Question 1.

Marks

(a) Rationalise the denominator of:
$$\frac{4\sqrt{2}-3}{\sqrt{2}+5}$$
. 2

(b) Simplify:
$$\frac{2}{x^2-4} - \frac{3}{x+2} + \frac{5}{x-2}$$
. 2

(c) Evaluate:
$$\lim_{x \to 0} \frac{\sin\left(\frac{x}{5}\right)}{2x}$$
. 2

(d) Solve for *t*:
$$(\pi - t)(t - 3) < 0$$
. 2

(e) Differentiate the following with respect to *x*.

(i) ex^2 . 1

(ii)
$$7^{x}$$
. 1

(iii)
$$\frac{1}{\sqrt{1+x^2}}$$
. 2

(iv)
$$\ln\left(\frac{x+1}{\sqrt{\sin 2x-1}}\right)$$
. 3

Question 2.	[Start a New page]	Marks
(a)	If α and β are the roots of the equation $x^2 - 2x - 4 = 0$,	
	(i) Show that $\alpha^2 + \beta^2 = 12$.	2
	(ii) Hence, or otherwise find $\alpha^3 + \beta^3$.	1
(b)	Solve for <i>x</i> : $ x-2 < 3 - x $.	3

(c) Given $f(x) = 3x \ln^2 x$, find f'(x). 3

2

- (d) Shade the region on the number plane where: $y > \sqrt{x}$.
- (e) Equilateral triangles *ABX*, *CBY* and *CAZ* are constructed externally on the sides *AB*, *BC* and *CA* of $\triangle ABC$ respectively, as shown below.

- (i) Copy the diagram onto your writing paper and **2** Prove that: $\Delta BXC \equiv \Delta BAY$.
- (ii) Hence, or otherwise, explain why BZ = AY = CX. 2

Question 3. [Start a New Page]

(a) Solve for x:
$$\sqrt{3} \tan(x - \frac{\pi}{3}) = 1$$
, for $0 \le x \le 2\pi$. 2

Marks

(b) (i) Sketch the graph of
$$y = 1 - \cos \pi x$$
 over the domain $0 \le x \le 2$. 2

(ii) Find the equation of the tangent to $y = 1 - \cos \pi x$ at $x = \frac{1}{3}$.

(c) Prove that:
$$\frac{\sin\theta}{\cos\theta + \sin\theta} + \frac{\sin\theta}{\cos\theta - \sin\theta} \equiv \tan 2\theta.$$
 2

(d) In
$$\triangle ABC$$
, $\angle CAB = \alpha^0$, $\angle ABC = \beta^0$ and $\angle BCA = \gamma^0$.
The point *P* is chosen internally in $\triangle ABC$ so that:
 $\angle PAB = \angle PBC = \angle PCA = x^0$ as shown in the diagram.

(i) Show that:
$$\sin(\beta - x)^0 = \frac{PA}{PB} \cdot \sin x^0$$
. 1

(ii) Hence show that:
$$\sin(\alpha - x)^0 \sin(\beta - x)^0 \sin(\gamma - x)^0 = \sin^3 x^0$$
. 2

(iii) Using the identity:
$$\cot p - \cot q = \frac{\sin(q-p)}{\sin p \sin q}$$
, deduce that: 2
 $(\cot x^0 - \cot \alpha^0)(\cot x^0 - \cot \beta^0)(\cot x^0 - \cot \gamma^0) = \cos ec \alpha^0 \cos ec \beta^0 \cos ec \gamma^0$.

Question 4. [Start a New Page]

(a) Consider the statement:

'For a point of inflection to exist at x = c on a continuos curve y = f(x), then f'(c) = f''(c) = 0 only '. Discuss the truthfulness of this statement, giving reasons.

(b) Consider the curve:
$$y = (x + \frac{1}{x})^2 - 5(x + \frac{1}{x}) + 6\frac{1}{4}$$
.

(i) Determine the *x*-intercepts.

(ii) Show that: $\frac{dy}{dx} = \left(1 - \frac{1}{x^2}\right)\left(2x - 5 + \frac{2}{x}\right).$ 2

- (iii) Hence determine the stationary points of this curve. 3
- (iv) Determine the nature of these stationary points. **3**

(v) Hence sketch the curve
$$y = (x + \frac{1}{x})^2 - 5(x + \frac{1}{x}) + 6\frac{1}{4}$$
. 3
[show all essential detail].

THE END

🙂 😐 🛞 🏠

2

2

Suggested Solutions	Marks	Marker's Comments
$\frac{91(a)}{52-3} + \frac{5-52}{5-52} = \frac{2552-8-15+352}{25-2}$	١	x 12-5 J2-5
$= 23\sqrt{2} - 23 = \sqrt{2} - 1$	1	
$\frac{2}{x^{2}-4} \xrightarrow{3} + 5 \xrightarrow{2} - 2 \xrightarrow{+} 3 \xrightarrow{+} 5}{x^{2}-2} \xrightarrow{(x+2)(x-2)} \xrightarrow{x+2} \xrightarrow{x-2}$		
= 2 - 3(x-2) + 5(x+2) (x+2)(x-2)	1	Add Angeliesen
$\frac{2}{(k+2)(k-2)} = \frac{2k+18}{(k+2)(k-2)}$		
$\frac{1}{10000000000000000000000000000000000$	1	organising and showing X1
	1	Test.
a) $(\pi - t)(t - 3) < 0$ $\pi > 3$		l for t < 3'
$\frac{2}{1+23} er + 2\pi$	۱,۱	1 for ortym
$y' = 2e^{\chi}$		
$ii \qquad y = 7^{2} = e^{2(1-7)^{2}}$		
(iii) $y = \frac{1}{\sqrt{1+x^2}}$		CALL ROOM
$y' = -\frac{1}{2}(1+x^{2}) \times 22$	1	10 10 10 10 10 10 10 10 10 10 10 10 10 1
$= - \chi (1 + \chi)$ (iv) $y = \ln \chi + 1 = \ln (\chi + 1) - \frac{1}{2} \ln (\chi + 1)$	Einzz-	- ')
$\frac{\sqrt{2} \cos 2\lambda t}{\sqrt{2} \cos 2\lambda t}$	1,1	Entre Derline e

2 .

\CALLISTO\StaffHome\$\WOH\RAH M Fac Admin\Assessment info\Suggested Mk colne template _V3.dec

\\CALLISTO\StaffHome\$\WOH\JRAH M Fac Admin\Assessment info\Suggested Mk solns template_V3.doc

WCALLESTO'StaffHomes/WOHVJRAH M Fac-Admin'Assessment info'Suggested Mk solns template_V3.doc

MATHEMATICS Extension 1 : Question 3 **Suggested Solutions** Marks **Marker's Comments** 3(d) (i) IN A APB, using the sine rule PA = PB or Π Sinko SIN(B-20)° $\frac{SiN(B-K)}{PA} = SiNK^{0}$ $\frac{PA}{Siw(B-x)^{\circ}} = \frac{PA}{PB}$ (ii) From (i) $\sin(\alpha - 2i)^{2} = PC \sin 2i^{2}$ end sin (Y-K) = PB sin 20° PC ~ sin(x-2) sin(B-2) sin(Y-2) 2 = PC sinx × PA sinx × PB sinx PA PB PC = SIN X ged (m) (cotx° - cotx°) (cotx° - cotp°) (cotx° - cot)? = $\sin(\chi - \chi) \times \sin(\beta - \chi) \times \sin(\gamma - \chi)^{\circ}$ $\sin(\chi - \chi) \times \sin(\gamma - \chi)^{\circ}$ = <u>xin²x</u> using (ii) <u>sin³20 sing</u> sing sing (ii) = 1 =x » sin B » sin b » = cosecx cosecp cosec god

WCALLIST O\StaffHome\$\WOIPJRAH M Fao Admin\Assessment info\Suggested Mk solns template_V3.doc

ALLISTO'StaffHomeSWOIFIRAH M Fae Admin'Assessment info/Suggested Mk solas template V3.d