

SYDNEYBOYS HIGH SCHOOL MoORE PARK, SURRY HILLS

2004

YEAR 11

HALF YEARLY EXAMINATION

Mathematics

General Instructions

- Working time - 90 minutes.
- Reading Time -5 minutes.
- Write using black or blue pen.
- Only Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Start each section in a SEPARATE answer booklet.
- Marks may not be awarded for messy or badly arranged work

Total Marks - 82

- Attempt Sections A - D
- All sections are NOT of equal value.

Examiner:
C. Kourtesis

SECTION A

[20 marks]

1. Convert (a) $\frac{5 \pi}{2}$ radians to degrees
(b) 135° to radians 1
2. The point $(9, k)$ lies on the line $x+3 y=6$

Find the value of k
3. If $m(x)=3^{x}+3^{-x}$ find $m(-3)$

1
4. Solve the inequalities
(a) $-4 x+1 \leq 12 x$

2
(b) $\quad|x|<4$

1
5. Find the point of intersection of the straight lines

$$
\begin{equation*}
x+2 y=6 \quad \text { and } \quad x-3 y=10 \tag{2}
\end{equation*}
$$

6. On separate diagrams sketch the graphs of:
(a) $x y=4$

1
(b) $y=2^{-x}$
(c) $y=\log _{10} x$
7. Find the roots of the equation $\theta^{2}-\theta-2=0$
8. Sketch the region in the number plane indicated by $y \geq x^{2}$
9. The equation of a parabola is given by $x^{2}=8 y$

Find the (a) equation of the directrix
(b) coordinates of the focus

SECTION B (Start a NEW Booklet) [18 marks]

10. Explain why $f(x)=\sin x$ represents an odd function
11. For the function $f(x)=\frac{1}{(x+1)(1-3 x)}$ write down the
(a) equations of the vertical asymptotes
(b) y intercept
12. The equation of a circle is given by

$$
\begin{equation*}
x^{2}+y^{2}+4 x-8 y=0 \tag{4}
\end{equation*}
$$

Find the (a) coordinates of the centre
(b) length of the radius
13. Find the acute angle between the lines, answer to the nearest minute.

$$
y=2 x-1 \text { and } y=-\frac{1}{3} x
$$

14. Given the quadratic equation $2 x^{2}-m x+8=0$

Find the (a) discriminant 1
(b) value(s) of m for which the above equation has 2 two distinct real roots
15. Find the coordinates of the point that divides the interval joining $A(1,4)$ and $B(5,10)$ externally in the ratio $3: 2$

SECTION C (Start a NEW Booklet)
 [23 marks]

16. Solve the inequalities
(a) $\quad(x+4)(x-2)(x-3)>0 \quad 2$
(b) $\frac{x-3}{1-x}>2$
17. Find the equation of the locus of a point $P(x, y)$ which moves so that 3 its distance from $x-y+2=0$ is equal to its distance from the point $(1,-1)$
18. Solve the inequality $\frac{1}{|4-3 x|}<4$
19. (a) Write down the algebraic definition of $|x|$
(b) Sketch the graph of $y=x|x|$
20. Find the value(s) of k if the equation

$$
x^{2}-3 k x+(k+3)=0
$$

has:
(a) one root that is double the other 2
(b) one root that is the reciprocal of the other 2
21. Solve the equation

$$
1-\cos x-2 \sin ^{2} x=0 \text { for } 0 \leq x \leq 2 \pi
$$

SECTION D (Start a NEW Booklet) [21 marks]

22. Solve $x^{6}-7 x^{3}-8=0$
23. Solve the inequality $\left(x+\frac{1}{x}\right)^{2}-\left(x+\frac{1}{x}\right) \leq 6$
24. Prove that

$$
\begin{equation*}
\frac{\sin 2 \theta+\sin \theta}{\cos 2 \theta+\cos \theta+1}=\tan \theta \tag{4}
\end{equation*}
$$

25. (a) Show that $\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$
(b) Hence show that

$$
\begin{equation*}
\tan 15^{\circ}=2-\sqrt{3} \tag{3}
\end{equation*}
$$

26. A man travelling along a straight flat road passes three points at intervals of 200 m . From those points he observes the angle of elevation of the top of a hill to the left of the road to be respectively $30^{\circ}, 45^{\circ}$ and again 45°.
(a) Draw a neat diagram to represent this information 1
(b) Find the height of the hill

$$
4
$$

SYDNEYBOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2004

YEAR 11

HALF YEARLY EXAMINATION

Mathematics
 Extension

Sample Solutions

Section	Marker
A	Mr Choy
B	Mr Parker
C	Mr Hespe
D	Mr Bigelow

SECTION B [18 marks]

10. An odd function satisfies $f(-x)=-f(x)$
$\therefore f(-x)=\sin (-x)=-\sin x=-f(x)$
11. $f(x)=\frac{1}{(x+1)(1-3 x)}$
(a) The equations of the vertical asymptotes are $x=-1$ and $x=\frac{1}{3}$.
(b) $\quad y$ intercept is when $x=0 \Rightarrow f(0)=\frac{1}{(0+1)(1-0)}=1$.

So the y-intercept is $(0,1)$.
12. $x^{2}+y^{2}+4 x-8 y=0$
$\therefore\left(x^{2}+4 x\right)+\left(y^{2}-8 y\right)=0$
$\Rightarrow\left(x^{2}+4 x+\left(\frac{4}{2}\right)^{2}\right)+\left(y^{2}-8 y+\left(\frac{-8}{2}\right)^{2}\right)=0+4+16$
$\Rightarrow\left(x^{2}+4 x+4\right)+\left(y^{2}-8 y+16\right)=20$
$\Rightarrow(x+2)^{2}+(y-4)^{2}=20$
(a) coordinates of the centre are $(-2,4)$
(b) length of the radius is $\sqrt{20}=2 \sqrt{5}$
13. The acute angle between the lines is given by $\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$. $y=2 x-1 \Rightarrow m_{1}=2$ and $y=-\frac{1}{3} x \Rightarrow m_{2}=-\frac{1}{3}$ $\tan \theta=\left|\frac{2-(-1 / 3)}{1+(2)(-1 / 3)}\right|=7 \Rightarrow \theta=81^{\circ} 52^{\prime}$
14. $2 x^{2}-m x+8=0$
(a) The discriminant is $\square=b^{2}-4 a c=(-m)^{2}-4 \times 2 \times 8=m^{2}-64$
(b) Two distinct real roots $\Rightarrow \square>0$ ie $m^{2}-64>0$

$$
\Rightarrow(m-8)(m+8)>0
$$

$$
\therefore m<-8, m>8
$$

15. $P\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}\right)$ where $A(1,4)=\left(x_{1}, y_{1}\right), B(5,10)=\left(x_{2}, y_{2}\right)$ and $m: n=3:-2$.
$P\left(\frac{3 \times 5+(-2) \times 1}{3-2}, \frac{3 \times 10+(-2) \times 4}{3-2}\right)=(13,22)$

Y11 Ext 1 talf-Yearly 2004
Pout C

$$
-4<x<2, x>3
$$

(b) Method 1:

$$
\begin{aligned}
& (x-3)(1-x)>2(1-x)^{2} \\
& (1-x)(x-3-2[1-x])>0 \\
& (1-x)(3 x-5)>0 \\
& 1<x<5 / 3
\end{aligned}
$$

Method 2:

$$
\begin{aligned}
\text { If } x>1, x-3 & <2(1-x) \\
3 x & <5 \\
x & <5 / 3 \\
\text { If } x<1, x-3 & >2(1-x) \\
3 x & >5 \\
x & >5 / 3
\end{aligned}
$$

Centradiction.

$$
\begin{aligned}
& \therefore \quad 1<x<5 / 3 . \\
& 17 \frac{|x-y+2|}{\sqrt{2}}=\sqrt{(x-1)^{2}+(y+1)^{2}} \\
& \frac{x^{2}+y^{2}+4-2 x y+4 x-4 y}{2}=x^{2}-2 x+1+y^{2}+2 y+1 \\
& x^{2}+y^{2}+4-2 x y+4 x-4 y=2 x^{2}-4 x+4+2 y^{2}+4 y \\
& x^{2}+y^{2}+2 x y-8 x+8 y=0
\end{aligned}
$$

$181<4|4-3 x|$
Wethod 1:

$$
\begin{gathered}
\text { If } x<4 / 3 \\
1<16-12 x \\
12 x<15 \\
x<5 / 4
\end{gathered}
$$

$$
\begin{aligned}
& \text { If } x>4 / 3 \\
& 1<12 x-16 \\
& 12 x>17 \\
& x>17 / 12
\end{aligned}
$$

as $5 / 4<4 / 3$ and $17 / 2>4 / 3$
then $x<5 / 4$ and $x>17 / 12$
Wethod 2 :

$$
\begin{aligned}
& 1<16\left(16-24 x+9 x^{2}\right) \\
& 1<256-384 x+144 x^{2} \\
& 0<255-384 x+144 x^{2} \\
& 0<85-128 x+48 x^{2} \\
& 0<(12 x-17)(4 x-5) \\
& \therefore x<5 / 4 \text { and } x>17 / 12 .
\end{aligned}
$$

19 (a) $|x|=\sqrt{x^{2}}$ or

$$
|x|=\left\{\begin{array}{cc}
x & \text { if } x \geqslant 0 \\
-x & \text { if } x<0
\end{array}\right.
$$

(b)

$$
\begin{aligned}
y & =x^{2} \text { when } x \geqslant 0 \\
& =-x^{2} \text { when } x<0
\end{aligned}
$$

20 Nof comeded (a) th=-1,3/2
(b) $k=-2$

21

$$
\begin{aligned}
& 1-\cos x-2\left(1-\cos ^{2} x\right)=0 \\
& 2 \cos x-\cos x-1=0 \\
& (2 \cos x+1)(\cos x-1)=0 \\
& \cos x=-1 / 2,1 \\
& x=2 \pi / 3,4 \pi / 3,0,2 \pi
\end{aligned}
$$

SECTMOND.

22

$$
\begin{aligned}
x^{6}-7 x^{3}-8 & =0 \\
\left(x^{3}-8\right)\left(x^{3}+1\right) & =0 \\
x^{3} & =8,-1 \\
x & =2,-1
\end{aligned}
$$

23. $\left(x+\frac{1}{x}\right)^{2}-\left(x+\frac{1}{x}\right) \leqslant 6$.

$$
\begin{aligned}
\left(x+\frac{1}{x}\right)^{2}-\left(x+\frac{1}{x}\right)-6 & \leq 0 \\
\left(x+\frac{1}{x}-3\right)\left(x+\frac{1}{x}+2\right) & \leq 0 \\
\therefore-2 \leq x+\frac{1}{x} & \leq 3
\end{aligned}
$$

Corsuais $x+\frac{1}{x} \geqslant-2$.

$$
\begin{aligned}
& \quad \begin{array}{l}
x+\frac{1}{x}+2 \geqslant 0 \\
\frac{x^{2}+1+2}{x} \geqslant 0 . \quad \text { (Muntiay Bont sides hy } x^{2} \text {) } \\
x\left(x^{2}+2 x+1\right) \geqslant 0 . \\
x(x+1)^{2} \geqslant 0 \\
\therefore=-1, x \geqslant 0 . \quad \text { NB } x \neq 0 \\
\therefore x=-1, x>0.1
\end{array} \quad \text { (A) }
\end{aligned}
$$

Conserder $x+\frac{1}{x} \leqslant 3$

$$
\frac{x^{2}-3 x+1}{x} \leq 0 \quad\left(\text { inatipay Bort sides hy } x^{2}\right)
$$

$$
x\left(x^{2}-3 x+1\right) \leqslant 0
$$

(Now Solling: $x^{2}-3 x+1=0$ $\left.x=\frac{3 \pm \sqrt{5}}{2}\right)$.

$$
\begin{equation*}
\therefore \frac{3-\sqrt{5}}{2} \leqslant x \leqslant \frac{3+\sqrt{5}}{2}, x<0 \tag{B}
\end{equation*}
$$

Tabing the intenuchion of sets (f) (B)

$$
x=-1, \frac{3-15}{2} \leq x \leq \frac{3+15}{2}
$$

24.

$$
\begin{aligned}
\operatorname{Lits} & =\frac{\sin 2 \theta+\sin \theta}{\cos 2 \theta+\cos \theta+1} \\
& =\frac{2 \sin \theta \cos \theta+\sin \theta}{2 \cos ^{2} \theta-1+\cos \theta+1} \\
& =\frac{2 \sin \theta \cos \theta+\sin \theta}{2 \cos ^{2} \theta+\cos \theta} \\
& =\frac{\sin \theta(2 \cos \theta+1)}{\cos \theta(2 \cos \theta+1)} \\
& =\frac{\sin \theta}{\cos \theta} \\
& =\tan \theta \\
& =\text { Ris } .
\end{aligned}
$$

26.

(a)

NB \triangle 'S $A C D$ and ACIE are esosieler α-ugit angled

$$
\text { Let } A C=C D=C E=h \text {. }
$$

$$
\text { In } \triangle A C B, B C=\sqrt{3} h .
$$

Let $\angle C E B=0$.
Moing Coscine Rule Travie.

$$
\begin{align*}
\cos \theta & =\frac{400^{2}+x^{2}-3 x^{2}}{2 \times 400 \times x} \\
\alpha \cos \theta & =\frac{200^{2}+x^{2}-x^{2}}{2 \times 200 \times x} \tag{B}
\end{align*}
$$

$25(a) \mu$ unig

$$
\begin{align*}
& \tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta} . \\
& \operatorname{Let} \alpha=\beta=\theta \\
& \therefore \tan (\theta+\theta)=\frac{\tan \theta+\tan \theta}{1-\tan \theta \tan \theta} \\
& \therefore \tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta} . \tag{A}
\end{align*}
$$

(b) (NB Q mestion states Hisnce:!!

Fren (A)

$$
\tan 30^{\circ}=\frac{2 \tan 15^{\circ}}{1-\tan ^{2} 15^{\circ}}
$$

Let $t=\tan 15^{\circ}$.

$$
\begin{aligned}
& \therefore \frac{1}{\sqrt{3}}=\frac{2 t}{1-t^{2}} \\
& 1-t^{2}=2 \sqrt{3} t \\
& \begin{aligned}
& t^{2}+2 \sqrt{3} t-1=0 \\
& t=\frac{-2 \sqrt{3} \pm \sqrt{12+4}}{2} \\
&=\frac{-2 \sqrt{3} 54}{2} \\
&=-\sqrt{3} \pm 2 . \\
& \text { nan } t=\tan 15^{\circ}>0 . \\
& \therefore \tan ^{\circ} 15^{\circ}=2-\sqrt{3} .
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Fram(A) } \times(3) \\
& \begin{aligned}
\frac{400^{2}-2 x^{2}}{800 x} & =\frac{200^{2}}{400 x} \\
\therefore 400^{2}-2.200^{2} & =2 x^{2} \\
80000 & =2 x^{2} \\
x^{2} & =40000 \\
x & =200.2 n
\end{aligned}
\end{aligned}
$$

