

MOORE PARK, SURRY HILLS

May 2008

Half Yearly Examination

Mathematics
 Extension

General Instructions

- Reading Time - 5 Minutes
- Working time - 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators may be used.
- All necessary working should be shown in every question

Total Marks - 60

- All Questions may be attempted
- Each Section should be handed up in a separate examination Booklet.
- Full Marks may not be awarded for careless or poorly set out work.

Examiner - A.M.Gainford

Section A
 (Start a new booklet)

Question 1. (10 Marks)

(a) Find the exact value (as a fraction in lowest terms) of:

Marks

$$
\frac{\frac{3}{4}-\frac{7}{24}}{1+\frac{3}{4} \times \frac{7}{24}}
$$

(b) Evaluate $\frac{\sqrt{3}+1}{\sqrt{3}-1}$, correct to two decimal places.
(c) Find the point of intersection of the lines $3 x+2 y=10$ and $4 x+3 y=13$.
(d) Simplify $x(2-y)-y(2-x)$.
(e) Find x and y if $x+y+\sqrt{x-y}=10+2 \sqrt{2}$.

Question 2. (10 Marks)
(a) Express $3.57 \times 10^{7} \times 7 \cdot 64 \times 10^{6}$ in scientific notation, correct to three significant figures.
(b) Find all the solutions of $|5 x-2|=|3 x+4|$.
(c) Factorise: (i) $4 x^{2}+4 x-3$
(ii) $x^{2}-3 x+2 a x-6 a$
(iii) $1+27 a^{3}$
(d) Solve for $x: \quad 3 x(x-3)=0$
(e) Solve $2-3 x \geq 8$, and graph the solution on the number line.

Section B
 (Start a new booklet.)

Question 3. (10 Marks)

Marks

(a) In the diagram at right $A D=8 \mathrm{~cm}$, $D B=7 \mathrm{~cm}, A E=10 \mathrm{~cm}, E C=2 \mathrm{~cm}$, $B C=21 \mathrm{~cm}$.
(i) Copy the diagram to your answer sheet.
(ii) Prove that $\triangle A D E$ is similar to $\triangle A C B$, and hence find the length of $D E$ (giving full reasons).

(b) Figure A

Figure B
2

Indicate which of these graphs represents a function, and state its domain.
(c) For the points $A(-1,2)$ and $B(2,4)$:
(i) Find the coordinates of M, the midpoint of $A B$.
(ii) Write the equation of the line $A B$.
(iii) Find the equation of the line through M perpendicular to $A B$.

Section continued overleaf.

Question 4. (10 Marks)
(a) Express $\frac{5 \pi}{9}$ radians in degrees.
(b) Express $0 \cdot 13 \dot{7}$ as a common fraction in lowest terms.
(c) State the exact value of: 2
(i) $\cos 135^{\circ}$
(ii) $\operatorname{cosec} 330^{\circ}$
(d) Solve for x :
6
(i) $x^{4}-25 x^{2}+144=0$
(ii) $\frac{3}{x-1}>3$
(iii) $\frac{1}{|2-x|}<2$

Section C
 (Start a new booklet)

Question 5. (10 Marks)

Marks

(a) Show that $\tan \theta+\cot \theta=\operatorname{cosec} \theta \sec \theta$.
(b) Find the perpendicular distance of the point $(1,-2)$ from the line $x-2 y=-3$.
(c) Find the equation of the line through the intersection of the lines $x-2 y+1=0$ and $3 x-y-2=0$, and passing through $(3,1)$.
(d) Find the equation of the locus of all points equidistant from the fixed points $A(2,-1)$ and $B(-3,2)$.
(e) On separate diagrams, sketch the graphs of the following:
(i) $y=1-2^{x}$
(ii) $y=\frac{|x|}{x}$

Section continued overleaf.

Question 6. (10 Marks)
(a) Show that the function $f(x)=\frac{2^{x}+2^{-x}}{1-x^{2}}$ is an even function.
(b) Solve the simultaneous equations:

$$
\begin{aligned}
& 5 a-2 b+6 c=3 \\
& 6 a+4 b-4 c=0 \\
& 3 a-4 b+8 c=3
\end{aligned}
$$

(d)

The angle of elevation of a tower $P Q$ of height h metres at a point A due east of it is 12°. From another point B, the bearing of the tower is $051^{\circ} \mathrm{T}$ and the angle of elevation is 11°. The points A and B are 1000 metres apart and on he same level as the base Q of the tower.
(i) Show that $\angle A Q B=141^{\circ}$.
(ii) Consider the triangle $A P Q$ and show that $A Q=h \tan 78^{\circ}$.
(iii) Find a similar expression for $B Q$.
(iv) Use the cosine rule in the triangle $A Q B$ to calculate h to the nearest metre.

This is the end of the paper.

QUESTION 1
QUESTION 2
(a)
$\frac{11}{24} \div \frac{39}{32}$

$$
=\frac{44}{117}
$$

(a) 2.73×10^{14}
(b)

$$
\begin{aligned}
5 x-2 & =3 x+4 \\
2 x & =6 \\
x & =3
\end{aligned}
$$

or
(b) 3.73
(c)
(1) $3 x+2 y=10$
(2) $4 x+3 y=13$
(1) $9 x+6 y=30$
(2) $8 x+6 y=26$ $x=4$
(1)

$$
\begin{gathered}
12+2 y=10 \\
y=-1 \\
(4,-1)
\end{gathered}
$$

$\Leftrightarrow(1)(2 x-1)(2 x+3)$
(ii)

$$
\begin{aligned}
& x(x-3)+2 a(x-3) \\
& (x+2 a)(x-3)
\end{aligned}
$$

(iii) $(1+3 a)\left(1-6 a+9 a^{2}\right)$
(d)

$$
\begin{aligned}
& 2 x-x y-2 y+x y \\
& 2 x-2 y
\end{aligned}
$$

(d)

$$
\begin{aligned}
& 3 x(x-3)=0 \\
& x=0, \quad x=3
\end{aligned}
$$

(e)

$$
\begin{aligned}
& x+y=10 \\
& \sqrt{x-y}=2 \sqrt{2}=\sqrt{8} \\
& x-y=8 \\
& 2 x=18 \\
& x=9 \\
& y=1
\end{aligned}
$$

(e)

$$
\begin{array}{rl}
2-3 x & \geqslant 8 \\
-3 x & \geq 6 \\
x \leqslant-2 \\
-2 & 0
\end{array}
$$

VIII 2008 Half Yearly. Maths Extension Continues,
(3)
(a) (i)

(2)

(ii)

$\left.\begin{array}{l}\frac{A C}{A D}=\frac{12}{8}=1.5 \\ \frac{A B}{A E}=\frac{15}{10}=1.5\end{array}\right\}$ sides in same ratio
$D \hat{A E}=\hat{C A B}$ equal angle, same angle etc
So $\triangle A D E|\mid I \triangle A C B$ sides in common nato and included angle test.

$$
\begin{align*}
\therefore \quad \frac{B C}{D E} & =1.5 \quad \text { (sides in same rata } \tag{1}\\
\text { so } \frac{21}{D E} & =1.5 \text { So } D E=14 \mathrm{~cm}
\end{align*}
$$

(b) Figure B. Domain $-3 \leq x \leq 3$
(c) (i) $M\left(\frac{-1+2}{2}, \frac{2+4}{2}\right)=\left(\frac{1}{2}, 3\right)$.
(ii) $m=\frac{4-2}{2+1}=\frac{2}{3}$ using

$$
\begin{align*}
& \left(y-y_{1}\right)=m\left(x-x_{1}\right) \tag{1}\\
& y-2=\frac{2}{3}(x+1) \\
& y-2=\frac{2}{3} x+\frac{2}{3}
\end{align*}
$$

So $y=\frac{2}{3} x+2 \frac{2}{3}$
or $\quad 3 y-6=2 x+2$
(ii) $m=-\frac{1}{2}=3 y+8$
(iii) $m=-\frac{3}{2} \quad m\left(\frac{1}{2}, 3\right)$.

$$
\begin{align*}
& (y-3)=-\frac{3}{2}\left(x-\frac{1}{2}\right) \\
& y-3=-\frac{3 x}{2}+\frac{3}{4} \\
& y=-\frac{3 x}{2}+3 \frac{3}{4} \quad \text { orf } \begin{array}{l}
2 y-b=-3 x+\frac{3}{2} \\
4 y-12=-6 x+3 \\
6 x+4 y-15=0
\end{array}
\end{align*}
$$

(4) (a) $\frac{5 \times 180}{9}=100$
(b)

$$
\begin{align*}
\text { Let } x & =0.13737 \\
100 x & =13.73737 \tag{1}\\
99 x & =13.6 \\
x & =\frac{13.6}{99}=\frac{136}{990}=\frac{68}{495}
\end{align*}
$$

(c) (i) $\cos 135^{\circ}=-\cos 45^{\circ}=$
(ii) $\operatorname{cosec} 330^{\circ}=-\operatorname{cosec} 30^{\circ}=-\frac{1}{\sin 30^{\circ}}=-\frac{1}{\frac{1}{2}}=-2$
(d) (1) $x^{4}-25 x^{2}+144=0$
let $\omega=x^{2}$
So $x^{2}=9, x^{2}=16$.

$$
\begin{aligned}
& w^{2}-25 w+144=0 \\
& (w-9)(w-16)=0 \\
& w=9 \text { and } w=16
\end{aligned}
$$

(4)
(d)

$$
\begin{align*}
& \text { (ii) } \begin{array}{c}
\frac{3}{(x-1)}>3 \\
(x-1)^{2} \times \frac{3}{(x-1)}>3(x-1)^{2} \\
3(x-1)-3(x-1)^{2}>0 \\
3(x-1)[1-(x-1)]>0 \\
3(x-1)[2-x]>0
\end{array}
\end{align*}
$$

soln $\quad 1 \leq x<2$.

(iii) $\frac{1}{|2-x|}<2$
$x \neq 2$. take recuprocils.

$$
\begin{array}{ll}
|2-x|>\frac{1}{2} \\
2-x>\frac{1}{2} & 2-x<-\frac{1}{2} \\
-x>-1 \frac{1}{2} & -x<-2 \frac{1}{2} \\
x<1 \frac{1}{2} & x>2 \frac{1}{2}
\end{array}
$$

SECTION C

Question 5
(a)

$$
\begin{aligned}
\text { LHS } & =\tan \theta+\cot \theta \\
& =\frac{S}{c}+\frac{c}{S} \\
& =\frac{c^{2}+S^{2}}{C S} \\
& =\frac{1}{S C} \\
& =\frac{1}{S} \cdot \frac{1}{C} \\
& =\operatorname{cosec} \theta \cdot \sec \theta \\
& =\text { RHS }
\end{aligned}
$$

(b)

$$
\frac{|1(1)-2(-2)+3|}{\sqrt{(1)^{2}+(-2)^{2}}}=\frac{8}{\sqrt{5}}
$$

(d)

$$
\begin{gathered}
\sqrt{(x-2)^{2}+(y+1)^{2}}=\sqrt{(x+3)^{2}+(y-2)^{2}} \\
5 x-3 y+4=0
\end{gathered}
$$

(d) (i)

(ii)

(a)

$$
\begin{aligned}
& f(x)=\frac{2^{x}+2^{-x}}{1-x^{2}} \\
& f(-x)=\frac{2^{-x}+2^{-(x)}}{1-(-x)^{2}} \\
&=\frac{2^{-x}+2^{x}}{1-x^{2}}=f(x) \\
& \Rightarrow f(x) \text { even }
\end{aligned}
$$

$$
\text { (b) } \begin{align*}
10 a-4 b & +12 c
\end{align*}=6
$$

$$
\begin{align*}
& \text { (A) }+ \text { (B) } \Rightarrow 16 a+8 c=6 \\
& \text { (B) }+ \text { (C) } \Rightarrow 9 a+4 c=3 \\
& \therefore a=0, b=c=\frac{3}{4}
\end{align*}
$$

(c) Required line

$$
\begin{aligned}
& (x-2 y+1)+k(3 x-y-2)=0 \\
& (3-2+1)+k(9-1-2)=0 \\
& \Rightarrow k=-1 / 3
\end{aligned}
$$

$$
\begin{aligned}
\therefore(x-2 y+1)-\frac{1}{3}(3 x-y-2) & =0 \\
3(x-2 y+1)-(3 x-y-2) & =0
\end{aligned}
$$

ie $-5 y+5=0$

$$
y=1
$$

(c)
(i)

2D DIAGRAM (TOP VIEW)

$$
\begin{aligned}
\hat{A Q B} & =90^{\circ}+\hat{B Q T} \\
& =90^{\circ}+51^{\circ} \\
A Q B & =14.1^{\circ}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\tan \hat{Q P A} & =\frac{A Q}{h} \\
\tan 78^{\circ} & =\frac{A Q}{h} \\
\Rightarrow A Q & =h \tan 78^{\circ}
\end{aligned}
$$

(iii) $\ln \triangle B P Q$

$$
\begin{aligned}
\tan 11^{\circ} & =\frac{h}{B Q} \\
B Q & =\frac{h}{\tan 11^{\circ}}=h \cot 11^{\circ} \\
\text { or } B Q & =h \tan 79^{\circ}
\end{aligned}
$$

(iv)

$$
\begin{aligned}
1000^{2} & =h^{2} \tan ^{2} 79^{\circ}+h^{2} \tan ^{2} 78^{\circ}-2 h \tan 79^{\circ} h \tan 78^{\circ} \\
& =h^{2}\left[\tan ^{2} 79^{\circ}+\tan ^{2} 78^{\circ}-2 \tan 79^{\circ} \tan 78^{\circ}\right] \\
\Rightarrow h & =\frac{1000}{[]^{1 / 2}} \\
h & =108 \text { metres } \quad 1
\end{aligned}
$$

