KAMBALA CHURCH OF ENGLAND GIRLS' SCHOOL

HALF-YEARLY TEST

MATHEMATICS

YEAR 11

3 UNIT

TIME ALLOWED: 1 HOUR READING TIME: 5 MINUTES

MAY 1996

INSTRUCTIONS:

- 1. All questions may be attempted.
- 2. In every question, all necessary working must be shown.
- 3. Marks will be deducted for careless or badly arranged work.
- 4. Non programmable, silent calculators and accepted geometrical instruments may be used.
- 5. Begin each question on a new page.

QUESTION 1

a) (i) Which of the graphs below represent a function?

B.

D.

A. 19

-2 0 2 ×

C 2 2 2

- (ii) State the range for each of the graphs A, B, C, D.
- Using at least half a page, sketch $y = \frac{2}{x+3}$
- c) A function is defined as follows:

$$f(x) = x+1$$
 when $x < -3$
= -1 when $-3 \le x \le 1$
= x^2 when $x > 1$

Evaluate

$$f(0) + f(-5) - f(2)$$

QUESTION 2 (Start a new page)

a) Simplify the following trigonometric expressions

$$\frac{\cos(180^{\circ} + A)}{\sin (90^{\circ} - A)}$$

(ii)
$$\sin^3\theta + \sin\theta \cos^2\theta$$

(iii)
$$2\cos^2 150^\circ - 1$$

b) Prove the following trigonometric identity

$$\frac{1 + \cot \theta}{\csc \theta} - \frac{\sec \theta}{\tan \theta + \cot \theta} = \cos \theta$$

QUESTION 3 (Start a new page)

a) Solve the following equations for x.

$$(i) \quad \left| x - 1 \right| \quad + \quad \left| x - 3 \right| \quad = 8$$

$$(ii) \quad \frac{4x-3}{2x+1} < 3$$

b) Solve the following equations for 0° ← ← 360°

(i)
$$\sin \theta + 3 \cos \theta = 0$$

(ii)
$$\tan^2 \theta + \tan \theta - 2 = 0$$

(iii)
$$5\cos^2\theta + 2\sin\theta = 2$$

QUESTION 4 (Start a new page)

a) Given
$$F(x) = (x + 1)(x - 1)$$
, simplify $F(x^2)$

- b) Two buildings of equal height are 40m apart. At a point on the horizontal line joining their feet the angles of elevation of the tops of the buildings are 47° and 28°.
 - (i) Show that the height, h, of the buildings is given by

$$h = 40 \tan 47^{0} \tan 28^{\circ} \tan 47^{\circ} + \tan 28^{\circ}$$

- (ii) Calculate h correct to 2 decimal places.
- Find the equation of the diameter of the circle $(x+1)^2 + (y+2)^2 = 16$ which passes through the point of intersection of the lines 2x y = 5 and x + 3y 3 = 0.

END OF PAPER