Question 1 (15 Marks)

(a) Solve for $x: \quad 5^{x} \cdot 25^{2 x+1}=125^{x}$. 2
(b) Solve for $m: \quad|m+2|>1-|m| \quad 2$
(c) Evaluate $\sqrt{2} \tan 60^{\circ}-\frac{\cos 30^{\circ}}{\sin 45^{\circ}}$
(d) If $x^{2}+3 x y-4 y^{2}=0$, then the ratio $\frac{x}{y}$ has one value of unity.

Find the other value.
(e) If $\tan A=-\frac{12}{5}$ and $\sin A>0$, evaluate $\sec A$.
(f) Differentiate
(i) $3 \sqrt{\pi}-2 x^{5} \quad 1$
(ii) $\sin x \cos x \quad 2$
(iii) $\sqrt{(\ln 2 x)^{7}}$
(iv) $\frac{2 x}{4 x+1}$

Question 2 (15 Marks) [Start a New Page]
(a) If $\log _{10} y=\frac{2}{3} \log _{10} x-2$, express y in terms of x with no logarithmic expression.
(b) Find the gradient of the tangent to the curve $y=e^{x^{2}}$ when $x=1$.
(c) $A B C D E$ is a regular pentagon. Diagonals $B D$ and $C E$ intersect at P.
(i) With the aid of a diagram, show that $\triangle C D E \equiv \triangle B C D$.
(ii) Show that $P D=P C$.
(iii)Hence, or otherwise, show that $A B P E$ is a kite.
(d) Differentiate, by first principles the function, $f(x)=\sqrt{x+2}$.

Question 3 (15 Marks) [Start a New Page]

Marks

(a) Write the domain and range of $y=\ln \left(1-x^{2}\right)$.
(b) Find the values of x for which the curve $y=x^{3}-12 x$, is monotonically increasing.
(c) Find $\lim _{x \rightarrow 0} \frac{2 \sin x}{\tan \left(\frac{x}{2}\right)}$, giving reasons.
(d) Show that $y=\frac{x}{x^{3}-x}$ an even function \& state the restriction on x.
(e) If $\cos x=\frac{9-a^{2}}{9+a^{2}}$, find $\sin x$ in terms of a.
(f) Draw a neat sketch of $y=\frac{(x+1)^{2}}{(x-1)(x+2)}$, clearly showing all important features (calculus is not required).
(g) Find the point P that divides the interval $A B$ internally in the ratio 5:3, if $A=(3,-7)$ and $B=(8,2)$.

Question 4 (15 Marks) [Start a New Page]

(a) Find the first 2 positive values of x such that $\sin 2 x=0 \cdot 1$.
(Answer to 1 decimal place).
(b) (i) Show that the locus of a point P such that $A P \perp B P$, where A and B are
$(1,2)$ and $(3,5)$, respectively, is $(x-2)^{2}+\left(y-\frac{7}{2}\right)^{2}=\frac{13}{4}$
(ii) Show that the line $3 x+y=2$ does not touch nor cross the equation given in part b (i).
(c) Find any points of inflexion on the curve $y=x^{4}-x^{2}+1$
(d) Consider the function $y=\sqrt[3]{x^{4}}-1$.
(i) Show that it has only one stationary point.
(ii) Test the nature of this stationary point.
(iii)Draw a neat sketch of this function.
yearll Ext (1) 2008 Tl exam
Q1
(a)

$$
\begin{gathered}
5^{x} \times 25^{2 x+1}=125^{x} \\
\therefore x+4 x+2=3 x \\
2 x=-2 \\
x=-1
\end{gathered}
$$

 all ralm.
(c)

$$
\begin{align*}
\sqrt{2} \tan 60^{\circ}-\frac{\cos 30^{\circ}}{\sin 45^{\circ}} & =\sqrt{2} \times \frac{\sqrt{3}}{2}-\frac{\frac{\sqrt{3}}{2}}{\frac{1}{\sqrt{2}}} \tag{1}\\
& =\frac{\sqrt{3}}{\sqrt{2}}-\frac{\sqrt{3}}{\not x \sqrt{2}} \times \sqrt{2} \\
& =0 .
\end{align*}
$$

(d)

$$
\begin{aligned}
& x^{2}+3 x y-4 y^{2}=0 \\
& (x+4 y)(x-y)=0 \\
& x=-4 y \quad \text { or } \quad x=y \\
& \frac{x}{y}=-4 \quad \therefore \frac{x}{y}=
\end{aligned}
$$

$$
\therefore \frac{x}{y}=1
$$

e) $\quad \tan A=-\frac{12}{5}$.
second Q as $\sin A>0$.

$$
\begin{align*}
\sec A & =\frac{1}{\cos A} \\
& =-\frac{13}{5} . \tag{1}
\end{align*}
$$

(f) (i) $\frac{d}{d x}\left(3 \sqrt{\pi}-2 x^{5}\right)=-10 x^{4}$
(ii) $\frac{d}{d x} \sin x \cos x=$

$$
\begin{aligned}
& =\sin x(-\sin x)+\cos x(\cos x \\
& =\cos ^{2} x-\sin ^{2} x \\
& \text { Qr } 1-2 \sin ^{2} x \\
& \text { or } 2 \cos ^{2} x-1
\end{aligned}
$$

$(f)(111)$

$$
\begin{aligned}
\left.\frac{d}{d x}[\ln 2 x)\right]^{\frac{1}{2}} & =\frac{7}{2}[\ln 2 x]^{12} x \frac{1}{x} \\
& =\frac{7}{2 x}[\ln 2 x]^{5 / 2}
\end{aligned}
$$

(iv)

$$
\begin{align*}
\frac{d}{d x}\left(\frac{2 x}{4 x+1}\right) & =\frac{(4 x+1)(2)-(2 x)(4)}{(4 x+1)^{2}} \tag{1}\\
& =\frac{2}{(4 x+1)^{2}} \tag{i}
\end{align*}
$$

Q2.
(a)

$$
\begin{align*}
\log _{10} y & =\frac{2}{3} \log _{10} x-2 \\
& =\log _{10} x^{2 / 3}-2 \\
& =\log _{10} x^{2 / 3}-\log _{10} 100 \\
& =\log _{10}\left(\frac{x^{2 / 3}}{100}\right) \\
\therefore y & =\frac{x^{2 / 3}}{100} \tag{1}
\end{align*}
$$

(b)

$$
\begin{aligned}
& y=e^{x^{2}} \\
& y^{\prime}=2 x e^{x^{2}}
\end{aligned}
$$

\therefore when $x=1, y^{\prime}=2 e$. (1)

(i) In $\triangle C D E \$ \triangle B C D$.
$B C=C D$ ($A B C D E$ is arejular pentagon) $\angle B C D=\angle C D E$ (equal anyles of a regular $C D=E D$ (equal sides pentagon). $\therefore \triangle C D E=\triangle B C D$ (SAS) 3.
(ii) $\angle E C D=\angle C D$ (corresponding onyles of congruent trianiles equal).
$\therefore P C=P P\left(\begin{array}{c}\text { (equal side opposite equal ayles } \\ \text { in } \triangle C D P \text {) }\end{array}\right.$
c) (iii) $B D=C E$ (corresponding sides of anngnent triangles equal) ($\frac{1}{2}$

$$
\begin{aligned}
P D & =P C \text { (from ii) } \\
\therefore B D-P D & =C E-C P \\
\therefore B P & =P E \text { (立 }
\end{aligned}
$$

since $A B=A E$. (sides of regular pentagon) $\frac{1}{2}$
$\therefore A B P E$ is a kite (two pairs of adjacent sides
equal) equal)
(d)

$$
\text { d) } \begin{align*}
f(x) & =\sqrt{x+2} \tag{1}\\
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\sqrt{x+h+2}-\sqrt{x+2}}{h} \tag{1}\\
& =\lim _{h \rightarrow 0} \frac{\sqrt{x+h+2}-\sqrt{x+2}}{h} \times \frac{\sqrt{x+h-2}+\sqrt{x+2}}{\sqrt{x+h-2}+\sqrt{x+2}} \\
& =\lim _{h \rightarrow 0} \frac{x+h+2-(x+2)}{h(\sqrt{x+h-2}+\sqrt{x+2})} \\
& =\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h-2}+\sqrt{x+2}} \tag{1}\\
& =\frac{1}{2 \sqrt{x+h}}
\end{align*}
$$

Q3
(a)

Domain: $\{x:-1<x<1\}$
Range: $\{y: y \leq 0\}$.
(b)

$$
\begin{align*}
& y=x^{3}-12 x \\
& y^{\prime}=3 x^{2}-12 \tag{1}
\end{align*}
$$

$y^{\prime}>0$ when $3 x^{2}>12$

$$
x^{2}>4 .
$$

$$
\therefore\{x: x<-2 \cup x>2\} \text {. (1) }
$$

(c)

$$
\begin{align*}
\lim _{x \rightarrow 0} \frac{2 \sin x}{\tan \left(\frac{x}{2}\right)} & =\lim _{x \rightarrow 0} \frac{4 \sin \left(\frac{x}{2}\right) \cos \left(\frac{x}{2}\right)}{\frac{\sin \left(\frac{x}{2}\right)}{\cos \left(\frac{x}{2}\right)}} \tag{1}\\
& =\lim _{x \rightarrow 0} 4 \cos ^{2}\left(\frac{x}{2}\right) \\
& =4
\end{align*}
$$

Altematively:

$$
\text { 4: } \begin{aligned}
& \lim _{x \rightarrow 0} 2 \sin x \times \frac{1}{\tan \left(\frac{x}{2}\right)} \\
= & \lim _{x \rightarrow 0} 2 \frac{\sin x}{x} \times \frac{x}{1} \times \frac{1}{\frac{x}{2}} \times \frac{\frac{x}{2}}{\tan \frac{x}{2}} \\
= & 2 \times 1 \times x \times \frac{2}{x} \times 1 \\
= & 4
\end{aligned}
$$

$$
\begin{aligned}
f(-x) & =\frac{-x}{(-x)^{3}-(-x)} \\
& =\frac{-x}{-x^{3}+x} \\
& =\frac{x}{x^{3}-x} \\
& =f(x) \quad \therefore \text { even. }
\end{aligned}
$$

e)

$$
\begin{aligned}
\cos x & =\frac{9-a^{2}}{9+a^{2}} \\
\sin x & = \pm \sqrt{1-\frac{\left(9-a^{2}\right)^{2}}{\left(9+a^{2}\right)^{2}}} \quad\binom{\text { using }}{s^{2} x+\cos ^{2} x=1} \\
& = \pm \sqrt{\left(9+a^{2}\right)^{2}-\left(9-a^{2}\right)^{2}} \\
& = \pm \sqrt{81+18 a^{2}+a^{4}-81+18 a^{2}-a^{4}} \\
& = \pm \sqrt{36 a^{2}} \\
& = \pm \frac{9+a^{2}}{9+a^{2}} \\
&
\end{aligned}
$$

$3 \cdot(f)$

(g) $\quad A(3,-7)_{5: 3} B(8,2)$

$$
\begin{equation*}
p=\left[\frac{9+40}{8}, \frac{-21+10}{8}\right]=\left(6 \frac{1}{8},-1 \frac{3}{8}\right) \tag{1}
\end{equation*}
$$

corvect formula.

Q4.
(a)

$$
\begin{align*}
& 2 x=0.1 \text { or } 3.04 \\
& x=0.05 \text { or } 1.52 \tag{2}
\end{align*}
$$

$x=0.1$ and 1.5 (1dp).
(b) (i)

$$
\begin{align*}
& \text { (i) } \frac{y-2}{x-1} \times \frac{y-5}{x-3}=-1 \tag{1}\\
& \therefore y^{2}-7 y+10=-\left(x^{2}-4 x+3\right) \\
& x^{2}+4 x+4+y^{2}-7 y+\frac{49}{4}=-13+4+\frac{49}{4}(1) \\
& \therefore(x+2)^{2}+\left(y-\frac{7}{2}\right)^{2}=\frac{13}{4}
\end{align*}
$$

4(b) (ii) Distance of secant to contre.

$$
\begin{align*}
d & =\frac{\left|3 \times 2+\frac{7}{2}-2\right|}{\sqrt{3^{2}+1^{2}}} \tag{1}\\
& =\frac{15}{2 \sqrt{70}} \tag{i}\\
& \approx 2.37
\end{align*}
$$

Now radius is $\sqrt{\frac{13}{4}} \approx 1.8 \quad \therefore d>r$ (1)
\therefore line doemit touch nor cross the circle.
(c)

$$
\begin{align*}
& y=x^{4}-x^{2}+1 \\
& y^{\prime}=4 x^{3}-2 x \tag{1}\\
& y^{\prime \prime}=12 x^{2}-2
\end{align*}
$$

For possible points of inflexion $y^{\prime \prime}=0$

$$
\therefore x^{2}=\frac{1}{6} \quad \therefore x= \pm \frac{1}{\sqrt{6}}
$$

fest. $x=\frac{1}{\sqrt{6}}$

$$
x=-\frac{1}{\sqrt{6}}
$$

x	0	$\frac{1}{\sqrt{6}}$	$0+5$
$y^{\prime \prime}$	-2	0	1
	0	+	

\therefore Change in concavity

x	$-\frac{1}{2}$	$-\frac{1}{\sqrt{6}}$	0
$y^{\prime \prime}$	1	0	-2

\therefore Change in concavity.
\therefore pants of inflexion at

$$
\begin{equation*}
\left(\frac{1}{\sqrt{6}}, \frac{31}{36}\right) \text { and }\left(-\frac{1}{\sqrt{6}}, \frac{31}{36}\right) \tag{1}
\end{equation*}
$$

(d) $\quad y=x^{4 / 3}-1$

$$
\text { (1) } y^{\prime}=\frac{4}{3} x^{\frac{1}{3}}
$$

For stat. pt $y^{\prime}=0 \quad \therefore x=0$. only
\therefore stat pt at $(0,-1)$.
(ii) now $y^{\prime \prime}=\frac{4}{9} x^{-2 / 3}$
at $x=0, y^{\prime \prime}=0 \quad \therefore$ use dy to test.

x	-0.1	0	0.1
y^{\prime}	-0.62	0	0.62

\therefore minimum at (0,1)
(iii)

