

MATHEMATICS (EXTENSION 1)

2011 Preliminary Course Assessment Task 2

General instructions

- Working time 50 minutes.
- Commence each new question on a new page.
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- Board approved calculators may be used.
- All necessary working should be shown in every question. Marks may *not* be awarded for incomplete or untidy solutions.
- Attempt **all** questions.
- At the conclusion of the examination, bundle the booklets used in the correct order within this paper and hand to examination supervisors.

NAME

Class (please \checkmark)

- $\bigcirc~11\mathrm{M3A}$ Mr Weiss
- \bigcirc 11M3B Mr Ireland
- 11M3C Mr Berry
- \bigcirc 11M3D Mrs Collins
- $\bigcirc~11\mathrm{M3E}-\mathrm{Mr}$ Lam
- \bigcirc 11M3F Mr Fletcher/Ms Everingham

BOOKLETS USED:

Marker S use only.							
QUESTION	1	2	3	4	5	Total	%
MARKS	11	$\overline{15}$	8	10	5	49	

Marker's use only.

Question	1 (11 Marks)	Commence a NEW page.	Marks			
(a) Writ	e $\frac{4\pi}{15}$ in degrees.		1			
(b) Eval	Evaluate tan 1.5 correct to two decimal places.					
(c) Writ i. ii.	e down the exact value of $\cot 330^{\circ}$ $\cos(-180^{\circ})$		1			
(d) Give	n $\tan \theta = \frac{3}{5}$ and $\cos \theta < 0$, find	the exact value of $\csc \theta$.	2			
(e) Simp	Simplify $\sin(90^\circ - \theta) \times \tan(360^\circ - \theta)$.					
(f) Give i. ii. iii.	n the function $y = 5 \cos 2x$ State the amplitude State the period. Sketch the graph of the funct	ion for $0 \le x \le 180^{\circ}$.	1 1 1			

Question 2 (15 Marks)

Commence a NEW page.

Marks

3

 $\mathbf{2}$

3

(a) Steve observes a cliff AB from a point P. The angle of elevation to the top of the cliff is 5°. From Q, which is 500 m closer to the cliff, the angle of elevation to the top of the cliff is 8°.

i. Calculate AQ to the nearest metre.

ii. Hence, find QB to the nearest 10 metres.

(b) Solve for
$$0^{\circ} \le x \le 360^{\circ}$$
:

i.
$$\sin 2x = -\frac{1}{\sqrt{2}}.$$

ii. $2\sin^2 x = 3\cos x$. 3

(c) Show that
$$\frac{\cot^2 \theta}{1 + \cot^2 \theta} = \cos^2 \theta.$$
 2

(d) In $\triangle ABC$, AB = 25 cm and BC = 28 cm. The area of $\triangle ABC$ is 340 cm^2 .

Find the value(s) of $\angle ABC$ to the nearest degree.

Find the area of the quadrilateral ABCD.

Ques	tion 3	(8 Marks)	Commence a NEW page.	Marks
The c	oordina	tes of the point A, B and C	are $(0,2)$, $(4,0)$ and $(6,-4)$ respectively.	
(a)	Find t	he length of AB .		1
(b)	Find t	he gradient of AB .		1
(c)	Find t	he equation of the line ℓ , dra	we through C parallel to AB .	2
(d)	Find t	he coordinates of D , the point	nt where ℓ intersects the x axis.	1
(e)	Find t	he perpendicular distance of	the point A from the line ℓ .	1

(a) Find the coordinates of the points P(x, y) which divides the interval AB joining the points A(-5, 11) and B(7, 3) externally in the ratio 3 : 1.
(b) Find the equation of the line through the point of intersection of the lines 3x - 2y + 6 = 0 and 2x - 3y + 1 = 0 that is perpendicular to the line x - y + 1 = 0.
(c) Sketch the region of the number plane where the following inequalities hold simultaneously:

Commence a NEW page.

$$\begin{cases} y \ge x^2 - 4\\ x + y < 2\\ x \ge 0 \end{cases}$$

Question 4 (10 Marks)

(f)

 $\mathbf{3}$

 $\mathbf{2}$

Marks

A

Question 5 (5 Marks)

elevation is 11° .

Commence a NEW page.

3

1

1

The angle of elevation of a tower PQ of height h metres from a point A due east of Q is 12° . From another point B, the bearing of the tower is 051° T and the angle of

Р

 \widehat{Q}

 $AB = 1\,000\,\mathrm{m}$ and AB is on the same level as the base Q.

(b) Show that

(a)

$$h^{2} = \frac{1\,000\,000}{\tan^{2}78^{\circ} + \tan^{2}79^{\circ} - 2\tan78^{\circ}\tan79^{\circ}\cos141^{\circ}}$$

(c) Find h, correct to the nearest metre.

End of paper.

Marks

Question 1

(a) (1 mark)

$$\frac{4\pi}{15} = \frac{4 \times 180^{\circ}}{15} = 48^{\circ}$$

(b) (1 mark)

$$\tan 1.5 = 14.1$$

(c) i. (1 mark)

$$\cot 330^\circ = \frac{1}{\tan 330^\circ} = -\sqrt{3}$$

ii. (1 mark)

$$\cos(-180^\circ) = \cos 180^\circ = -1$$

- (d) (2 marks)
 - \checkmark [1] for correct fraction.
 - \checkmark [1] for correct sign.

$$\tan \theta = \frac{3}{5} \qquad \cos \theta < 0$$

Hence θ is in the 3rd quadrant.

$$x^{2} = 3^{2} + 5^{2} = 34$$
$$\therefore x = \sqrt{34}$$
$$\operatorname{cosec} \theta = \frac{1}{\sin \theta} = -\frac{\sqrt{34}}{3}$$

(e) (2 marks)

 $\checkmark \quad [1] \ \text{ for } \cos\theta \times -\tan\theta$

 \checkmark [1] for final answer

$$\sin(90^\circ - \theta) \times \tan(360^\circ - \theta)$$
$$= \cos \theta \times - \tan \theta$$
$$= \cos \theta \times \frac{-\sin \theta}{\cos \theta}$$
$$= -\sin \theta$$

(f) $y = 5\cos 2x$

i.
$$(1 \text{ mark}) - a = 5.$$

ii. $(1 \text{ mark}) - T = \frac{360^{\circ}}{2} = 180^{\circ}.$

Question 2

(a) i. (3 marks)

$$\checkmark$$
 [1] for $\angle PAC = 3^{\circ}$
 \checkmark [1] for applying the sine rule
 \checkmark [1] for final answer
A

$$\begin{array}{c} 82^{\circ} \\ 82^{\circ} \\ P \\ 500 \\ P \\ 8^{\circ} \\ B \\ 8^{\circ} \\ 8^{\circ} \\ B \\ 8^{\circ} \\ 8^{$$

$$\angle QAB = 90^{\circ} - 8^{\circ} = 82^{\circ}$$
$$\angle PAB = 90^{\circ} - 5^{\circ} = 85^{\circ}$$
$$\therefore \angle PAQ = 85^{\circ} - 82^{\circ} = 3^{\circ}$$

Applying the sine rule on $\triangle PAQ$,

$$\frac{AQ}{\sin 5^{\circ}} = \frac{500}{\sin 3^{\circ}}$$
$$AQ = \frac{500 \sin 5^{\circ}}{\sin 3^{\circ}} = 833 \,\mathrm{m}$$

ii. (2 marks)

$$\checkmark$$
 [1] for $\frac{QB}{AQ} = \cos 8^\circ$

 \checkmark [1] for final answer

$$\frac{QB}{AQ} = \cos 8^{\circ}$$
$$QB = AQ \cos 8^{\circ}$$
$$= \frac{500 \sin 5^{\circ} \cos 8^{\circ}}{\sin 3^{\circ}} = 820 \,\mathrm{m}$$

i. (2 marks) \checkmark [1] for solutions in 2x \checkmark [1] for final solutions in x. $\sin 2x = -\frac{1}{\sqrt{2}}$ $0^{\circ} \le 2x \le 720^{\circ}$ $2x = 225^{\circ}, 315^{\circ}, 360^{\circ} + 225^{\circ}, 360^{\circ} + 315^{\circ}$ $= 225^{\circ}, 315^{\circ}, 585^{\circ}, 675^{\circ}$

$$A = 340 \text{ cm}^2 = \frac{1}{2}ac \sin \angle ABC$$
$$\frac{1}{2} \times 28 \times 25 \sin \angle ABC = 340$$
$$\sin \angle ABC = \frac{34}{35}$$
$$\angle ABC = 76^\circ 16, 103^\circ 44$$
$$= 76^\circ, 104^\circ$$

Question 3

- ii. (3 marks) \checkmark [1] for $2 - 2\cos x = 3\cos x$.
 - \checkmark [1] for $2\cos x = 1$ or $\cos x = -2$.

 $\therefore x = 112.5^{\circ}, 157.5^{\circ}, 292.5^{\circ}, 337.5^{\circ}$

$$2\sin^2 x = 3\cos x$$
$$2(1 - \cos^2 x) = 3\cos x$$
$$2 - 2\cos^2 x = 3\cos x$$
$$2\cos^2 x + 3\cos x - 2 = 0$$

Let $m = \cos x$

$$2m^{2} + 3m - 2 = 0$$

(2m - 1)(m + 2) = 0
 $\therefore m = \cos x = \frac{1}{2}, -2$

However, $|\cos x| \le 1$. $\therefore \cos x = \frac{1}{2}$ only

$$x = 60^{\circ}, 300^{\circ}$$

- (c) (2 marks)
 - \checkmark [1] for $\frac{\cot^2 \theta}{\csc^2 \theta}$
 - \checkmark [1] for final answer

$$\frac{\cot^2\theta}{1+\cot^2\theta} = \frac{\frac{\cos^2\theta}{\sin^2\theta}}{\csc^2\theta} = \frac{\frac{\cos^2\theta}{\sin^2\theta}}{\frac{1}{\sin^2\theta}} = \cos^2\theta$$

(d) (3 marks)

- $\checkmark~~[1]~$ for applying area of triangle formula via sine
- \checkmark [2] for final solutions.

(a) (1 mark)

$$y$$

$$A$$

$$D$$

$$Y$$

$$A$$

$$D$$

$$A$$

$$D$$

$$A$$

$$D$$

$$A$$

$$A$$

$$C(6, -4)$$

$$AB = \sqrt{4^2 + 2^2} = \sqrt{20} = 2\sqrt{5}$$

(b)
$$(1 \text{ mark}) - m_{AB} = \frac{-2}{4} = -\frac{1}{2}$$

(c) (2 marks)

- \checkmark [1] for applying the point gradient formula
- \checkmark [1] for final answer

$$m_{\ell} = m_{AB} = -\frac{1}{2}$$

Applying the point gradient formula

$$y + 4 = -\frac{1}{2}(x - 6)$$

2y + 8 = -x + 6
x + 2y + 2 = 0 $\left(y = -\frac{1}{2}x - 1\right)$

(d) (1 mark)

$$\begin{aligned} x + 2y + 2 \Big|_{y=0} &= 0 \\ x + 2 &= 0 \implies x = -2 \\ \therefore D(-2, 0) \end{aligned}$$

(b)

(e) (1 mark)

$$d_{\perp} = \frac{|1(0) + 2(2) + 2|}{\sqrt{1^2 + 2^2}} = \frac{6}{\sqrt{5}}$$

(f) (2 marks)

$$CD = \sqrt{8^2 + 4^2} = \sqrt{80} = 4\sqrt{5}$$

As ABCD is a trapezium,

$$A = \frac{1}{2}h(a+b)$$
$$= \frac{1}{2} \times \frac{6}{\sqrt{5}} \left(2\sqrt{5} + 4\sqrt{5}\right)$$
$$= \frac{3}{\sqrt{5}} \times 6\sqrt{5} = 18$$

Question 4

(a) (2 marks)

$$P = \left(\frac{3(7) + (-5)(-1)}{3 - 1}, \frac{3(3) + 11(-1)}{3 - 1}\right)$$
$$= (13, -1)$$

- (b) (4 marks)
 - $\checkmark\quad [1] \;\; {\rm for \; placing \; two \; equations \; in \; } k \; {\rm form \;}$
 - \checkmark [1] for $\frac{3+2k}{2+3k} = -1$
 - \checkmark [1] for k = -1
 - ✓ [1] for x + y + 5 = 0

$$3x - 2y + 6 + k(2x - 3y + 1) = 0$$

(3 + 2k)x + (-2 - 3k)y + (k + 6) = 0

The gradient of the line x - y + 1 = 0is m = 1. Hence required gradient is m = -1.

$$\therefore \frac{3+2k}{2+3k} = -1$$

$$3+2k = -2 - 3k$$

$$-5k = 5 \implies k = -1$$

$$\therefore (3-2)x + (-2+3)y + (-1+6) = 0$$

$$x+y+5 = 0$$

(c) (4 marks)

Question 5

(a) (1 mark) Redraw the diagram:

 $\begin{array}{l} B\\ \angle AQB = 90^\circ + 51^\circ = 141^\circ\\ (\text{exterior } \angle \text{ of } \bigtriangleup \text{ is the sum of the interior}\\ \text{opposite angles.}) \end{array}$

(b) (3 marks)

- ✓ [1] for $BQ = h \tan 78^\circ$ (or for AQ)
- \checkmark [1] for applying the cosine rule
- \checkmark [1] for final answer

In $\triangle BQP$,

$$\frac{BQ}{h} = \tan(90^\circ - 11^\circ) = \tan 79^\circ$$
$$\therefore BQ = h \tan 79^\circ$$

Similarly in $\triangle AQP$,

$$\therefore AQ = h \tan 78^{\circ}$$

Applying the cosine rule in $\triangle ABQ$,

$$1\ 000^{2} = (h\ \tan 79^{\circ})^{2} + (h\ \tan 78^{\circ})^{2}$$
$$-2(h\ \tan 78^{\circ})(h\ \tan 79^{\circ})\cos 141^{\circ}$$
$$= h^{2}\ (\tan^{2}79^{\circ} + \tan^{2}78^{\circ})$$
$$-2\ \tan 78^{\circ}\ \tan 79^{\circ}\cos 141^{\circ})$$
$$\therefore h^{2} = \frac{1\ 000\ 000}{\tan^{2}79^{\circ} + \tan^{2}78^{\circ} - 2\ \tan 78^{\circ}\ \tan 79^{\circ}\cos 141^{\circ}}$$

(c) (1 mark)

$$h = 108 \,\mathrm{m}$$