MATHEMATICS (EXTENSION 1)

2011 Preliminary Course Assessment Task 2

General instructions

- Working time - 50 minutes.
- Commence each new question on a new page.
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- Board approved calculators may be used.
- All necessary working should be shown in every question. Marks may not be awarded for incomplete or untidy solutions.
- Attempt all questions.
- At the conclusion of the examination, bundle the booklets used in the correct order within this paper and hand to examination supervisors.

Class (please \boldsymbol{V})
11M3A - Mr Weiss11M3B - Mr Ireland11M3C - Mr Berry11M3D - Mrs Collins11M3E - Mr Lam11M3F - Mr Fletcher/Ms Everingham

Marker's use only.

QUESTION	$\boxed{1}$	$\boxed{2}$	$\overline{3}$	$\boxed{4}$	$\overline{5}$	Total	$\%$
MARKS	$\overline{11}$	$\overline{15}$	$\overline{8}$	$\overline{10}$	$\overline{5}$	$\overline{49}$	

Question 1 (11 Marks)
Commence a NEW page.
(a) Write $\frac{4 \pi}{15}$ in degrees.

1
(b) Evaluate tan 1.5 correct to two decimal places.
(c) Write down the exact value of
i. $\cot 330^{\circ}$
ii. $\cos \left(-180^{\circ}\right)$
(d) Given $\tan \theta=\frac{3}{5}$ and $\cos \theta<0$, find the exact value of $\operatorname{cosec} \theta$.
(e) \quad Simplify $\sin \left(90^{\circ}-\theta\right) \times \tan \left(360^{\circ}-\theta\right)$.
(f) Given the function $y=5 \cos 2 x$
i. State the amplitude
ii. State the period.
iii. Sketch the graph of the function for $0 \leq x \leq 180^{\circ}$.

Question 2 (15 Marks) Commence a NEW page.
(a) Steve observes a cliff $A B$ from a point P. The angle of elevation to the top of the cliff is 5°. From Q, which is 500 m closer to the cliff, the angle of elevation to the top of the cliff is 8°.

i. Calculate $A Q$ to the nearest metre.
ii. Hence, find $Q B$ to the nearest 10 metres.
(b) Solve for $0^{\circ} \leq x \leq 360^{\circ}$:
i. $\quad \sin 2 x=-\frac{1}{\sqrt{2}}$.
ii. $2 \sin ^{2} x=3 \cos x$.
(c) Show that $\frac{\cot ^{2} \theta}{1+\cot ^{2} \theta}=\cos ^{2} \theta$.
(d) In $\triangle A B C, A B=25 \mathrm{~cm}$ and $B C=28 \mathrm{~cm}$. The area of $\triangle A B C$ is $340 \mathrm{~cm}^{2}$.

Find the value(s) of $\angle A B C$ to the nearest degree.
Question 3 (8 Marks)
Commence a NEW page.

The coordinates of the point A, B and C are $(0,2),(4,0)$ and $(6,-4)$ respectively.
(a) Find the length of $A B$.
(b) Find the gradient of $A B$.
(c) Find the equation of the line ℓ, drawn through C parallel to $A B$.
(d) Find the coordinates of D, the point where ℓ intersects the x axis.
(e) Find the perpendicular distance of the point A from the line ℓ.
(f) Find the area of the quadrilateral $A B C D$.

Question 4 (10 Marks)
Commence a NEW page.
Marks
(a) Find the coordinates of the points $P(x, y)$ which divides the interval $A B$ joining the points $A(-5,11)$ and $B(7,3)$ externally in the ratio $3: 1$.
(b) Find the equation of the line through the point of intersection of the lines $3 x-2 y+6=0$ and $2 x-3 y+1=0$ that is perpendicular to the line $x-y+1=0$.
(c) Sketch the region of the number plane where the following inequalities hold simultaneously:

$$
\left\{\begin{array}{l}
y \geq x^{2}-4 \\
x+y<2 \\
x \geq 0
\end{array}\right.
$$

Question 5 (5 Marks)
Commence a NEW page.
Marks
The angle of elevation of a tower $P Q$ of height h metres from a point A due east of Q is 12°. From another point B, the bearing of the tower is $051^{\circ} \mathrm{T}$ and the angle of elevation is 11°.
$A B=1000 \mathrm{~m}$ and $A B$ is on the same level as the base Q.

(a) Show that $\angle A Q B=141^{\circ}$.
(b) Show that

$$
h^{2}=\frac{1000000}{\tan ^{2} 78^{\circ}+\tan ^{2} 79^{\circ}-2 \tan 78^{\circ} \tan 79^{\circ} \cos 141^{\circ}}
$$

(c) Find h, correct to the nearest metre.

End of paper.

Question 1

(a) (1 mark)

$$
\frac{4 \pi}{15}=\frac{4 \times 180^{\circ}}{15}=48^{\circ}
$$

(b) (1 mark)

$$
\tan 1.5=14.1
$$

(c) i. (1 mark)

$$
\cot 330^{\circ}=\frac{1}{\tan 330^{\circ}}=-\sqrt{3}
$$

ii. (1 mark)

$$
\cos \left(-180^{\circ}\right)=\cos 180^{\circ}=-1
$$

(d) (2 marks)
$\checkmark \quad$ [1] for correct fraction.
$\checkmark \quad$ [1] for correct sign.

$$
\tan \theta=\frac{3}{5} \quad \cos \theta<0
$$

Hence θ is in the 3 rd quadrant.

$$
\begin{gathered}
x^{2}=3^{2}+5^{2}=34 \\
\therefore x=\sqrt{34} \\
\operatorname{cosec} \theta=\frac{1}{\sin \theta}=-\frac{\sqrt{34}}{3}
\end{gathered}
$$

(e) (2 marks)
\checkmark [1] for $\cos \theta \times-\tan \theta$
\checkmark [1] for final answer

$$
\begin{aligned}
\sin \left(90^{\circ}-\theta\right) & \times \tan \left(360^{\circ}-\theta\right) \\
& =\cos \theta \times-\tan \theta \\
& =\cos \theta \times \frac{-\sin \theta}{\cos \theta} \\
& =-\sin \theta
\end{aligned}
$$

(f) $y=5 \cos 2 x$
i. (1 mark) $-a=5$.
ii. (1 mark) $-T=\frac{360^{\circ}}{2}=180^{\circ}$.
iii. (1 mark)

Question 2

(a) i. (3 marks)
$\checkmark \quad[1]$ for $\angle P A C=3^{\circ}$
\checkmark [1] for applying the sine rule
$\checkmark \quad$ [1] for final answer

$$
\begin{gathered}
\angle Q A B=90^{\circ}-8^{\circ}=82^{\circ} \\
\angle P A B=90^{\circ}-5^{\circ}=85^{\circ} \\
\therefore \angle P A Q=85^{\circ}-82^{\circ}=3^{\circ}
\end{gathered}
$$

Applying the sine rule on $\triangle P A Q$,

$$
\begin{gathered}
\frac{A Q}{\sin 5^{\circ}}=\frac{500}{\sin 3^{\circ}} \\
A Q=\frac{500 \sin 5^{\circ}}{\sin 3^{\circ}}=833 \mathrm{~m}
\end{gathered}
$$

ii. (2 marks)
\checkmark [1] for $\frac{Q B}{A Q}=\cos 8^{\circ}$
\checkmark [1] for final answer

$$
\begin{gathered}
\frac{Q B}{A Q}=\cos 8^{\circ} \\
Q B=A Q \cos 8^{\circ} \\
=\frac{500 \sin 5^{\circ} \cos 8^{\circ}}{\sin 3^{\circ}}=820 \mathrm{~m}
\end{gathered}
$$

(b) i. (2 marks)

$$
\begin{array}{lr}
\checkmark \quad[1] \text { for solutions in } 2 x & A=340 \mathrm{~cm}^{2}=\frac{1}{2} a c \sin \angle A B C \\
\checkmark \quad[1] \text { for final solutions in } x . & \frac{1}{2} \times 28 \times 25 \sin \angle A B C=340 \\
\sin 2 x=-\frac{1}{\sqrt{2}} \quad 0^{\circ} \leq 2 x \leq 720^{\circ} & \sin \angle A B C=\frac{34}{35} \\
2 x=225^{\circ}, 315^{\circ}, 360^{\circ}+225^{\circ}, 360^{\circ}+315^{\circ} & \angle A B C=76^{\circ} 16,103^{\circ} 44 \\
=225^{\circ}, 315^{\circ}, 585^{\circ}, 675^{\circ} & =76^{\circ}, 104^{\circ}
\end{array}
$$

$$
\therefore x=112.5^{\circ}, 157.5^{\circ}, 292.5^{\circ}, 337.5^{\circ}
$$

ii. (3 marks)

$$
\begin{array}{ll}
\checkmark & \text { [1] for } 2-2 \cos x=3 \cos x \\
\checkmark & {[1]}
\end{array} \text { for } 2 \cos x=1 \text { or } \cos x=-2 .
$$

$$
\begin{gathered}
2 \sin ^{2} x=3 \cos x \\
2\left(1-\cos ^{2} x\right)=3 \cos x \\
2-2 \cos ^{2} x=3 \cos x \\
2 \cos ^{2} x+3 \cos x-2=0
\end{gathered}
$$

Let $m=\cos x$

$$
\begin{gathered}
2 m^{2}+3 m-2=0 \\
(2 m-1)(m+2)=0 \\
\therefore m=\cos x=\frac{1}{2},-2
\end{gathered}
$$

Question 3

(a) (1 mark)

$$
A B=\sqrt{4^{2}+2^{2}}=\sqrt{20}=2 \sqrt{5}
$$

(b) (1 mark) $-m_{A B}=\frac{-2}{4}=-\frac{1}{2}$

However, $|\cos x| \leq 1 . \quad \therefore \cos x=\frac{1}{2}$ only

$$
x=60^{\circ}, 300^{\circ}
$$

(c) (2 marks)
$\checkmark \quad[1]$ for $\frac{\cot ^{2} \theta}{\operatorname{cosec}^{2} \theta}$
$\checkmark \quad$ [1] for final answer

$$
\frac{\cot ^{2} \theta}{1+\cot ^{2} \theta}=\frac{\frac{\cos ^{2} \theta}{\sin ^{2} \theta}}{\operatorname{cosec}^{2} \theta}=\frac{\frac{\cos ^{2} \theta}{\sin ^{2} \theta}}{\frac{1}{\sin ^{2} \theta}}=\cos ^{2} \theta
$$

(c) (2 marks)
$\checkmark \quad$ [1] for applying the point gradient formula
$\checkmark \quad$ [1] for final answer

$$
m_{\ell}=m_{A B}=-\frac{1}{2}
$$

Applying the point gradient formula

$$
\begin{gathered}
y+4=-\frac{1}{2}(x-6) \\
2 y+8=-x+6 \\
x+2 y+2=0 \quad\left(y=-\frac{1}{2} x-1\right)
\end{gathered}
$$

$\checkmark \quad$ [1] for applying area of triangle formula via sine
$\checkmark \quad$ [2] for final solutions.
(d) (1 mark)

$$
\begin{gathered}
x+2 y+\left.2\right|_{y=0}=0 \\
x+2=0 \quad \Rightarrow \quad x=-2 \\
\therefore D(-2,0)
\end{gathered}
$$

(e) (1 mark)

$$
d_{\perp}=\frac{|1(0)+2(2)+2|}{\sqrt{1^{2}+2^{2}}}=\frac{6}{\sqrt{5}}
$$

(f) (2 marks)

$$
C D=\sqrt{8^{2}+4^{2}}=\sqrt{80}=4 \sqrt{5}
$$

As $A B C D$ is a trapezium,

$$
\begin{aligned}
A & =\frac{1}{2} h(a+b) \\
& =\frac{1}{2} \times \frac{6}{\sqrt{5}}(2 \sqrt{5}+4 \sqrt{5}) \\
& =\frac{3}{\sqrt{5}} \times 6 \times \sqrt{5}=18
\end{aligned}
$$

Question 4

(a) (2 marks)

$$
\begin{aligned}
P & =\left(\frac{3(7)+(-5)(-1)}{3-1}, \frac{3(3)+11(-1)}{3-1}\right) \\
& =(13,-1)
\end{aligned}
$$

(b) (4 marks)
$\checkmark \quad$ [1] for placing two equations in k form
$\checkmark \quad[1]$ for $\frac{3+2 k}{2+3 k}=-1$
$\checkmark \quad$ [1] for $k=-1$
$\checkmark \quad[1]$ for $x+y+5=0$

$$
\begin{gathered}
3 x-2 y+6+k(2 x-3 y+1)=0 \\
(3+2 k) x+(-2-3 k) y+(k+6)=0
\end{gathered}
$$

The gradient of the line $x-y+1=0$ is $m=1$. Hence required gradient is $m=-1$.

$$
\begin{gathered}
\therefore \frac{3+2 k}{2+3 k}=-1 \\
3+2 k=-2-3 k \\
-5 k=5 \quad k \quad k=-1 \\
\therefore(3-2) x+(-2+3) y+(-1+6)=0 \\
x+y+5=0
\end{gathered}
$$

(c) (4 marks)

Question 5

(a) (1 mark) Redraw the diagram:

$\stackrel{B}{A} Q B=90^{\circ}+51^{\circ}=141^{\circ}$
(exterior \angle of \triangle is the sum of the interior opposite angles.)
(b) (3 marks)
$\checkmark \quad$ [1] for $B Q=h \tan 78^{\circ}$ (or for $A Q$)
$\checkmark \quad$ [1] for applying the cosine rule
$\checkmark \quad$ [1] for final answer
In $\triangle B Q P$,

$$
\frac{B Q}{h}=\tan \left(90^{\circ}-11^{\circ}\right)=\tan 79^{\circ}
$$

$$
\therefore B Q=h \tan 79^{\circ}
$$

Similarly in $\triangle A Q P$,

$$
\therefore A Q=h \tan 78^{\circ}
$$

Applying the cosine rule in $\triangle A B Q$,

$$
1000^{2}=\left(h \tan 79^{\circ}\right)^{2}+\left(h \tan 78^{\circ}\right)^{2}
$$

$-2\left(h \tan 78^{\circ}\right)\left(h \tan 79^{\circ}\right) \cos 141^{\circ}$
$=h^{2}\left(\tan ^{2} 79^{\circ}+\tan ^{2} 78^{\circ}\right.$
$\left.-2 \tan 78^{\circ} \tan 79^{\circ} \cos 141^{\circ}\right)$
$\therefore h^{2}=\frac{1000000}{\tan ^{2} 79^{\circ}+\tan ^{2} 78^{\circ}-2 \tan 78^{\circ} \tan 79^{\circ} \cos 141^{\circ}}$
(c) (1 mark)

$$
h=108 \mathrm{~m}
$$

