2003

Year 11

half yearly examination

Mathematics

General Instructions

- Reading time -5 minutes.
- Working time - 90 minutes.
- Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may NOT be awarded for messy or badly arranged work.
- Hand in your answer booklets in 4 sections. Section A (Questions $1 \& 2$), Section B (Questions 3 \& 4), Section C (Question 5) and Section D (Questions 6 \& 7).
- Start each NEW section in a separate answer booklet.

Total Marks - 90 Marks

- Attempt Sections A - D
- All questions are NOT of equal value.

Examiner: E. Choy

SECTION A

Question 1 (18 marks)
Marks
(a) Evaluate correct to four significant figures

$$
5 \cdot 6729 \times 10^{18} \div 2 \cdot 17407 \times 10^{-7}
$$

(b)

Convert $\frac{7 \pi}{15}$ radians to degrees

A function is defined by $f(x)=x\left(x^{2}-2\right)$. Find the value of $f(a)$ and $f(-a)$.
(g) Find in general form the equation of the straight line that passes through the point $(1,-3)$ and is perpendicular to the line $y=\frac{2}{3} x+4$
(h)

Express $\frac{2}{4-\sqrt{11}}$ with a rational denominator
(i) $\quad M$ divides the interval $A B$
(ii) $\quad B$ divides the interval $A M$

SECTION A (continued)

Question 2 (10 marks)
Marks
(a) Write down the inequations that correspond to the regio shaded in the diagram below
(b)

Find, without using a calculator, the value of

$$
\left(\sin 22 \frac{1}{2}^{\square}-\cos 22 \frac{1}{2}^{-}\right)^{2}
$$

(c) Prove $\frac{\sin ^{2} \theta}{1-\cos \theta}=1+\cos \theta$
(d) If $\cos \theta=\frac{4}{5}$, find the value of $\tan ^{2} \theta-\sec \theta$

SECTION B (Start a NEW booklet)

Question 3 (9 marks)
(a) Solve and graph, on separate number lines, the solutions of
(i) $2(4-7 x) \leq 30$
(ii) $|3-x|=17$
(iii) $\frac{2}{x} \geq 5$

SECTION C (Start a NEW booklet)

Question 5 (17 marks)
(a) On separate number planes, sketch the following graphs, giving all the intercepts with the x and y axes.
(i) $y=3^{x}+1$
(ii) $y=\frac{3}{|x|}$
(c)

A function $f(x)$ is defined by

$$
f(x)= \begin{cases}2-x, & x \geq 0 \\ 2-x^{2}, & x<0\end{cases}
$$

(i) Draw a neat sketch of the function giving $A L L$ intercepts with the x and y axes.
(ii) Find the values of a for which $f\left(a^{2}\right)+f(-1)=0$
(d)

Sketch on a Cartesian number plane the locus of all points 3 equidistant from the x and y axes.

SECTION D (Start a NEW booklet)

Question 6 (19 marks)
Marks
(a)

In $\square K L M, K L=K M, O P \perp L K$ and $O Q \perp K M$.
Prove that $L P . O Q=O P . M Q$
(b)

If $\sin x=2 \sin (\theta-x)$, prove that $\tan x=\frac{2 \sin \theta}{1+2 \cos \theta}$
(c) Solve $\frac{3 x-1}{x+2} \geq 1$
(d) (i) Draw the graphs of $y=|2 x-1|$ and $y=\frac{2}{3} x+1$ for $-2 \leq x \leq 3$
(ii) Hence solve the equation $3|2 x-1|=2 x+3$

Question 7 (5 marks)
(i) Show that $\frac{1}{\sqrt{n-1}+\sqrt{n}}=\sqrt{n}-\sqrt{n-1}$,
for any positive integer n.
(ii) Hence evaluate

$$
\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\square+\frac{1}{\sqrt{8}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{10}}
$$

THIS IS THE END OF THE PAPER

