

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2006 YEAR 11 MATHEMATICS EXTENTION HALF YEARLY EXAM

Mathematics Continuers

General Instructions

- Reading Time 5 Minutes
- Working time 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Each Section is to be returned in a separate bundle.
- Marks may **NOT** be awarded for messy or badly arranged work.
- All necessary working should be shown in every question.

Total Marks - 81

- Attempt questions 1-8
- Start each new section in a separate answer booklet

Examiner: D.McQuillan

Total marks – 81 All questions are NOT of equal value

	Section A	
Question 1	(10 Marks)	Marks
(a)	Evaluate $8^{2.1}$ to 4 significant figures.	2
(b)	Write $0.\dot{1}\dot{3}$ as a simplified fraction.	1
(c)	Simplify (i) $3x - (4-x)$	1
	(ii) $\frac{x+1}{3} + \frac{2x}{5}$	1
(d)	Convert 270° to radians in exact form.	1
(e)	Factorise (i) $x^2 - 9$	1
(f)	(ii) $64 + x^3$ Given that	1
	$f(x) = \begin{cases} 6 - x^2 & \text{if } x \ge 0\\ x & \text{if } x < 0 \end{cases},$ evaluate	
	(i) $f(-2)$	1
	(ii) $f(0)$	1

Answer each SECTION in a SEPARATE writing booklet

Question 2 (11 Marks)

(a) Solve
$$|2x+6| = 10$$
. 2

(b) Simplify
$$\frac{1}{\sec^2 \theta} + \frac{1}{\csc^2 \theta}$$
. 2

(c)(i) Solve the inequation
$$|x+3| < 2$$
.2(ii) Hence graph the solution on a number line.1

(d) Find equation of the circle with centre (-4, 6) and radius
$$\sqrt{5}$$
.

(e) Find the exact value of
$$\tan \frac{3\pi}{4}$$
. 2

Question 3 (9 Marks)

(i) Write down the expansion for $sin(A+B)$.	1
(ii) Hence find the exact value of $\sin 75^\circ$.	2
If α and β are the roots of $2x^2 + 3x + 4 = 0$, find the value of:	
(i) $\alpha\beta$	1
(ii) $\frac{1}{\alpha} + \frac{1}{\beta}$	2
	(ii) Hence find the exact value of $\sin 75^\circ$. If α and β are the roots of $2x^2 + 3x + 4 = 0$, find the value of: (i) $\alpha\beta$

(c) Sketch the intersection of the regions
$$y > x^2 - 1$$
 and $y \le x$. 3

Question 4 (11 Marks)

(a)	State the domain and range of $g(x) = \sqrt{x+4}$	2
(b)	Show that $f(x) = x^3 + 3x$ is an odd function.	2
(c)	Find correct to the nearest minute the acute angle between $y = 6x - 7$ and $y = x + 3$.	3
(d)	Find the values of A and B if $2(x-1)^2 \equiv A(x^2+1) + Bx$.	2
(e)	For A(5, 1) and B(-3, 7) find the coordinates of the point that divides the interval AB internally in the ratio $3:1$.	2

End of Section A

START A NEW WRITING BOOKLET

Section B	
(9 Marks)	Marks
The graph of the equation $x^2 - 6x + y^2 + 10y + 9 = 0$ is a circle. (i) Explain why the graph of the equation does not represent a function.	1
(ii) Find the radius and the coordinates of the centre of the circle.	2
Find the equation of a parabola with vertex $(0, -2)$ and focus $(0, 1)$.	2
Solve the inequality $\frac{x-3}{x} < 0$.	2
	 (9 Marks) The graph of the equation x² - 6x + y² + 10y + 9 = 0 is a circle. (i) Explain why the graph of the equation does not represent a function. (ii) Find the radius and the coordinates of the centre of the circle. Find the equation of a parabola with vertex (0, -2) and focus (0, 1). Solve the inequality x-3/2 < 0.

(d) Solve the equation
$$x^4 - 10x^2 + 9 = 0$$
. 2

Question 6 (9 Marks)

- (a) Sketch the graph of y = |x+3|. 2
- (b) Find the equation of the following parabolic graph.

- (c) Find the values of p for which the equation $x^2 + px + 16 = 0$, has real roots.
- (d) If $\tan \theta = \sqrt{3}$ and $0 < \theta < \frac{\pi}{2}$ evaluate $\cos 2\theta$ in exact form. 3

2

Question 7 (11 Marks)

(a)	Let P be the point (–2. Find the shortest dista	, 3) and <i>l</i> be the line $4x - 3y = 8$. ince from P to <i>l</i> .	2
(b)	_	the straight line which passes through on of the lines $2x - y - 3 = 0$ and e point (3, -1).	3
(c)	-	is 80 metres due east of a flagpole, F, of its top is 15 degrees. Point A is 60 the flagpole.	
	(i) Draw a ne	eat diagram of the above.	1
	. ,	ingle of elevation from point A to the flag pole.	2
(d)	Solve the following si	multaneous equations,	3

$$2x + y - z = -3$$
$$-x + 3y - 2z = 1$$
$$x - y + 5z = 12$$

Question 8 (11 Marks)

(a) The quadratic equation $x^2 + Lx + M = 0$ has one root which is twice the other. Prove that

(i)	$2L^2 = 9M$	3
(1)	20 - 201	5

- (ii) The roots are rational whenever L is rational. 2
- (b) Find the equation of the locus of the point P(x, y) such that it is equidistant from (3, 1) and y = -1.
- (c) The triangle PQR is right angled at Q and triangles PST and RTU are isosceles as shown. If $\angle STU = x^\circ$ find the value of x. No reasons need to be given.

3

End of Section B

End of Paper

2006 Mathematics Continuers: Solutions Part A

Question 1 (10 Marks)

(a) Evaluate $8^{2 \cdot 1}$ to 4 significant figures,

Solution: By calculator, $78 \cdot 79324245 \approx 78 \cdot 79$ to 4 sig. fig.

(b) Write $0.\dot{1}\dot{3}$ as a simplified fraction.

Solution: Let $x = 0.\dot{1}\dot{3}$, $100x = 13.\dot{1}\dot{3}$, 99x = 13, $\therefore x = \frac{13}{99}$.

(c) Simplify

(i)
$$3x - (4 - x)$$

Solution: $3x - 4 + x = 4x - 4$
(ii) $\frac{x+1}{3} + \frac{2x}{5}$
Solution: $\frac{5x+5+6x}{15} = \frac{11x+5}{15}$

(d) Convert 270° to radians in exact form.

Solution: $270^{\circ} \times \frac{\pi}{180^{\circ}} = \frac{3\pi}{2}$

(e) Factorise

(i)
$$x^2 - 9$$

Solution: (x+3)(x-3)

(ii) $64 + x^3$

Solution: $4^3 + x^3 = (4 + x)(16 - 4x + x^2)$

2

1

1

1

1

1

(f) Given that

$$f(x) = \begin{cases} 6 - x^2 & \text{if } x \ge 0, \\ |x| & \text{if } x < 0, \end{cases}$$

1

1

 $\boxed{2}$

 $\boxed{2}$

 $\left|2\right|$

1

 $\boxed{2}$

evaluate

(i)
$$f(-2)$$

Solution: $|-2| = 2$
(ii) $f(0)$
Solution: $6 - 0^2 = 6$

Question 2 (11 Marks)

(a) Solve |2x + 6| = 10.

Solution: 2x + 6 = 10, or -2x - 6 = 10, 2x = 4, -2x = 16, $\therefore x = 2$. x = -8.

(b) Simplify
$$\frac{1}{\sec^2 \theta} + \frac{1}{\csc^2 \theta}$$

Solution: $\cos^2 \theta + \sin^2 \theta = 1$

(c) (i) Solve the inequation |x+3| < 2.

Solution: -2 < x + 3 < 2, -5 < x < -1.

(ii) Hence graph the solution on a number line.

(d) Find the equation of the circle with centre (-4, 6) and radius $\sqrt{5}$.

Solution: $(x+4)^2 + (y-6)^2 = 5$

(e) Find the exact value of $\tan \frac{3\pi}{4}$.

Solution:
$$\frac{S}{T} \stackrel{A}{\underset{C}{\longrightarrow}} - \tan \frac{\pi}{4} = -1$$

Question 3 (9 Marks)

Г

(a) (i) Write down the expansion for sin(A+B).

Solution: $\sin A \cos B + \cos A \sin B$

(ii) Hence find the exact value of sin 75°.

Solution:
$$\sin(45^\circ + 30^\circ) = \sin 45^\circ \cos 30^\circ + \cos 45^\circ \sin 30^\circ$$

$$= \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \times \frac{1}{2},$$
$$= \frac{1 + \sqrt{3}}{2\sqrt{2}} \text{ or } \frac{\sqrt{2} + \sqrt{6}}{4}.$$

(b) If α and β are the roots of $2x^2 + 3x + 4 = 0$, find the value of

(i) $\alpha\beta$

Solution:
$$\frac{4}{2} = 2$$

(ii) $\frac{1}{\alpha} + \frac{1}{\beta}$

Solution: $\frac{\alpha + \beta}{\alpha\beta} = \frac{-3}{2} \times \frac{1}{2},$
 $= -\frac{3}{4}.$

 2

2

1

1

(c) Sketch the intersection of the regions $y > x^2 - 1$ and $y \le x$.

Question 4 (11 Marks)

(a) State the domain and range of $g(x) = \sqrt{x+4}$.

Solution: Domain: $x \ge -4$, Range: $g(x) \ge 0$.

(b) Show that $f(x) = x^3 + 3x$ is an odd function.

Solution:
$$f(-x) = (-x)^3 + 3(-x),$$

= $-x^3 - 3x,$
= $-(x^3 + 3x),$
= $-f(x).$
 $\therefore f(x)$ is odd.

(c) Find correct to the nearest minute the angle between y = 6x - 7 and y = x + 3.

Solution:
$$m_1 = 6, m_2 = 1.$$

 $\tan \alpha = \left| \frac{6-1}{1+6 \times 1} \right|,$
 $= \frac{5}{7}.$
 $\therefore \alpha = 35^{\circ}32'.$

3

 $\left|2\right|$

2

(d) Find the values of A and B if $2(x-1)^2 \equiv A(x^2+1) + Bx$.

Solution: Let x = 0, 2 = A. Let x = 1, 0 = 4 + B, B = -4.

(e) For A(5, 1) and B(-3, 7) find the coördinates of the point that divides the interval AB internally in the ratio 3:1.

Solution:
$$\left(\frac{3 \times (-3) + 1 \times 5}{3 + 1}, \frac{3 \times 7 + 1 \times 1}{4}\right) = (-1, 5\frac{1}{2})$$

 $\left|2\right|$

711 CONTINUERS SECTION B 5 (a) x - 6x + y 2 + 10 y + 9=0 $(x-3)^{2} + (y+5)^{2}$ =-9+9+25 = 25. (Adveride doesn't pass the vertical line text pro a purchier. OR. There are points (ie too) where the x-value is the sure. OR. It is not a 1-1 consultandence as snaffing (1) Cartie (3,-5) radius 5.) VV

 $\left(C \right) \quad \frac{\chi - 3}{2} < 0$ x (x-3) LO (ie muttiply heth aides by x") · · · O < z < 3 let m = x + m = 9, ! V V $ie x^{2} = 9, !$ $|x = \pm 3, \pm 1|$ x - 10x + 9 = 0(d) m²-10 m + 9 = 0 (m - 9) (m - 1)= 0

$$4x - 3y - 8 = 0 \quad a \neq paint (-2,3)$$

$$\mathcal{A} = \begin{bmatrix} 4x - 2 & -3x & 3 & -8 \\ \hline \sqrt{4^2} + (-3)^2 \end{bmatrix}$$

$$= \begin{bmatrix} -8 - 9 - 8 \\ 5 \end{bmatrix}$$

$$= \begin{bmatrix} -25 \\ 5 \end{bmatrix}$$

On an

Find the intersection of (b) 2x - y = 3 - C 3x-y=-2 -0 0 - 0 2 = - 5 Antin () -10 - y = 3 y = -13 -:-(-5,-13) . Equation of line having through (3,-1) and (-5,-13) $\frac{\gamma + 1}{2 - 3} = \frac{-13 + 1}{-5 - 3} = \frac{-12}{-8}$ $\sqrt{\sqrt{}}$ $\frac{2y+2}{3x-2y-11} = 0$

 \mathcal{C} F 80 A d = tan 15" 80 (m).i.d = 80tan 15°. now tan 0 = de = 80ter15° = 0.3573 . = 19° 40' (OR 20°)

(5) × −3 (d) 2x+y-3=5 -6x -39 z = -111 -x+3y-22=1 -x-y+5y=12 --(5) (4A) + (5a) Ð -3/2 = -93z = 30+3 3x+4z=9 -@ (3) × 3 And in @ 3x-3y+152=36 3a 32 + 12=9 (sa) + (2) 3x = /x = 2x + 13z = 37 (5) I in O (4) x 2 6x+8z=18 -(4a) チョン $1 \cdot | (-1, a, 3)$

(b)
$$y^{a} + L_{2} + M = 0$$
 has nearly $d, 2K$.
Man $d + 2d = -L$ $\forall dx + 2d = M$
 $\therefore 3k = -L = 0$ $2d^{2} = M - 0$
 $d = -\frac{1}{3}$ $2d^{2} = M - 0$
 $d \times (-\frac{1}{3})^{2} = M$
 $\frac{dL^{2}}{9} = M$ VVV
 $\left[\frac{2d^{2}}{9} = \frac{9M}{3}\right]$
(in $\frac{2}{7}$ L is national then $-\frac{1}{3} = 4$ is national.
 d here $2d = -\frac{2}{3}$ is also national
(b) $\frac{9}{3}$ $\int_{-\frac{1}{7}}^{\frac{9}{7}} \frac{1}{7} = \frac{9M}{3}$
 $\left(\frac{3}{3}\right)^{-\frac{9}{7}}$ $\frac{1}{7}$ $\frac{1}{7} \sqrt{2} = \frac{9M}{3}$

