SYDNEY BOYS' HIGH SCHOOL

HALF-YEARLY EXAMINATION May 2002

MATHEMATICS

EXTENSION 1

Time allowed - Ninety Minutes
Examiner: A.M.Gainford

DIRECTIONS TO CANDIDATES

- $A L L$ questions may be attempted.
- All necessary working should be shown in every question. Full marks may not be awarded for careless or badly arranged work.
- Approved calculators may be used.
- Start each Section on a new page. Section A (Q1, Q2, Q3), Section B (Q4, Q5), Section C (Q6, Q7), Section D (Q8, Q9), Section E (Q10, Q11), Section F (Q12, Q13).
- If required, additional paper may be obtained from the Examination Supervisor upon request.

Section A

(a) Express $\frac{7 \pi}{9}$ radians in degrees.
(b) State the exact value of:
(i) $\sec 45^{\circ}$
(ii) $\tan 210^{\circ}$
(c) By expressing it in its simplest form, show that $\frac{1}{\sqrt{7}-2}-\frac{1}{\sqrt{7}+2}$ is rational.

Question 2

Factorise completely:
(a) $12 x^{2}+5 x-3$
(b) $2 x y+6 x-y-3$
(c) $a^{3}-8$

Question 3

On separate diagrams, sketch the graphs of the following, showing essential features:
(a) $y=x^{2}-1$
(b) $y=2^{-x}$
(c) $y=\sqrt{9-x^{2}}$

Section B

Question 4

For the points $A(1,6)$ and $B(3,8)$:
(a) Find the coordinates of M, the midpoint of $A B$.
(b) Find the equation of the line through M, perpendicular to $A B$.
(c) Write the equation of the line $A B$.

Question 5

(a) Show that the lines $y=2 x-1$ and $2 x-y+3=0$ are parallel.
(b) Find the perpendicular (shortest) distance between the two lines in Part (a).
(c) By completing the square on x, or otherwise, find the minimum value of the quadratic expression $x^{2}+8 x+9$.

Section C

Question 6
Graph, on separate number lines, the solutions of:
(a) $6 x^{2}+5 x>4$
(b) $\quad|2 x-3|<|x+5|$
(c) $\frac{4}{x-3}<1$
(d) $\quad \frac{1}{|x-2|}<3$

Question 7

(a) Sketch on a Cartesian diagram the locus of all points equidistant from the x - and y-axes.
(b) Write down an equation to represent the locus described above.
(c) A lighthouse keeper 120 m above sea level observes a ship at sea at an angle of depression of $89^{\circ} 07^{\prime}$. Find to the nearest metre the horizontal distance of the ship from the lighthouse.

Section D

Question 8

(a) Given the triangle above, calculate the area of the figure, and the length of $A C$.
(b) State the equation of the locus of a point moving such that it is always 2 units from the point $(1,0)$.

Question 9

In the figure $A B=A C ; \angle B A C=\angle B P A=\angle C R A=90^{\circ} ; \angle B A P=\alpha$.
Prove that:
(a) $\angle A C R=\alpha$.
(b) Triangles $A B P$ and $C A R$ are congruent.
(c) Triangles $B P Q$ and $C R Q$ are similar.
(d) $\frac{P Q}{Q R}=\frac{R A}{A P}$.

Section E

Question 10
(a) Show that $\sin (A+B) \sin (A-B)=\sin ^{2} A-\sin ^{2} B$.
(b) Show that $2 \cot \theta \operatorname{cosec} \theta=\frac{1}{1-\cos \theta}-\frac{1}{1+\cos \theta}$

Question 11

(a) Given that $A B \| C D$ and angles are as marked, find the measure of $\angle B E C$. (Give reasons)

(b) Find the equation of the line with gradient -1 , which passes through the intersection of the lines $2 x-5 y+19=0$ and $2 x+3 y-5=0$.

Section F

Question 12

(a) If $\tan \theta=2$, and $0<\theta<\frac{\pi}{2}$, find the exact value of $\sin \left(\theta+\frac{\pi}{4}\right)$.
(b) Two buoys, P and Q, are 1500 m apart. The bearing from P to Q is $058^{\circ} \mathrm{T}$. A ship at R has P on a bearing of $322^{\circ} \mathrm{T}$ and Q on a bearing of $025^{\circ} \mathrm{T}$.
(i) Sketch a diagram to represent this situation.
(ii) Calculate the distance of Q from R, to the nearest metre.

Question 13

(a) Given the function $f(x)=\sqrt{x^{2}-9}$:
(i) State the domain of $f(x)$.
(ii) State the range of $f(x)$.
(iii) Show that $f(x)$ is an even function.
(b) Show that in any triangle $A B C$,

$$
\sin C=\sin A \cos B+\cos A \sin B
$$

