

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2005

YEAR 11 ACCELERATED

ASSESSMENT TASK #1

Mathematics

General Instructions

- Reading Time 5 Minutes
- Working time 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Each section is to be returned in a separate bundle.
- All necessary working should be shown in every question.

Total Marks – 96

- Attempt questions 1 8
- All questions are of equal value.

Examiner: AM Gainford

Section A (Start a new booklet.)

Question 1. (12 Marks)

(a) Calculate
$$\sqrt{\frac{185}{5 \cdot 4 \times 3 \cdot 7}}$$
 correct to two decimal places. 1

(b) Simplify
$$a - 3(2 - a)$$
. 1

(c) Solve the equation
$$\frac{x+2}{3} - 1 = \frac{x}{4}$$
.

(d) Simplify
$$\sqrt{243} - \sqrt{27}$$
. 2

(e) Find x if
$$\log_2 x = 5$$
. 1

(f) Find
$$\theta$$
 to the nearest minute if $0^0 \le \theta \le 90^0$ and $\cos \theta = 0.147$. 1

(g) Solve the equation
$$4x^2 = 12x$$
. 2

(h) Graph on a number line the solution of the inequality
$$\frac{x-1}{2} < 3$$
.

(a) Simplify
$$\frac{(x^2y)^3}{(xy^3)^2}$$
.

2

(b) Find the exact value of $\sin 315^{\circ} - \tan 150^{\circ}$. Express your answer as a single fraction with rational denominator.

(c) Given that
$$f(x) = \frac{4x^2}{\sqrt{9-x^2}}$$
: 2

- (i) Find f(2).
- (ii) Show that f(x) is an even function.

(d) Simplify
$$\frac{x^2 - y^2}{(x + y)^2}$$
. 1

(e) Calculate $(2 \cdot 4371 \times 10^{23}) \div (7 \cdot 148 \times 10^{-12})$, expressing your answer in scientific **1** notation.

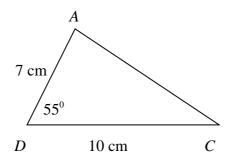
(f) Sketch the graphs of the following, showing their principal features: 4

- (i) $y = 1 x^2$ (ii) $y = -\sqrt{x}$
- (g) Express the recurring decimal 0.27777... as a common fraction. 1

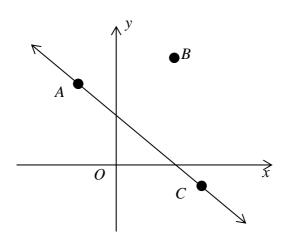
Section B (Start a new booklet.)

Question 3. (12 Marks)

(a) Given the triangle *ACD*:



- (i) Find the length of the side *AC*, correct to 2 decimal places.
- (ii) Calculate the measure of $\angle ACD$ correct to the nearest minute.
- (b) State the natural domain and range of the function $f(x) = \frac{x}{\sqrt{4-x^2}}$.
- (c) Solve |3-2x| < 4 and graph the solution on the number line.
- (d)



The diagram above shows the points A(-2,4), B(3,5), and C(4, -1).

Copy the diagram to your answer booklet.

- (i) Find the equation of the line through the points *A* and *C*.
- (ii) Write the equation of the line through *B* perpendicular to *AC*.
- (iii) Find the distance from *B* to *AC*.

2

Question 4. (12 Marks)

A

140°

D

B

С

(b)

(a) Given the line y = 4 - x and the parabola $y = x^2 - 2$

- (i) Find the points of intersection of the line and the parabola.
- (ii) Hence sketch the region where $y \le 4-x$ and $y > x^2 2$ hold simultaneously.

$$AC \parallel FH$$
 1

Find the measure of *x*.

(c) In the diagram AB = 10 cm, AC = 8 cm,and $BE = 6 \text{ cm}. \angle DBF = \angle ECF$.

E

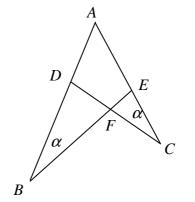
x

 62°

G

Η

Find the length of *DC*, giving brief reasons.



(d) Solve the following equations:

(i)
$$x^4 - 13x^2 + 36 = 0$$

(ii)
$$4^x - 9(2^x) + 8 = 0$$

(e) Find the centre and radius of the circle
$$x^2 + y^2 - 4x + 6y = 3$$
.

2

4

2

Section C (Start a new booklet.)

Question 5 (12 Marks)

- (a) Differentiate the following with respect to *x*:
 - (i) $x^{3} 3x^{2} + 7$ (ii) $4\sqrt{x-1}$ (iii) $\frac{1}{2x^{3}}$

(b)

(i) Use the product rule to find
$$\frac{dy}{dx}$$
 if $y = 3x(x-1)^9$.

3

- (ii) Differentiate $y = \frac{x+1}{1-2x}$ by using the quotient rule.
- (iii) If $f(x) = x + \frac{1}{x}$, find
 - (α) f'(2)
 - (β) f'(-3)

(c) The fourth term of a geometric sequence is $-\frac{27}{8}$, and the seventh term is $\frac{729}{64}$.

- (i) Find the values of the first term and the common ratio.
- (ii) Find the sum of the first 10 terms.

- (a) For the curve $y = x x^3$, find the gradient of the tangent to the curve at the point 2 (2,-6). Also find the gradient of the normal to the curve at this point.
- (b) Given that f(x) is defined as below

$$f(x) = \begin{cases} -5 & \text{for } x \le -3 \\ 2x & \text{for } -3 < x < 0 \\ x^2 & \text{for } x \ge 0 \end{cases}$$

- (i) Find the value of f(-3) + f(4) + f(-1).
- (ii) Find $f(a^2)$.
- (c) For the parabola $x^2 4x 8y 4 = 0$ write down the
 - (i) equation of the axis of symmetry
 - (ii) coordinates of the vertex
 - (iii) equation of the directrix and coordinates of the focus.
- (d) Two cadets on a compass march proceed from their campsite at *A* a distance of 1300 **4** m on a bearing of $275^{\circ}T$ to a point *B*, then travel 2100 m on a bearing of $170^{\circ}T$ to a point *C*.
 - (i) Draw a neat diagram to represent this situation.
 - (ii) Determine the bearing and distance for their final leg from C back to camp at A.

2

Section D

(Start a new booklet)

Question 7 (12 Marks)

- (a) Let α and β be the roots of the equation $x^2 7x + 2 = 0$. Find the values of: 4
 - (i) $\alpha + \beta$
 - (ii) $\alpha\beta$
 - (iii) $(\alpha + 1)(\beta + 1)$
- (b) Solve the following equations simultaneously:
 - 2a 3b = -214a + 2b = -2
- (c) It is given that the series $\log_2 64 + \log_2 32 + \log_2 16 + \dots$ is either geometric or arithmetic.
 - (i) Determine whether the series is geometric or arithmetic, and state its common ratio, or difference.

2

4

2

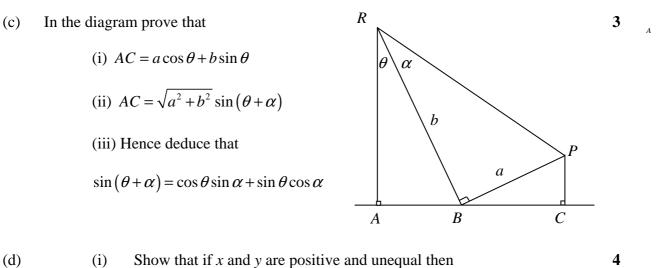
- (ii) Find the value of the seventh term.
- (iii) Determine how many terms must be taken to produce a sum of zero.
- (d) Prove the trigonometric identity

 $\frac{1}{\sec A - \tan A} = \sec A + \tan A$

Question 8 (12 Marks)

(a)

- On a number plane diagram sketch the locus of all points equidistant (i) 2 from the co-ordinate axes.
 - (ii) Write down an equation to describe this locus.
- If one root of the quadratic equation $x^2 + bx + c = 0$ is twice the other, show that (b) 3 $2b^2 = 9c$



(d)

 $x^2 + y^2 > 2xy$

Hence or otherwise show that if *a* and *b* are positive and unequal then (ii)

$$a+b>2\sqrt{ab}$$
.

This is the end of the paper.

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2005 YEAR 11 ACCELERATED

ASSESSMENT TASK #1

Mathematics Sample Solutions

Question	Marker
1	DM
2	FN
3	JD
4	AF
5	PRB
6	DMH
7	СК
8	PSP

Question 1 a) 3.04. b) 4a-6 $\frac{c}{\frac{2+2-3}{3}} = \frac{2}{4}$ 4x-4=32 2:4 $3\sqrt{27} - 3\sqrt{3} = 9\sqrt{3} - 3\sqrt{3}$ = $6\sqrt{3}$ $\mathcal{A})$ e) x= 32 **(**1) 81°33' $4x^2 - 12x = 0$ $x^2 - 3x = 0$ x = 0, 3.g) h) $\chi < 7$ € E +

 $\frac{\text{QUESTION 2}}{(4) \frac{2c^{6}\gamma^{3}}{\chi^{2}\gamma^{6}}}$ (7) \bigcirc (0,1)(b) $\sin 315^{\circ} + \tan 150^{\circ}$ = $-\sin 45 - -\tan 30^{\circ}$ = $-\frac{1}{52} + \frac{1}{53}$ R < (-1,0) (0,0) ٢ 2 $(C)(i) f(2) = \frac{4 \times 2^2}{\sqrt{9 - (2)^2}} = \frac{16}{\sqrt{5}}$ 4 (ii) $f(-x) = \frac{4 x(-x)^2}{\sqrt{9 - (-x)^2}}$ $=\frac{4\chi^2}{\sqrt{g-\gamma^2}}=\frac{f(1)}{f(1)}$ (0,0 :, even function ~2 $(d) = \frac{(x+y)(x-y)}{(x+y)^2}$ 2 $= \frac{\chi - y}{\chi + y}$ 0 $S_{0} = \frac{a}{1-c} = \frac{7}{10} = \frac{9}{10}$ $\frac{1}{5} + \frac{7}{40} = \frac{5}{18}$ X 10 34 (e) 3,40.9485 OT 10x = 2:777 \bigcirc 100 x=27,777,... $\begin{array}{r} 90 \ \chi = \ 25 \\ \chi = \ \frac{25}{90} \end{array}$ = 5 1)

Q30

$$7 \times x$$

 $55^{\circ} \times x$
 $10^{\circ} \times x^{7} = 7^{2} + 10^{2} - 2 \times 7 \times 10 \text{ cm} \text{ ss}^{5}$
 $= 68.69$
 $x = 8.29(2d\mu)$
 \tilde{w}) $49 = 10^{2} + 8.29^{-2} \times 10 \times 8.29 \text{ cm} \Theta$
 $49 = 168.7241 - 165.8 \text{ cm} \Theta$

(b)
$$f(x) = x$$

$$\sqrt{4-x^{\perp}}$$
Domain -2 < x < 2
hange y = heals
(c) $|3-2x| < 4$
 $3-2x < 4$
 $-2x < 4$
 $2x < 3/2$

el)
$$A(-2,4)$$
 $A(-2,4)$ $A(-2,4)$

r

Equation of
$$\mathcal{A}(C)$$

a) $\frac{y-4}{4x+2} = \frac{4+1}{-2-4}$
 $5x+10 = -6y+24$
 $5x+6y-14 = 0$
 $0A$ $y = -\frac{5}{6}x + \frac{7}{3}$
iii) Graduent of $\mathcal{A}C$ is $-\frac{5}{6}$
Graduent of $\mathcal{B}O = \frac{6}{5}$
 $\mathcal{B}O = \frac{6}{5}(x-3)$
 $5y-25 = 6x-18$
 $6x-5y+7 = 0$
 cA $y = \frac{6}{5}x + \frac{7}{5}$
iii) $\log \mathcal{B}O = \frac{6}{5}x + \frac{7}{5}$
iii) $\log \mathcal{B}O = \frac{6}{5}x + \frac{7}{5}$
 $iii) \log \mathcal{B}O = \frac{5\times3+6\times5-14}{\sqrt{36+25}}$
 $= \frac{31}{\sqrt{61}}$
 $= \frac{31\sqrt{61}}{61}$
 ≈ 3.969

4.a.i. y=4-2	d_{1} , $x^{4} - 13x^{2} + 36 = 0$
<u>y = 2 2</u>	let $m = x^2$
Sot O due	m2-13m+36=0
4-76= 2	(m-9)(m-4) = 0
$x^{2} + x - 6 = 0$	m=9 or $m=4$
(x+3)(x-2)=0	$3L^{2} = 67$ $3L^{2} = 4$
x=-3 or x=2	x=±3 x=±2
sud into O	.1. x = - 3, - 2, Z, 3
y=4-(- 3) y=4-2	ii. $4^{2} - q(2^{2}) + 8 = 0$
y = 7 y = 2	$2^{3x} - 9(2^{x}) + 8 = 0$
: points of intersection and	let $m = 2^n$
(-3,7) and (2,2)	$m^2 - 9m + 8 = 0$
ii. *	(m-8)(m-1) = 0
	m=8 or m=1
	$2^{x} = 8$ $2^{x} = 1$
	$2^{x} = 2^{x}$ $2^{x} = 2^{\circ}$
	, x=3 , x=0
	z= 0, 3
5-4-3-2 3 4 5)
e -3-	e. x2+y2-4x+6y=]
b. $x = 40 + 62$	$x^{2} + 4x + 4 + 4x^{2} + 64x^{4} = 3 + 4 + 9$
x = 102	$\frac{x^{2}-4x+4+y^{2}+6y+9=3+4+9}{(x-2)^{2}+(y+3)^{2}=16}$
In is ABE & ADL	when with centre (2,-3)
c. LOBF = LECF (given)	and radius 4 units.
LBAC is common	
. LABE III LADC	
: corresponding slotes in some ratio	0
· _	
$\frac{DC}{BE} = \frac{AC}{AB}$	
$\frac{P_{C}}{6} = \frac{8}{10}$	· · · · · · · · · · · · · · · · · · ·
6 10	
pc = 4.8 cm	· · · · · · · · · · · · · · · · · · ·
	•

$$\begin{array}{c} Q_{UESTTON} \leq \\ (a_1 (1) \quad 3x^2 - 6x) \\ (m) \quad d_{\overline{dn}} \left[4(x-1)^{\frac{1}{2}} \right] = a(x-1)^{-\frac{1}{2}} = \frac{2}{\sqrt{x-1}} \\ (m) \quad d_{\overline{dn}} \left[4(x-1)^{\frac{1}{2}} \right] = a(x-1)^{-\frac{1}{2}} = \frac{2}{\sqrt{x-1}} \\ (m) \quad d_{\overline{dn}} \left(\frac{1}{2x^3} \right) = d_{\overline{dn}} \left(\frac{1}{2} x^{-3} \right) = -\frac{3}{3} x^{-4} \left(\frac{-3}{2x^4} \right) \\ = \frac{2}{\sqrt{x-1}} \end{array}$$

(b) (1)
$$y = 3z(x-i)^{9}$$

 $y' = 3x \cdot 9(x-i)^{8} + 3(x-i)^{9}$
 $= 3(x-i)^{8} [9x + (x-i)]$
 $= 3(x-i)^{8} [18x-i)$

6. (a) For the curve $y = x - x^3$, find the gradient of the tangent to the curve at the point (2, 6). Also find the gradient of the normal to the curve at this point.

Solution: $\frac{dy}{dx} = 1 - 3x^2$. When x = 2, gradient of tangent is -11, gradient of normal is $\frac{1}{11}$.

(b) Given that f(x) is defined as below

$$f(x) = \begin{cases} -5 & \text{for } x \le -3 \\ 2x & \text{for } -3 < x < 0 \\ x^2 & \text{for } x \ge 0 \end{cases}$$

(i) Find the value of f(-3) + f(4) + f(-1).

Solution: -5 + 16 - 2 = 9.

(ii) Find f(a²).

Solution: As $a^2 \ge 0$, $f(a^2) = a^4$.

- (c) For the parabola $x^2 4x 8y 4 = 0$ write down the
 - (i) equation of the axis of symmetry,

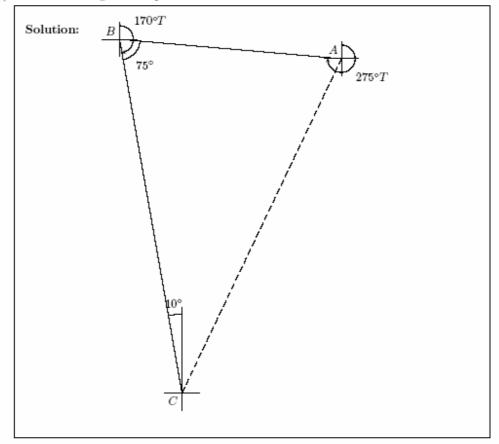
(ii) coordinates of the vertex,

Solution: Vertex (2, -1).

(iii) equation of the directrix and coordinates of the focus.

Solution: Directrix is y = -3, Focus is (2, 1).

- (d) Two cadets on a compass march proceed from their camp at A a distance of 1300 m on a bearing of $275^{\circ}T$ to a point B, then travel 2100 m on a bearing of $170^{\circ}T$ to a point C.
 - (i) Draw a neat diagram to represent this situation.

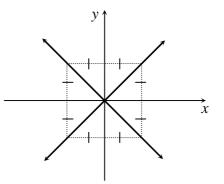


(ii) Determine the bearing and distance for their final leg from C back to camp at A.

$$\frac{\alpha}{\alpha} = \frac{\alpha}{1} = 2 \qquad (1)$$
(a) $\alpha + \beta = -\frac{(-7)}{1} = 7 \qquad (1)$
(b) $\alpha + \beta = \frac{2}{1} = 2 \qquad (1)$
(c) $\alpha + \beta = \frac{2}{1} = 2 \qquad (1)$
(c) $\alpha + \beta = \frac{2}{1} = 2 \qquad (1)$
(c) $(\alpha + 1)(\beta + 1) = \alpha\beta + (\alpha + \beta) + 1$
 $= 2 + 7 + 1$
 $= 10 \qquad (2)$
(b) $(\alpha + 1)(\beta + 1) = \alpha\beta + (\alpha + \beta) + 1$
 $= 2 + 7 + 1$
 $= 10 \qquad (2)$
(c) $(\alpha + 1)(\beta + 1) = \alpha\beta + (\alpha + \beta) + 1$
 $= 10 \qquad (2)$
(b) $2\alpha - 3b = -21 \qquad (A)$
 $4\alpha + 2b = -2 \qquad (B)$
 $2\alpha - 3b = -21 \qquad (A)$
 $4\alpha + 2b = -2 \qquad (B)$
 $2\alpha - 3b = -21 \qquad (A)$
 $4\alpha + 2b = -2 \qquad (C)$
(b) $-(c) \Rightarrow 8b = 40 \qquad (2)$
(c) $(b) -(c) \Rightarrow 8b = 40 \qquad (2)$
 $(c) (1) \log_2 64 + \log_2 32 + \log_2 16 + \dots, 166 \qquad (2)$
 $(c) (1) \log_2 64 + \log_2 32 + \log_2 16 + \dots, 166 \qquad (2)$
 $(c) (1) \log_2 64 + \log_2 32 + \log_2 16 + \dots, 166 \qquad (2)$
 $(c) (1) \log_2 64 + \log_2 32 + \log_2 16 + \dots, 166 \qquad (2)$
 $(c) (1) \log_2 64 + \log_2 32 + \log_2 16 + \dots, 166 \qquad (2)$
 $(c) (1) \log_2 64 + \log_2 32 + \log_2 16 + \dots, 166 \qquad (2)$
 $(c) (1) \log_2 64 + \log_2 32 + \log_2 16 + \dots, 166 \qquad (2)$
 $(c) (1) \log_2 64 + \log_2 32 + \log_2 16 + \dots, 166 \qquad (2)$
 $(c) (1) \log_2 64 + \log_2 32 + \log_2 16 + \dots, 166 \qquad (2)$
 $(c) (1) \log_2 64 + \log_2 32 + \log_2 16 + \dots, 166 \qquad (2)$
 $(c) (1) \log_2 64 + \log_2 32 + \log_2 16 + \dots, 166 \qquad (2)$
 $(c) (1) \log_2 64 + \log_2 32 + \log_2 16 + \dots, 166 \qquad (2)$
 $(c) (1) \log_2 64 + \log_2 32 + \log_2 16 + \dots, 166 \qquad (2)$
 $(b) -(c) \Rightarrow 8b = 40 \qquad (2)$
 $(c) (1) \log_2 64 + \log_2 32 + \log_2 16 + \dots, 166 \qquad (2)$
 $(c) (1) \log_2 64 + \log_2 32 + \log_2 16 + \dots, 166 \qquad (2)$
 $(c) (1) \log_2 64 + \log_2 32 + \log_2 16 + \dots, 166 \qquad (2)$
 $(d) (1) = \frac{1}{6} - \frac{1}{6} - \frac{1}{6} = \frac{1}{1 - 5} = \frac{1}{1 - 5}$

Question 8

(a) (i)

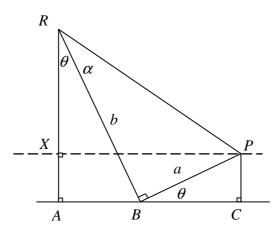


(ii)
$$y^2 = x^2$$

 $\therefore y = \pm x$

(b) Let α , β be the roots of $x^2 + bx + c = 0$ $\therefore \alpha + \beta = -b$ and $\alpha\beta = c$ Let $\alpha = 2\beta$ $\therefore \alpha + \beta = -b \Rightarrow 3\beta = -b$ $\therefore \beta = -\frac{b}{3}$ $\alpha\beta = c \Rightarrow 2\beta^2 = c$ $\therefore 2\left(-\frac{b}{3}\right)^2 = c$ $\therefore 2b^2 = 9c$ (c) (i) In $\triangle ABR$, $AB = b \sin \theta$ In $\triangle BPC$, $\angle PBC = \theta$ $\therefore BC = a \cos \theta$ $AC = AB + BC \Rightarrow AC = a \cos \theta + b \sin \theta$

(ii) Draw in a line through *P* parallel to AC. So XP = AC.



$$RP = \sqrt{a^2 + b^2} \qquad [Pythagoras' Theorem]$$

In ΔRXP : $XP = RP \times \sin(\theta + \alpha)$
 $\therefore XP = \sqrt{a^2 + b^2} \sin(\theta + \alpha)$

$$\therefore XP = AC \Longrightarrow AC = \sqrt{a^2 + b^2} \sin(\theta + \alpha)$$

(iii)
$$\therefore \sqrt{a^2 + b^2} \sin(\theta + \alpha) = a \cos \theta + b \sin \theta$$
$$\therefore \sin(\theta + \alpha) = \frac{a}{\sqrt{a^2 + b^2}} \cos \theta + \frac{b}{\sqrt{a^2 + b^2}} \sin \theta$$
$$\ln \Delta RBP : \cos \alpha = \frac{b}{\sqrt{a^2 + b^2}}, \sin \alpha = \frac{a}{\sqrt{a^2 + b^2}}$$
$$\therefore \sin(\theta + \alpha) = \sin \alpha \cos \theta + \cos \alpha \sin \theta$$

(d) (i)
$$x \neq y \Rightarrow (x-y)^2 > 0$$

 $\therefore x^2 + y^2 - 2xy > 0$
 $\therefore x^2 + y^2 > 2xy$

(ii) Let
$$a = x^2$$
 and $b = y^2$ in (i)
Clearly $a, b > 0$ and $a \neq b$
 $x = \sqrt{a}, y = \sqrt{b}$
 $\therefore x^2 + y^2 > 2xy \Rightarrow a + b > 2 \times \sqrt{a} \times \sqrt{b}$
 $\therefore a + b > 2\sqrt{ab}$

Alternatively consider
$$(\sqrt{a} - \sqrt{b})^2$$

 $\therefore a \neq b \Rightarrow (\sqrt{a} - \sqrt{b})^2 > 0$
 $\therefore a + b - 2\sqrt{a}\sqrt{b} > 0$
 $\therefore a + b > 2\sqrt{ab}$

Alternatively (Proof by Contradiction)

Assume
$$a+b \le 2\sqrt{ab}$$

 $\therefore a+b-2\sqrt{ab} \le 0$
 $\therefore (\sqrt{a}-\sqrt{b})^2 \le 0$
 $\therefore (\sqrt{a}-\sqrt{b})^2 = 0$ [$\because x^2 \ge 0, x \in$]
 $\therefore \sqrt{a}-\sqrt{b} = 0$
 $\therefore a=b$
This contradicts the fact that $a \ne b$
 $\therefore a+b > 2\sqrt{ab}$