

SYDNEY BOYS HIGH SCHOOL **MOORE PARK, SURRY HILLS**

2003

Year 11

HALF YEARLY EXAMINATION

Mathematics Extension

General Instructions

- Reading time -5 minutes.
- Working time 90 minutes. •
- Write using black or blue pen. •
- Board approved calculators may • be used.
- All necessary working should be • shown in every question if full marks are to be awarded.
- Marks may **NOT** be awarded for messy • or badly arranged work.
- Hand in your answer booklets in 4 • sections. Section A (Questions 1 & 2), Section B (Questions 3 & 4), Section C (Question 5) and Section D (Questions 6 & 7).
- Start each **NEW** section in a separate • answer booklet.

Total Marks - 90 Marks

- Attempt Sections A - D
- All questions are NOT of equal • value.

Examiner: E. Choy

SECTION A

Question 1 (18 marks)			
(a)		Evaluate correct to four significant figures $5 \cdot 6729 \times 10^{18} \div 2 \cdot 17407 \times 10^{-7}$	2
(b)		Convert $\frac{7\pi}{15}$ radians to degrees	1
(c)		State the exact value of cosec135°	1
(d)		Simplify:	
	(i)	$8^{-2/3} + 81^{3/4}$	2
	(ii)	$\frac{x^{-1}}{y^{-1}} - \left(\frac{x}{y}\right)^{-1}$	2
(e)		Express $\frac{2}{4-\sqrt{11}}$ with a rational denominator	2
(f)		A function is defined by $f(x) = x(x^2 - 2)$. Find the value of $f(a)$ and $f(-a)$.	2
(g)		Find in general form the equation of the straight line that passes through the point (1,-3) and is perpendicular to the line $y = \frac{2}{3}x + 4$	2
(h)		7	
		В	
		M	
		Use the diagram above to write down the ratio in which	2
	(i)	M divides the interval AB	-
	(ii)	<i>B</i> divides the interval <i>AM</i>	2

Marks

SECTION A (continued)

Question 2 (10 marks)

(a) Write down the inequations that correspond to the region shaded in the diagram below

(b)	Find, without using a calculator, the value of	3
	$\left(\sin 22\frac{1}{2}^{\circ} - \cos 22\frac{1}{2}^{\circ}\right)^2$	

(c) Prove
$$\frac{\sin^2 \theta}{1 - \cos \theta} = 1 + \cos \theta$$
 2

(d) If
$$\cos\theta = \frac{4}{5}$$
, find the value of $\tan^2 \theta - \sec \theta$ 3

SECTION B (Start a NEW booklet)

Question 3 (9 marks)

Marks

(a)

Solve and graph, on separate number lines, the solutions of

(i)
$$2(4-7x) \le 30$$
 2

(ii)
$$|3-x| = 17$$
 2

(iii)
$$\frac{2}{x} \ge 5$$
 2

(b) The lines
$$4x - 3y + 2 = 0$$
 and $7x - y - 6 = 0$ meet at the point *P*.
WITHOUT finding the coordinates of *P*, find in general form the equation of the line that passes through *P* and the point (0,1).

Question 4 (12 marks)

(a)

5

-

Show that
$$AC = \frac{\sqrt{2}}{\sin\theta + \cos\theta}$$
 metres

(b) (i) Find the perpendicular distance from the origin to the line
$$x + y + c = 0$$

(ii) The line
$$x + y + c = 0$$
 cuts the circle $x^2 + y^2 = 9$ in two
distinct points.
Prove that $-3\sqrt{2} < c < 3\sqrt{2}$

(iii) Explain what happens when
$$c = \pm 3\sqrt{2}$$

SECTION C (Start a NEW booklet)

Question 5 (17 marks) (a) On separate number planes, sketch the following g

) On separate number planes, sketch the following graphs, giving all the intercepts with the *x* and *y* axes.

$$(i) y = 3^x + 1$$

(ii)
$$y = \frac{3}{|x|}$$
 3

(b) If
$$f(t) = \frac{t^2 + t + 1}{t}$$
 show that $f\left(\frac{a}{b}\right) = f\left(\frac{b}{a}\right)$ for 3

(c) A function
$$f(x)$$
 is defined by

$$f(x) = \begin{cases} 2 - x, & x \ge 0\\ 2 - x^2, & x < 0 \end{cases}$$

- (i) Draw a neat sketch of the function giving *ALL* intercepts 3 with the x and y axes.
- (ii) Find the values of *a* for which $f(a^2) + f(-1) = 0$ 3
- (d) Sketch on a Cartesian number plane the *locus* of all points 3 equidistant from the *x* and *y* axes.

(a)

In ΔKLM , KL = KM, $OP \perp LK$ and $OQ \perp KM$.

Prove that LP.OQ = OP.MQ

(b) If
$$\sin x = 2\sin(\theta - x)$$
, prove that $\tan x = \frac{2\sin\theta}{1 + 2\cos\theta}$ 4

(c) Solve
$$\frac{3x-1}{x+2} \ge 1$$
 4

(d) (i) Draw the graphs of
$$y = |2x-1|$$
 and $y = \frac{2}{3}x+1$ for
 $-2 \le x \le 3$

(ii) Hence solve the equation
$$3|2x-1| = 2x+3$$
 2

Question 7 (5 marks)

(i) Show that
$$\frac{1}{\sqrt{n-1}+\sqrt{n}} = \sqrt{n} - \sqrt{n-1}$$
,
for any positive integer *n*.

(ii) Hence evaluate
$$\frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \dots + \frac{1}{\sqrt{8}+\sqrt{9}} + \frac{1}{\sqrt{9}+\sqrt{10}}$$

THIS IS THE END OF THE PAPER

Marks

5