NORTH SYDNEY BOYS HIGH SCHOOL

2010 Year 11 Task 2

Mathematics
 Extension 1

General Instructions

- Working time - 50 minutes
- Write on the lined paper in the booklet provided
- Write using blue or black pen
- Board approved calculators may be used
- All necessary working should be shown in every question
- Each new question is to be started on a new page.
- Attempt all questions

Class Teacher:

(Please tick or highlight)
O Mr Berry
O Mr Ireland
O Mr Fletcher
O Mr Lam
O Mr Rezcallah
O Mr Trenwith
O Mr Weiss

Student Name:

\qquad
(To be used by the exam markers only.)

Question No	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	Total	Total $\%$
Mark	$\overline{10}$	$\overline{9}$	$\overline{17}$	$\overline{10}$	$\overline{8}$	$\overline{54}$	$\overline{100}$

Te tangle $A B C$ has vertices $A(-4,5), B(5,17)$ and $C(3,-2)$.
Show that the equation of the straight line through A and C is

$$
x+y-1=0
$$2

(i) Find the length of side $A C$.
d Point D divides side $A B$ internally in the ratio $2: 1$.
Find the co-ordinates of D.2

EF Whe the perpendicular distance of B from $A C$. 2
E) Rence calculate the area of triangle $\triangle A B C$
(f The line through D parallel to $A C$ meets $B C$ at point E.
Calculate the area of triangle $\triangle B D E$.

Mestion 2 (9 marks)

a. Tot the equation of the line which passes through the point of intersection $55 x-6 y-10=0$ and $x+y-3=0$, and through the point $P(1,3)$.
(h) nad the angle that the line $2 x+3 y+1=0$ makes with the positive direction of the x -axis.
4. Wetch the region where $y \leq x^{2}-4$ and $y>-3 x$ are true simultaneously. 4 Show any boundary points clearly.

Question 3 (17 marks)

(a) Express in simplest form as a single fraction, with no negative indices:
(i) $4 x^{-2}$
(ii) $\frac{x^{-2}-1}{x^{-1}-1}$
(b) Solve for x :
(i) $9^{x}=27$
(ii) $x^{\frac{-5}{4}}=32$

4
(c) Evaluate:
(i) $\log _{a} \frac{1}{\sqrt{a}}$
(ii) $\log _{3} 63-\log _{3} 7$
(d) Evaluate $\log _{4} 27$ to two decimal places.
(e) Solve for x :
(i) $\log _{11} 2+\log _{11} x=\log _{11} 7$
(ii) $2 \log _{5} x=\log _{5}(4 x+5)$

Question 4 (10 marks)

(a) Express x in terms of a and b. (no reasons needed)

(b)

$A B C D$ is a square.
$P A B$ is an equilateral triangle.
Calculate the size of $\angle D X A$, giving geometrical reasons.
(c) Find the size of each interior angle in a regular 20-sided polygon.
(d) Find the values of x and y.

Give the geometrical reason.
(Not to scale)

Question 5 (8 marks)

(a) (i) State the geometrical reason why $\triangle A B E$ is similar to $\triangle A C D$ in the diagram below.
(ii) Given that $B E=5$, calculate $D C$.
(Not to scale)

(b) In the following diagram $P Q R S$ is a rhombus.

(i) Prove $\angle S P Q=2 \times \angle S A P$
(ii) Prove $\angle A B C=90^{\circ}$

Suggested Solutions

Question 1

(a) (2 marks)
$\checkmark \quad$ [1] for correct gradient $m=-1$.
$\checkmark \quad$ [1] for setting up equation.

$$
\begin{gathered}
A(-4,5) \quad C(3,-2) \\
\frac{y+2}{x-3}=\frac{5+2}{-4-3} \\
=\frac{7}{-7}=-1 \\
\therefore y+2=-x+3 \\
y=-x+1 \\
x+y-1=0
\end{gathered}
$$

Alternatively, substitute coordinates of points A and C into equation.
(b) (1 mark)

$$
\begin{aligned}
d_{A C} & =\sqrt{(5-(-2))^{2}+(-4-3)^{2}} \\
& =\sqrt{7^{2}+7^{2}} \\
& =\sqrt{49 \times 2}=7 \sqrt{2}
\end{aligned}
$$

(c) (2 marks)
$\checkmark \quad$ [1] for each value of x and y correctly found.

$$
\begin{gathered}
\begin{aligned}
& x_{D}=\frac{1(-4)+2(5)}{2+1} \\
&=\frac{-4+10}{3}=2 \\
& \therefore D(2,13)
\end{aligned} \\
=\frac{y+34}{3}=13 \\
2+1
\end{gathered}
$$

(d) (2 marks)
$\checkmark \quad[1]$ for correct substitution into \perp dist. formula.
$\checkmark \quad[1]$ for final answer.

$$
\begin{aligned}
& A C: x+y-1=0 \quad B(5,17) \\
& d_{\perp}=\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}} \\
& =\frac{|1(5)+1(17)-1|}{\sqrt{1^{2}+1^{2}}} \\
& \\
& =\frac{21}{\sqrt{2}}=\frac{21 \sqrt{2}}{2}
\end{aligned}
$$

e) (2 marks)
$\checkmark \quad$ [1] for correct substitution.
$\checkmark \quad$ [1] for final answer.

$$
\begin{aligned}
A & =\frac{1}{2} b h \\
& =\frac{1}{2} \times 7 \not \sqrt{2} \times \frac{21}{\not 22} \\
& =73.5
\end{aligned}
$$

(f) (1 mark)

$$
\begin{gathered}
\frac{A_{\triangle B D E}}{A_{\triangle A B C}}=\frac{1^{2}}{3^{2}}=\frac{1}{9} \\
\therefore A_{\triangle B D E}=\frac{1}{9} \times \frac{147}{2}=\frac{147}{18} \\
=\frac{49}{6}=8 \frac{1}{6}
\end{gathered}
$$

Other methods exist, though this one shown here would be the easiest.

Question 2

(a) (3 marks)
$\checkmark \quad$ [1] for correctly placing equations into k method equation.
$\checkmark \quad$ [1] for $k=13$.
$\checkmark \quad$ [1] for final factorised equation.

$$
\begin{gathered}
15 x-6 y-10=0 \quad x+y-3=0 \\
15 x-6 y-10+k(x+y-3)=\left.0\right|_{x=1, y=3} \\
15-18-10+k(1+3-3)=0 \\
k=18+10-15 \\
=13 \\
15 x-6 y-10+13 x+13 y-39=0 \\
28 x+7 y-49=0 \\
7(4 x+y-7)=0 \\
\therefore 4 x+y-7=0
\end{gathered}
$$

(b) (2 marks)
$\checkmark \quad[1]$ for $\tan \theta=-\frac{2}{3}$.
$\checkmark \quad$ [1] for final answer.

$$
\begin{gather*}
2 x+3 y+1=0 \\
3 y=-2 x-1 \\
y=-\frac{2}{3} x-\frac{1}{3} \\
\therefore m=-\frac{2}{3}=\tan \theta \tag{b}\\
\theta=180^{\circ}-33^{\circ} 41^{\prime} \\
=146.31^{\circ} / 146^{\circ} 19^{\prime}
\end{gather*}
$$

Question 3
(a) i. (1 mark)

$$
4 x^{-2}=\frac{4}{x^{2}}
$$

ii. (2 marks)
$\checkmark \quad$ [1] for correctly multiplying numerator \& denominator by x^{2} to obtain $\frac{1-x^{2}}{x-x^{2}}$.
$\checkmark \quad$ [1] for final answer.

$$
\begin{aligned}
\frac{x^{-2}-1}{x^{-1}-1} \frac{\times x^{2}}{\times x^{2}} & =\frac{1-x^{2}}{x-x^{2}} \\
& =\frac{(1 x)(1+x)}{x(1-x)} \\
& =\frac{1+x}{x}
\end{aligned}
$$

i. (2 marks)
$\checkmark \quad[1]$ for $3^{2 x}=3^{3}$.
$\checkmark \quad$ [1] for final answer.

$$
\begin{gathered}
9^{x}=27 \\
3^{2 x}=3^{3} \\
2 x=3 \\
x=\frac{3}{2}
\end{gathered}
$$

ii. (2 marks)
$\checkmark \quad[1]$ for $x=32^{-4 / 5}$.
$\checkmark \quad$ [1] for final answer.

$$
\begin{gathered}
x^{-\frac{5}{4}}=32 \\
\left(x^{-\frac{5}{4}}\right)^{-\frac{4}{5}}=(32)^{-\frac{4}{5}} \\
x=2^{-4}=\frac{1}{16}
\end{gathered}
$$

(c)
i. (1 mark)

$$
\log _{a} \frac{1}{\sqrt{a}}=\log _{a} a^{-\frac{1}{2}}=-\frac{1}{2}
$$

ii. (2 marks)

$$
\begin{aligned}
\log _{3} 63-\log _{3} 7 & =\log _{3}\left(\frac{63}{7}\right) \\
& =\log _{3} 9=2
\end{aligned}
$$

Question 4

(a) (2 marks)

(d) (2 marks)
$\checkmark \quad$ [1] for correct change of base.
$\checkmark \quad$ [1] for final answer.

$$
\begin{aligned}
\log _{4} 27 & =\frac{\log _{10} 27}{\log _{10} 4} \\
& =2.38 \text { (2 d.p.) }
\end{aligned}
$$

(e)
i. (2 marks)
[1] for correct use of addition rule for logarithms.
$\checkmark \quad$ [1] for final answer.

$$
\begin{gathered}
\log _{11} 2+\log _{11} x=\log _{11} 7 \\
\log _{11}(2 x)=\log _{11} 7 \\
\therefore 2 x=7 \\
x=\frac{7}{2}
\end{gathered}
$$

ii. (3 marks)
$\checkmark \quad[1]$ for $x^{2}=4 x+5$.
$\checkmark \quad$ [1] for solutions of x.
$\checkmark \quad[1]$ for justification of $x=3$.

$$
\begin{gathered}
2 \log _{5} x=\log _{5}(4 x+5) \\
\log _{5}\left(x^{2}\right)=\log _{5}(4 x+5) \\
x^{2}=4 x+5 \\
x^{4}-4 x-5=0 \\
(x-5)(x+1)=0 \\
x=5,-1
\end{gathered}
$$

But as $x>0$ in the domain of the logarithmic function. Hence $x=5$.
(b) (3 marks)
[2] for correct reasoning.
$\checkmark \quad$ [1] for final answer.

- $\angle P A B=60^{\circ}(\angle$ in equilateral $\triangle)$
- $\therefore \angle X A D=30^{\circ}$.
- $\angle A D B=45^{\circ}$
(diagonals of a square bisect the \angle)
- By the \angle sum of $\triangle D X A$,

$$
\angle D X A=180^{\circ}-30^{\circ}-45^{\circ}=105^{\circ}
$$

(c) (2 marks)

$$
\begin{aligned}
\sum \angle & =(n-2) \times 180^{\circ} \\
& =18 \times 180^{\circ} \\
& =3240^{\circ} \\
\therefore \angle & =\frac{3240^{\circ}}{20}=162^{\circ}
\end{aligned}
$$

(d) (3 marks)
$\checkmark \quad[1]$ each for correct x and y.
$\checkmark \quad$ [1] for correct reasoning.

- By the intercepts of transversals over (b) parallel lines $P Q$ and $B C$,

$$
\begin{gathered}
\frac{122^{2}}{18}=\frac{10}{x} \\
\therefore x=\frac{10 \times 3}{2}=15
\end{gathered}
$$

- By the same reason as above,

$$
\begin{gathered}
\frac{y}{14}=\frac{x}{10} \\
y=\frac{15 \times 14}{10}=\frac{\not \supset \times 3 \times \not 2 \times 7}{\not 0}=21
\end{gathered}
$$

Question 5

(a)
i. (1 mark)
\checkmark [1] for final statement. Proof shown for completeness.

- Splitting the triangles into separate shapes:

$$
\begin{gathered}
\frac{A C}{A B}=\frac{4}{6}=\frac{2}{3} \\
\frac{A D}{A E}=\frac{2}{3}
\end{gathered}
$$

- $\angle B A E=\angle D A C$ (common from diagram)
Hence $\triangle A B E$ ||| $\triangle A C D$ (two matching sides in same ratio plus included angle equal)*.
ii. (2 marks)

$$
\begin{gathered}
B E=5 \\
\frac{C D}{B E}=\frac{2}{3} \Rightarrow \frac{C D}{5}=\frac{2}{3} \\
C D=\frac{10}{3}
\end{gathered}
$$

i. (2 marks)
$\checkmark \quad[2]$ for correct proof shown.

- Let $\angle S P Q=\alpha$.
- Since $\angle P A S=\angle P S A$
(base \angle of isos \triangle),
and $\angle P A S+\angle P S A=\angle S P Q$
(exterior \angle of \triangle)

$$
\begin{gathered}
2 \angle P A S=\angle S P Q \\
\therefore \angle P A S=\frac{1}{2} \angle S P Q=\frac{1}{2} x
\end{gathered}
$$

ii. (3 marks)
$\checkmark \quad$ [1] for each matching bullet point shown.

- By the same reasoning as the previous part, if $\angle R Q P=y$ then $\angle R C Q=\frac{1}{2} y$.
- Since $\angle S P Q+\angle R Q P=180^{\circ}$ (cointerior $\angle, S R \| P Q$), then

$$
\begin{aligned}
\frac{1}{2} x+\frac{1}{2} y & =\frac{1}{2}(x+y) \\
& =90^{\circ}
\end{aligned}
$$

- By the \angle sum of $\triangle A B C$, if $\angle B A C+\angle B C A=90^{\circ}$, then

$$
\angle A B C=90^{\circ}
$$

[^0]
[^0]: * "SAS" will not be accepted for this part

