NEWINGTON COLLEGE

Preliminary Common Assessment 2001

MATHEMATICS
Extension 1
Time alloweg - 2 hours

_:'  DIRECTIONS TO CANDIDATES;
All questions are of equal vajye,

Start each question on a peyw page.
The questions are not necessarily arranged in order of difficulty. Candidates are
advised to reaq the whole Paper carefully at the Start of the €Xaminatiop,
Unless otherwise stated candidates shon]d leave their answers in simplest exact

OUTCOMES TO BE ASSESSED:
C P2 Provides reasoning to Support conclusions which are appropriate in the
P3 Iferforms Ioutine arithmetic and a_Igcbraic man_ipula.ti.on involving surds,
P4 Chooses ang applies appropriate arithmetic, graphicaj, trigonometric and
Ps Understands the concept of a function and the relationship between a

PE2  Uses multi-step deductive Teasoning in variety of contexts; _
PE3  Solves problems involving bermutations and combinations, inegualities,
ials. ¢ . .
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Question 1 (12 marks) P et

(a) Write in simplest form: 227 - ? +348 .
(®)  Solve |x-3]=11,
(c)  Factorise fully: 16x* - 547,

) Express as a rationaj number in simplest terms: 2.039,

(e} Give the natura] domain for each of the following:

() S(x)=3x 2541
(i) g(x)=vx* -9 -
.. 1
] h(x)= .
(iii) (x) P
Question 2 Start this question on g new page (12 marks)

6 mem
(a) Solve for &, to the nearest minute,
sinf = =03, for0°<g< 360°.
(b) Draw a solution for the following inequation on a number line

¥ <16.

(c) Express 1+ , in the form a+b3 . Where a and p are rational.

1

> showing all features,
2x+1

(d) (i) Sketch the curve y=

(i) Iy (x)= ——]—T 1s moved horizontally 1 unit to the left, find
X+

answer
Question3  Starg this question on 4 new page (12 marks)
(@  Solve forx, tan3x+25ecx+1=0, for 0°< x < 360°.

(b) The sides of a triangle are in the ratio 3: 5 : 6. Find the size of the

smallest angle (to the hearest minute).
* ’ Q3 cont..../page 3
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Question 3 (cont.)

(c) Find the value of ., (to the nearest minute).

Diagram not 10 scale

P T
™~ (d Prove sin? @cosf +cos’ 8 = sin(90° - 6).
Question 4 Start this question on 2 new page (12 marks)
@ Iff(x)=x+2and F(x)=2x+3, then find F(F(3)- ¢
(b) = Simplify C
1 1
Ly ———
@ x? —xy 2 -2xp+)
@) tanf+ _oosb
1+sin@
C . 12
(©) Find siné, if cose=-—-ﬁ and 90° <6 <180°.
(d) Solve for x:
6)) |2x-11=3x_4
. 2 x+4 -
@) rrl x+ll -~
Question 5 Start this question on a new page (12 marks)

= (a) Solve for X:

1—sin’ 2x=—12-, ~90°<x<90°.

—_—

A rectangular property next to a river has an area of 20 000 m’. If a farmer
' uses the river as one boundary and has only 400 m of fence for the other

three sides, what are the dimensions of the field?
Q5...Cont./ page 4
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Question 5 (comt.)

(c) (i) Give the equation of the curve below-
(i1) Is this function an even or odd function or is it neither? Give
reasons.
(iii) Find the equation for an inverse function.

¥

I

4 -3

("2: '8)

Question 6  Start this qﬁestion On a new page (12 marks)

(a) F ind the co-ordinates of the point P that divide the interval AB in the ratlo A
2 3 where A is (-3, 5) and B is (-6,-10)
@) internally.
(11) extemally.

In the diagram below, A (-3,-3), B(-2,2)and C (2, 3) are three pdirﬁs of
‘ a parallelogram ABCD. Find the fourth point D.

Q6...cont./page 5
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Questicn 6 (cont.)

(c) Two ships, A and B. sail from a port simultaneously with A sailing twice
as fast as B. Ship A is on a course of 170°T whilst Ship B’s course is
290°T. Afier 1 hour, the two ships are found to be 70 nautical miles apart.
(i) Draw a diagram to describe the informatibn given above.

ind the speed of each ship, in knots, correct to two decimal places and
determine also the bearing of B from A at this time, expressed as a true
bearing, correct to the nearest degree. (NOTE: a knot is defined as a

speed of one nautical mile per hour.}.

Question 7 Start this quéstion on a2 new page (12 marks)
() By completing the square, find the centre and radius of the following
circle: |
X =3x+y +y-12=0
and hence, graph the curve, showing the centre and all intercepts.

(o)  Sketchthe region defined by the following inequations

}'S\/S’—xz. and y=x’-9
(c) Solve for x:
) [3x - 4}+ 2]x+3[<5

x-1 2x
“x+1 2x-1

(i)

~ END OF PAPER
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