

2004

YEAR 11

HALF YEARLY EXAMINATION

Mathematics Extension

General Instructions

- Working time 90 minutes.
- Reading Time 5 minutes.
- Write using black or blue pen.
- Only Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Start each section in a **SEPARATE** answer booklet.
- Marks may not be awarded for messy or badly arranged work

Total Marks - 82

- Attempt Sections A D
- All sections are **NOT** of equal value.

Examiner: C. Kourtesis

SECTION A [20 marks]

1.	Convert	(a)	$\frac{5\pi}{2}$ radians to degrees	1
		(b)	135° to radians	1
2.	The point (9, Find the value		So the line $x + 3y = 6$	2
3.	If $m(x) = 3^x + $	-3 ^{-x} fin	d <i>m</i> (-3)	1
4.	Solve the inec	qualities		
	(a)	-4x +	$1 \le 12x$	2
	(b)	x < 4		1
5.	Find the poin	t of inte	rsection of the straight lines	
	<i>x</i> +2 <i>y</i>	v = 6	and $x - 3y = 10$	2
6.	On separate d	iagrams	s sketch the graphs of:	
	(a)	xy = 4		1
	(b)	$y = 2^{-1}$	x	1
	(c)	y = lo	g ₁₀ x	1
7.	Find the roots	s of the o	equation $\theta^2 - \theta - 2 = 0$	2
8.	Sketch the reg	gion in t	he number plane indicated by $y \ge x^2$	2
9.	The equation Find the	of a par (a) (b)	abola is given by $x^2 = 8y$ equation of the directrix coordinates of the focus	1 2

SECTION B (Start a NEW Booklet) [18 marks]

10.	Explain why	f(x) =	$\sin x$ represents an odd function	2
11.	For the funct	ion $f(x)$	$x = \frac{1}{(x+1)(1-3x)}$ write down the	
	(a) equat	ions of	the vertical asymptotes	2
	(b) <i>y</i> in	tercept		1
12.	-		cle is given by $-8y = 0$	4
	Find the	(a)	coordinates of the centre	
		(b)	length of the radius	

13. Find the acute angle between the lines, answer to the nearest minute.

$$y = 2x - 1$$
 and $y = -\frac{1}{3}x$ 3

14. Given the quadratic equation $2x^2 - mx + 8 = 0$

Find the	(a)	discriminant	1
	(b)	value(s) of m for which the above equation has	2
		two distinct real roots	

15. Find the coordinates of the point that divides the interval joining A(1,4) and B(5,10) externally in the ratio 3:2

SECTION C (Start a NEW Booklet) [23 marks]

16. Solve the inequalities

(a)
$$(x+4)(x-2)(x-3) > 0$$
 2
 $x = 2$

(b)
$$\frac{x-3}{1-x} > 2$$
 4

17. Find the equation of the locus of a point P(x, y) which moves so that 3 its distance from x - y + 2 = 0 is equal to its distance from the point (1, -1)

18. Solve the inequality
$$\frac{1}{|4-3x|} < 4$$
 3

19. (a) Write down the algebraic definition of
$$|x|$$
 1

(b) Sketch the graph of
$$y = x |x|$$
 3

20. Find the value(s) of *k* if the equation

$$x^{2}-3kx+(k+3)=0$$

has:

(b) one root that is the reciprocal of the other 2

21. Solve the equation

$$1 - \cos x - 2\sin^2 x = 0$$
 for $0 \le x \le 2\pi$ 3

SECTION D (Start a NEW Booklet) [21 marks]

22. Solve
$$x^6 - 7x^3 - 8 = 0$$
 3

23. Solve the inequality
$$(x+\frac{1}{x})^2 - (x+\frac{1}{x}) \le 6$$
 4

24. Prove that

$$\frac{\sin 2\theta + \sin \theta}{\cos 2\theta + \cos \theta + 1} = \tan \theta \tag{4}$$

25. (a) Show that
$$\tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta}$$
 2

(b) Hence show that

$$\tan 15^\circ = 2 - \sqrt{3}$$

26. A man travelling along a straight flat road passes three points at intervals of 200m. From those points he observes the angle of elevation of the top of a hill to the left of the road to be respectively 30°, 45° and again 45°.

(a)	Draw a neat diagram to represent this information	1
(b)	Find the height of the hill	4

THIS IS THE END OF THE EXAMINATION

MOORE PARK, SURRY HILLS

2004

YEAR 11

HALF YEARLY EXAMINATION

Mathematics Extension

Sample Solutions

Section	Marker
Α	Mr Choy
В	Mr Parker
С	Mr Hespe
D	Mr Bigelow

(a) y = -2 [equator. $\begin{bmatrix} 2 \\ -7 \end{bmatrix} = (1+\theta)(7-\theta)$ 4an 8 an 8 [2] D L (b) (c, 2) focus 7 2 = 2 $\chi^{R} = 8 \eta_{I}$ ∴ @ = -1, Z. , 195 0 Ø હ $\begin{array}{c} (7) & x + 2y = 6 \\ (7) & x - 3y = 10 \\ (1) & (2) & 5y = -4 \\ \end{array}$ ⊡ ↑× × 4 = 100 × ++ of intersection (73/5, -4/5) [2] Ľ L $x - \frac{8}{5} = 6$ $x - \frac{3}{7} = 6$ ×۲ (1,4)(z'1) (1,2) : y = - 4/5 (0'1) 4 0 42 0 Section A 1. (9) X ۹ ... 6 (م) (J [] УП = 180×5 = 450 $\frac{135}{180} \times 180 = \pi \times 135 = \frac{3\pi}{180}$ (m(-3) = 3⁻³ + 3³ = 27 = - 24). $(4) (a) - 4x + 1 \le 12x$ 9+37 = 6. N7 = -3 X = -1. $\left[\int C_{ij} \right] \left[8\sigma = \pi^{c}$ (a) T = 180 [2] 16x 2 1 x 2 16 (r) (x) <4 [1]-4.2x24 5

SECTION B [18 marks]

10. An odd function satisfies
$$f(-x) = -f(x)$$

 $\therefore f(-x) = \sin(-x) = -\sin x = -f(x)$

11.
$$f(x) = \frac{1}{(x+1)(1-3x)}$$

(a) The equations of the vertical asymptotes are
$$x = -1$$
 and $x = \frac{1}{3}$.

(b) y intercept is when $x = 0 \Rightarrow f(0) = \frac{1}{(0+1)(1-0)} = 1$. So the y – intercept is (0,1).

12.
$$x^{2} + y^{2} + 4x - 8y = 0$$

$$\therefore (x^{2} + 4x) + (y^{2} - 8y) = 0$$

$$\Rightarrow \left(x^{2} + 4x + \left(\frac{4}{2}\right)^{2}\right) + \left(y^{2} - 8y + \left(\frac{-8}{2}\right)^{2}\right) = 0 + 4 + 16$$

$$\Rightarrow (x^{2} + 4x + 4) + (y^{2} - 8y + 16) = 20$$

$$\Rightarrow (x + 2)^{2} + (y - 4)^{2} = 20$$

(a) coordinates of the centre are (-2, 4)

(b) length of the radius is
$$\sqrt{20} = 2\sqrt{5}$$

13. The acute angle between the lines is given by $\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$. $y = 2x - 1 \Rightarrow m_1 = 2$ and $y = -\frac{1}{3}x \Rightarrow m_2 = -\frac{1}{3}$ $\tan \theta = \left| \frac{2 - (-1/3)}{1 + (2)(-1/3)} \right| = 7 \Rightarrow \theta = 81^{\circ}52'$

14.
$$2x^2 - mx + 8 = 0$$

(a) The discriminant is $\Delta = b^2 - 4ac = (-m)^2 - 4 \times 2 \times 8 = m^2 - 64$

(b) Two distinct real roots $\Rightarrow \Delta > 0$ is $m^2 - 64 > 0$ $\Rightarrow (m-8)(m+8) > 0$ $\therefore m < -8, m > 8$

15.
$$P\left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n}\right) \text{ where } A(1,4) = (x_1, y_1), B(5,10) = (x_2, y_2) \text{ and}$$
$$m: n = 3: -2.$$
$$P\left(\frac{3 \times 5 + (-2) \times 1}{3-2}, \frac{3 \times 10 + (-2) \times 4}{3-2}\right) = (13,22)$$

Y11 Ext 1 Half- yearly 2004 Part C a) 3 - - 4<x < 2, x>3 16:(a) 3 7.4 23 (b) Method 1: $(x-3)(1-x) > 2(1-x)^{2}$ (1-2)(x-3-2[1-x])>0(1-2)(32-5)70 $1 < x < \frac{5}{3}$ Method 2: If x>1, x-3 ≥ < 2(1-x) 32 65 2 65/3. $f_{x<1}, x-3>2(1-x)$ 3x>5 $x>^{5/3}$ Contradiction. · 16x 65/3. $17 \left| \frac{x - y + 2}{y} \right| = \sqrt{(x - 1)^2 + (y + 1)^2}$ $\frac{x^{2}+y^{2}+4-2xy+4x-4y}{2}=x^{2}-2x+1+y^{2}+2xy+1$ $x^{2} + y^{2} + 4 - 2xy + 4x - 4y = 2x^{2} - 4x + 4 + 2y^{2} + 4y$ $x^{2} + y^{2} + 2xy - 8x + 8y = 0$ 18 1 < 4 | 4 - 3x |Method 1: $f_{f} x > 4/3$ 1 $\leq 12x - 16$ 12x>17 x>17/12 122615 2 5/4

as 5/4 6 +13 and 17/2 > 4/3 then x 5 5/4 and x > 17/12 Method 2: 1 < 16 (16 - 24 x + 9 x 2) 1 6 256 - 384 x + 144 x 2 0 < 255-384 x + 14422 0 5 85-128x+48x2 $0 \leq (12x - 17)(4x - 5)$ $\therefore x \leq 5/4 \text{ and } x > 17/12$ $19(a)|x|=\sqrt{x^2}$ 1x = { x if x 30 -x if x <0 05 y $y = x^{2} when x > 0$ $= -x^{2} when x L0$ (4) 20 Not counted (a) $k = -1, \frac{3}{2}$ (b) k = -2 $21 \ 1 - \cos x - 2(1 - \cos^2 x) = 0$ 2cor x - corx - 1=0

$$\sum_{x = 7x}^{6} \frac{1}{7x^{3} - 8} = 0$$

$$(x^{3} - 8)(x^{3} + 1) = 0$$

$$x^{3} = 8, -1$$

$$[x = 2, -1]$$

$$2^{3} (x+\frac{1}{x})^{2} - (x+\frac{1}{x}) \le 6,$$

$$(x+\frac{1}{x})^{2} - (x+\frac{1}{x}) - 6 \le 0$$

$$(x+\frac{1}{x}-3)(x+\frac{1}{x}+d) \le 0$$

$$\therefore -2 \le x+\frac{1}{x} \le 3.$$

Consider x+1 >,-2.

$$\chi + \frac{1}{2} + \lambda \neq 0$$

$$\chi' + \frac{1}{2} + \frac{1}{2} \times 0 \quad (M_{ULTURY} \text{ BOTH SIDES by } \chi')$$

$$\chi(\chi' + \lambda + 1) \geq 0 \quad \frac{3}{2} + \frac{1}{2} \times 0$$

$$\chi(\chi + 1)^{2} \geq 0 \quad \frac{-1}{2} + \frac{1}{2} \times 0$$

$$\chi = -1, \chi \geq 0, \quad NB \times \neq 0$$

$$\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \times 0 \quad NB \times \neq 0$$

Consider x 44 53

$$\frac{\chi^{2} = 3\chi + 1}{\chi} \leq 0 \quad (Mourray Bort sides by \chi^{2})$$

$$\chi(\chi^{2} - 3\chi + 1) \leq 0 \quad (Now Sating \cdot \chi^{2} - 3\chi + 1 = 0)$$

$$\chi = \frac{3 \pm \sqrt{5}}{2} \quad (\frac{3 - \sqrt{5}}{2} \leq \chi \leq \frac{3 \pm \sqrt{5}}{2}),$$

$$\frac{3 - \sqrt{5}}{2} \leq \chi \leq \frac{3 \pm \sqrt{5}}{2} \quad (3)$$

$$\frac{3 - \sqrt{5}}{2} \leq \chi \leq \frac{3 \pm \sqrt{5}}{2} \quad (3)$$

$$\frac{3 - \sqrt{5}}{2} \leq \chi \leq \frac{3 \pm \sqrt{5}}{2} \quad (3)$$

$$\chi = -1 \quad (3)$$