH\Admin_M Fac\Assessment in fo\Suggested Mk solns template_V2.doc

\\mercury\staffhome\$\WOH\Admin_M Fac\Assessment in fo\Suggested Mk solns template_V2.doc

\mercury\staffhome\$\WOH\Admin_M Fac\Assessment in fo\Suggested Mk solns template_V2.doc

ury/staffhome\$\WOH\Admin_M Fac\Assessment info\Suggested Mk solns template_V2.doc