

## SYDNEY BOYS HIGH SCHOOL <br> MOORE PARK, SURRY HILLS

## 2006

YEAR 11 MATHEMATICS EXTENTION HALF YEARLY EXAM

## Mathematics Continuers

## General Instructions

- Reading Time - 5 Minutes
- Working time - 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Each Section is to be returned in a separate bundle.
- Marks may NOT be awarded for messy or badly arranged work.
- All necessary working should be shown in every question.


## Total Marks - 81

- Attempt questions 1-8
- Start each new section in a separate answer booklet

Examiner: D.McQuillan

## Total marks - 81

All questions are NOT of equal value

Answer each SECTION in a SEPARATE writing booklet

## Section A

Question 1 (10 Marks)
Marks
(a) Evaluate $8^{2.1}$ to 4 significant figures.
(b) Write 0.13 as a simplified fraction.
(c) Simplify
(i) $3 x-(4-x)$
(ii) $\frac{x+1}{3}+\frac{2 x}{5}$
(d) Convert $270^{\circ}$ to radians in exact form.
(e) Factorise
(i) $x^{2}-9$
(ii) $64+x^{3}$

1
(f) Given that

$$
f(x)=\left\{\begin{array}{ll}
6-x^{2} & \text { if } x \geq 0 \\
|x| & \text { if } x<0
\end{array},\right.
$$

evaluate
(i) $\quad f(-2) \quad 1$
(ii) $\quad f(0) \quad 1$

## Question 2 (11 Marks)

(a) Solve $|2 x+6|=10$.
(b) Simplify $\frac{1}{\sec ^{2} \theta}+\frac{1}{\operatorname{cosec}^{2} \theta}$.
(c) (i) Solve the inequation $|x+3|<2$.
(ii) Hence graph the solution on a number line.
(d) Find equation of the circle with centre $(-4,6)$ and radius $\sqrt{5}$.
(e) Find the exact value of $\tan \frac{3 \pi}{4}$.

## Question 3 (9 Marks)

(a) (i) Write down the expansion for $\sin (A+B)$.
(ii) Hence find the exact value of $\sin 75^{\circ}$.

2
(b) If $\alpha$ and $\beta$ are the roots of $2 x^{2}+3 x+4=0$, find the value of:
(i) $\alpha \beta \quad 1$
(ii) $\frac{1}{\alpha}+\frac{1}{\beta}$
(c) Sketch the intersection of the regions $y>x^{2}-1$ and $y \leq x$. 33

## Question 4 (11 Marks)

(a) State the domain and range of $g(x)=\sqrt{x+4}$
(b) Show that $f(x)=x^{3}+3 x$ is an odd function.
(c) Find correct to the nearest minute the acute angle between $y=6 x-7$ and $y=x+3$.
(d) Find the values of $A$ and $B$ if $2(x-1)^{2} \equiv A\left(x^{2}+1\right)+B x$.
(e) For $\mathrm{A}(5,1)$ and $\mathrm{B}(-3,7)$ find the coordinates of the point that divides the interval $A B$ internally in the ratio 3:1.

## End of Section A

## Section B

Question 5 (9 Marks)
Marks
(a) The graph of the equation $x^{2}-6 x+y^{2}+10 y+9=0$ is a circle.
(i) Explain why the graph of the equation does not represent a function.
(ii) Find the radius and the coordinates of the centre

2 of the circle.
(b) Find the equation of a parabola with vertex $(0,-2)$ and focus ( 0,1 ).
(c) Solve the inequality $\frac{x-3}{x}<0$. 2
(d) Solve the equation $x^{4}-10 x^{2}+9=0$. 2

## Question 6 (9 Marks)

(a) Sketch the graph of $y=|x+3|$.
(b) Find the equation of the following parabolic graph.

(c) Find the values of $p$ for which the equation $x^{2}+p x+16=0$, has real roots.
(d) If $\tan \theta=\sqrt{3}$ and $0<\theta<\frac{\pi}{2}$ evaluate $\cos 2 \theta$ in exact form.

## Question 7 (11 Marks)

(a) Let P be the point $(-2,3)$ and $l$ be the line $4 x-3 y=8$. Find the shortest distance from P to $l$.
(b) Find the equation of the straight line which passes through the point of intersection of the lines $2 x-y-3=0$ and $y-3 x-2=0$ and the point $(3,-1)$.
(c) From a point B which is 80 metres due east of a flagpole, F , the angle of elevation of its top is 15 degrees. Point A is 60 metres due south of the flagpole.
(i) Draw a neat diagram of the above.
(ii) Find the angle of elevation from point A to the top of the flag pole.
(d) Solve the following simultaneous equations,

$$
\begin{aligned}
2 x+y-z & =-3 \\
-x+3 y-2 z & =1 \\
x-y+5 z & =12
\end{aligned}
$$

## Question 8 (11 Marks)

(a) The quadratic equation $x^{2}+L x+M=0$ has one root which is twice the other. Prove that
(i) $2 L^{2}=9 M \quad 3$
(ii) The roots are rational whenever $L$ is rational.
(b) Find the equation of the locus of the point $\mathrm{P}(x, y)$ such that it is equidistant from $(3,1)$ and $y=-1$.
(c) The triangle PQR is right angled at Q and triangles PST and RTU are isosceles as shown. If $\angle S T U=x^{\circ}$ find the value of $x$. No reasons need to be given.


## End of Section B

## End of Paper

2006 Mathematics Continuers: Solutions Part A

## Question 1 (10 Marks)

(a) Evaluate $8^{2.1}$ to 4 significant figures,

Solution: By calculator, $78.79324245 \approx 78.79$ to 4 sig. fig.
(b) Write $0 \cdot 1 \dot{3}$ as a simplified fraction.

Solution: Let $x=0 \cdot 1 \dot{3}$,

$$
100 x=13 \cdot \dot{1} \dot{3},
$$

$$
99 x=13,
$$

$$
\therefore x=\frac{13}{99} \text {. }
$$

(c) Simplify
(i) $3 x-(4-x)$

Solution: $3 x-4+x=4 x-4$
(ii) $\frac{x+1}{3}+\frac{2 x}{5}$

Solution: $\frac{5 x+5+6 x}{15}=\frac{11 x+5}{15}$
(d) Convert $270^{\circ}$ to radians in exact form.

Solution: $270^{\circ} \times \frac{\pi}{180^{\circ}}=\frac{3 \pi}{2}$
(e) Factorise
(i) $x^{2}-9$

Solution: $(x+3)(x-3)$
(ii) $64+x^{3}$

Solution: $4^{3}+x^{3}=(4+x)\left(16-4 x+x^{2}\right)$
(f) Given that

$$
f(x)= \begin{cases}6-x^{2} & \text { if } x \geq 0, \\ |x| & \text { if } x<0,\end{cases}
$$

evaluate
(i) $f(-2)$

Solution: $|-2|=2$
(ii) $f(0)$

Solution: $6-0^{2}=6$

## Question 2 ( 11 Marks)

(a) Solve $|2 x+6|=10$.

Solution: $2 x+6=10$, or $-2 x-6=10$,

$$
\begin{aligned}
2 x & =4, & -2 x & =16, \\
\therefore x & =2 . & x & =-8 .
\end{aligned}
$$

(b) Simplify $\frac{1}{\sec ^{2} \theta}+\frac{1}{\operatorname{cosec}^{2} \theta}$

Solution: $\cos ^{2} \theta+\sin ^{2} \theta=1$
(c) (i) Solve the inequation $|x+3|<2$.

$$
\begin{array}{cl}
\text { Solution: } & -2<x+3<2, \\
& -5<x<-1 .
\end{array}
$$

(ii) Hence graph the solution on a number line.

(d) Find the equation of the circle with centre $(-4,6)$ and radius $\sqrt{5}$.

Solution: $(x+4)^{2}+(y-6)^{2}=5$
(e) Find the exact value of $\tan \frac{3 \pi}{4}$.

$$
\text { Solution: } \frac{\bigotimes_{\mathrm{T}}^{\mathrm{S}} \boldsymbol{C}_{\mathrm{C}}^{\mathrm{A}}}{} \quad-\tan \frac{\pi}{4}=-1
$$

## Question 3 (9 Marks)

(a) (i) Write down the expansion for $\sin (A+B)$.

Solution: $\sin A \cos B+\cos A \sin B$
(ii) Hence find the exact value of $\sin 75^{\circ}$.

Solution: $\sin \left(45^{\circ}+30^{\circ}\right)=\sin 45^{\circ} \cos 30^{\circ}+\cos 45^{\circ} \sin 30^{\circ}$

$$
\begin{aligned}
& =\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}} \times \frac{1}{2}, \\
& =\frac{1+\sqrt{3}}{2 \sqrt{2}} \text { or } \frac{\sqrt{2}+\sqrt{6}}{4} .
\end{aligned}
$$

(b) If $\alpha$ and $\beta$ are the roots of $2 x^{2}+3 x+4=0$, find the value of
(i) $\alpha \beta$

Solution: $\frac{4}{2}=2$
(ii) $\frac{1}{\alpha}+\frac{1}{\beta}$

Solution: $\frac{\alpha+\beta}{\alpha \beta}=\frac{-3}{2} \times \frac{1}{2}$,

$$
=-\frac{3}{4} .
$$

(c) Sketch the intersection of the regions $y>x^{2}-1$ and $y \leq x$.

| Solution: |
| :---: |

## Question 4 (11 Marks)

(a) State the domain and range of $g(x)=\sqrt{x+4}$.

Solution: Domain: $x \geq-4$,
Range: $g(x) \geq 0$.
(b) Show that $f(x)=x^{3}+3 x$ is an odd function.

Solution: $\quad f(-x)=(-x)^{3}+3(-x)$,

$$
=-x^{3}-3 x
$$

$$
=-\left(x^{3}+3 x\right)
$$

$$
=-f(x)
$$

$\therefore f(x)$ is odd.
(c) Find correct to the nearest minute the angle between $y=6 x-7$ and $y=x+3$.

Solution: $m_{1}=6, m_{2}=1$.

$$
\begin{aligned}
\tan \alpha & =\left|\frac{6-1}{1+6 \times 1}\right| \\
& =\frac{5}{7} \\
\therefore \alpha & =35^{\circ} 32^{\prime}
\end{aligned}
$$

(d) Find the values of $A$ and $B$ if $2(x-1)^{2} \equiv A\left(x^{2}+1\right)+B x$.

Solution: Let $x=0, \quad 2=A$.

$$
\text { Let } \begin{array}{rlr}
x=1, \quad 0 & =4+B, \\
B & =-4 .
\end{array}
$$

(e) For $A(5,1)$ and $B(-3,7)$ find the coördinates of the point that divides the interval $A B$ internally in the ratio $3: 1$.

Solution: $\left(\frac{3 \times(-3)+1 \times 5}{3+1}, \frac{3 \times 7+1 \times 1}{4}\right)=\left(-1,5 \frac{1}{2}\right)$

Y/1 COMTINUCRS
Section $B$
5 (a) $x^{2}-6 x+y^{2}+10 y+9=0$

$$
\begin{aligned}
(x-3)^{2}+(y+5)^{2} & =-9+9+25 \\
& =25 .
\end{aligned}
$$

(i) Maveidele doen'r' hass the reeticial line tect fis a punctici.
OR. Thue are points (ie theo) uterere the $x$-ralue is the sure.
OR. At is set a 1-1 conexardence w snaffing
( 11 Centue $(3,-5)$ raduis 5.)
(b)


NB $a=3$.

$$
\begin{aligned}
\therefore(x-0)^{2} & =4 \times 3(y+2) \\
x^{2} & =12(y+2)
\end{aligned}
$$

(c) $\frac{x-3}{x}<0$.
$x(x-3)<0$ (ie muttilly heth saides by $x^{2}$.)

$$
\therefore 0<x<3
$$



$$
\begin{aligned}
& \mu=9,!V V \\
& \sim^{2}=9,
\end{aligned}
$$

$$
x^{2}=9,1
$$

$$
x= \pm 3, \pm 1
$$

6 (a)

(b)

$$
\begin{aligned}
y & =-a(x-0)(x-4) \\
\therefore y & =-a x(x-4)
\end{aligned}
$$

now $(2,+4)$ hies on it.

$$
\begin{aligned}
& \therefore+4=-2 a \cdot-2 . \\
& \therefore a=1 \\
& \therefore y=-x(x-4)
\end{aligned}
$$

(c) Forreal rests $\Delta \geqslant 0$

$$
\begin{gathered}
\therefore p^{2}-64 \geqslant 0 \\
(p-8)(p+8) \geqslant 0 \\
\quad \therefore p \geqslant 8, p \leqslant-8
\end{gathered}
$$

(d)

$$
\begin{aligned}
& \tan \theta=\sqrt{3} \quad, 0<\theta<\frac{\pi}{2} \\
& \therefore \theta=\frac{\pi}{3} \\
& \therefore \cos 2 \theta=\cos \frac{2 \pi}{3}=-\frac{1}{2} .
\end{aligned}
$$

$Q 7$
(a) $4 x-3 y-8=0$ and puitt $(-2,3)$

$$
\begin{aligned}
d & =\left|\frac{4 x-2-3 \times 3-8}{\sqrt{4^{2}+(-3)^{2}}}\right| \\
& =\left|\frac{-8-9-8}{5}\right| \\
& =\left|-\frac{25}{5}\right| \\
& =5
\end{aligned}
$$

(b) Ind the interrection of

$$
\begin{gathered}
2 x-y=3 \\
3 x-y=-2 \\
2-10 \\
x=-5
\end{gathered}
$$

Susin (1)

$$
\begin{aligned}
&-10-y=3 \\
& y=-13 \\
& \therefore(-5,-13)
\end{aligned}
$$

$\therefore$ Equatioi ophir
hacung thengh $(3,-1)$ and $(-5,-13)$

$$
\begin{aligned}
& \frac{y+1}{x-3}=\frac{-13+1}{-5-3}=\frac{-12}{-8} \\
&=\frac{3}{2} \\
& \therefore 2 y+2=3 x-9
\end{aligned}
$$

(C)

(11)

$$
\begin{aligned}
\frac{d}{80} & =\tan 15^{\circ} \\
\therefore d & =80 \tan 15^{\circ} . \\
\text { now } \tan \theta & =\frac{d}{60} \\
& =\frac{80 \tan 15^{\circ}}{60} \\
& =0.3573 \\
\therefore \theta & =19^{\circ} 40^{\circ} \quad\left(\text { OR } 20^{\circ}\right)
\end{aligned}
$$

$$
\begin{align*}
& \text { (d) } 2 x+y-z=-3 \text {-(1) }  \tag{5}\\
& -x+3 y-2 z=1 \text {-(2) } \\
& x-y+5 y=12  \tag{3}\\
& \text { (1) }+ \text { (3) } \\
& 3 x+4 z=9 \\
& \text { (3) } \times 3 \\
& 3 x-3 y+15 z=36 \text { (3a) } \\
& \text { (3a) }+ \text { (2) } \\
& 2 x+13 z=37 \text { (5) } \\
& \text { (4) } \times 2 \\
& 6 x+8 z=18 \\
& \text { (5) } x-3 \\
& -6 x-39 z=-111 \\
& \text { (4a) }+(5 a) \\
& -31 z=-93 \\
& z=3 \\
& \text { (a) Sub in © } 4 \\
& 3 x+12=9 \\
& 3 x=-3 \\
& x=-1 \\
& \text { out in } 0 \\
& -2+y-3=-3 \\
& 1 y=2 \\
& \therefore(-1,2,3)
\end{align*}
$$

98
(a) $x^{2}+\angle x+M=0$. has aect $\alpha, 2 \alpha$.

New $\alpha+2 \alpha=-L \quad \alpha \quad \alpha+2 \alpha=M$
(1)

$$
\begin{align*}
\therefore 3 \alpha & =-4-1 \quad 2 \alpha^{2}=M \\
\alpha & =-\frac{2}{3} \\
\tan \theta & 0
\end{align*}
$$

$$
\begin{aligned}
2 \times\left(\frac{-2}{3}\right)^{2} & =M \\
\frac{2 L^{2}}{9} & =M \\
2 \alpha^{2} & =9 M
\end{aligned}
$$

(II) If $L$ is ralinial the $-\frac{L}{3}=\alpha$ in ratrival.
ot hence $2 \alpha=-\frac{2 L}{3}$ is aleo rathinal
(b.) $\underset{-\infty}{ }$ nead $S P=P M$ ie $\sqrt{(x-3)^{2}+(y-1)^{2}}=y+1$ $(x-3)^{2}+(y-1)^{2}=(y+1)^{2}$ $\frac{x^{2}-6 x+9+y^{2}-2 y+1}{2}=y^{2}+2 y+1$
(c)

now

$$
\begin{aligned}
& \alpha+\beta+x=180^{\circ} \\
& \theta+\phi=90^{\circ} \\
& \text { ie }(180-2 \beta)+(180-2 \alpha)=90^{\circ} \\
& \text { ie } 2 \alpha+2 \beta=270^{\circ} \\
& \alpha+\beta=135^{\circ}-\sigma
\end{aligned}
$$

Fatan $0+(2) x=45^{\circ}$

