

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2010

YEAR 11
Half Yearly Examination

Mathematics - Continuers

General Instructions

- Reading Time 5 Minutes
- Working time 90 Minutes
- Write using black or blue pen.
 Pencil may be used for diagrams.
- Board approved calculators maybe used
- Marks may NOT be awarded for messy or badly arranged work.
- All necessary working should be shown in every question.
- Answer in simplest exact form unless otherwise instructed

Total Marks - 100

- Attempt all questions
- All questions are NOT of equal value

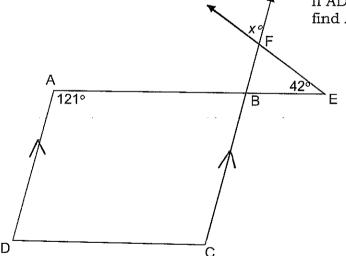
Examiner:

R. Boros & T.Evans

Number	Question	n
	1	,

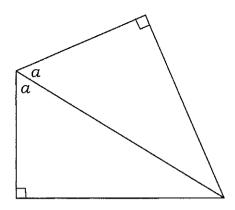
1.

Question	wark
1. 1.	
Solve $-(x-2)(2-x) = 1$	0


2

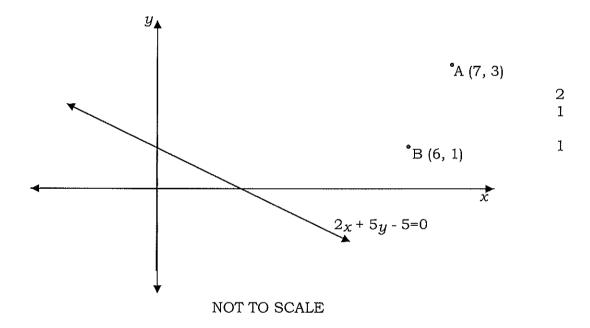
2

2


- Find the value of x if $\sqrt{x} = \sqrt{50} \sqrt{18}$
- 3. Solve the following quadratic equation leaving your answer in surd form $(2x-1)^2 = 6$
- 4. Express $\frac{1}{\sqrt{3}-2}$ with a rational denominator 2
- 5. Expand and simplify $\sqrt{(a-5)(a+5)+25}$
- **6.** The 3 legs of a triangular sailing course for the London Olympics have lengths 8km, 10km and 16km.
 - a) Draw a sketch showing this information.
 - b) Mark in angle α where the smallest angle should be.
 - c) Calculate this angle α correct to the nearest minute.
- 7. Express 1.026 as a rational number

8. If AD is parallel to CF, 2 find x giving reasons.

- 9. Find the exact value of $tan 120^{\circ} \times sin(-30^{\circ})$
- 10. Evaluate $\frac{5.3}{9.6-3.7}$ correct to 2 significant figures 2
- 11. What is 0.0000309 written in scientific notation?
- 12. How many zeros are significant in the number 0.0050309?


2

14. Which elements in the set are rational numbers?

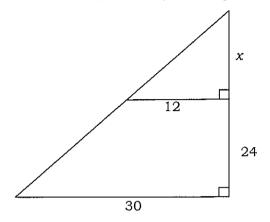
$$\left\{\sin 30^{\circ}, \pi, \sqrt{10}, 3.4, 2^{\frac{1}{2}}\right\}$$

15.

The diagram above shows the line 2x + 5y - 5 = 0 and the points A (7, 3) and B (6. 1).

Copy the diagram onto your worksheet.

- a) Find the equation of the line AB.
- b) Find the coordinates of the point of intersection, P, of the line 2x + 5y 5 = 0 and the lien AB.
- c) Find the shortest distance from P to the line y + 2 = 0.


16. Fully factorise:

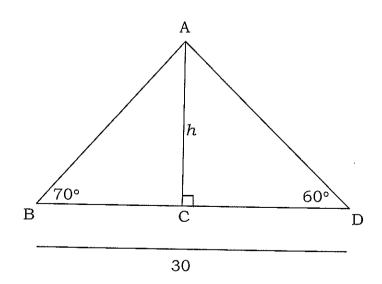
a)
$$3a^2 - 13a + 12$$
 2
b) $64 - a^3$

b)
$$64-a^3$$

c) $ay-ax-cx+cy$

2

17. Find x, giving reasons/working


18. Solve these equations for x:

a)
$$x^2 = 6x$$
 2
b) $3 - 2x \ge 7$

19. If
$$f(x) = |2x - 5|$$
, solve $f(x) = f(4)$

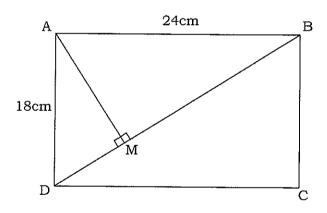
20. Solve for
$$x$$
, $|3+2x| \ge |x-1|$

21. Find h_s correct to 2 decimal places.

$$5(2x - y) = 7x + 1$$
$$3(3x + y) = 5(x - y + 12)$$

24. Simplify
$$\frac{5}{x-3} \div \frac{x^2+3x}{x^2-9}$$

25. Simplify
$$\frac{\cos(180^{\circ} - A)}{\sin(90^{\circ} - A)}$$


Given that
$$A = \left[\frac{9}{5}\right]^3$$

$$B = \left[\frac{1}{25}\right]$$

$$C = 81$$

Find the value of x and y if $\frac{A^2}{B^5C^3} = 3^x \times 5^y$

27.

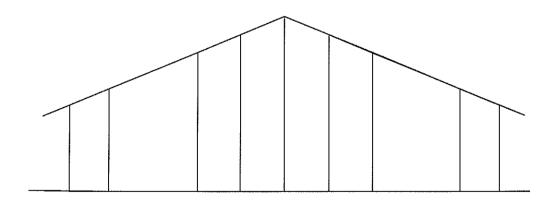
ABCD is a rectangle with dimensions as shown.

2

2

3

2


- a) Find the length of BD
- b) Find the length of BM

28. A teacher is employed in 1980 at a initial salary of \$27750 p.a. After each year of service she recieves an increment of \$1050 until she reaches the maximum salary of \$37200.

- a) What is her salary after 8 years of service?
- b) How long does she have to work until she receieves the maximum salary?
- c) What are her total earnings for the first 10 years of service?

- By considering 0.29 as a recurring decimal which is a sum on an infinite geometric series, find the equivalent fraction to 0.29. Show all working.
- **30.** Calculate the interest earned on an investment of \$11750 at 9%p.a. 2 compounded quarterly for 5 years.
- 31. An employee invests \$950 at the beginning of each year in a superannuation scheme. Assuming interest is paid at $7\frac{1}{2}$ % p.a. on the investment, how much to the nearest \$ will this investment grow to after 40 years?
- 22. Loukia borrowed \$60000 at 18%p.a. where the interest is compounded monthly on the balance owing. If she pays off this loan in equal monthly instalments over 25 years, calculate (to the nearest cent):
 - a) the amount of each monthly repayment.
 b) the total amount paid for the loan.
 c) the total interest paid
 d) the rate of simple interest (to 2 d p) equivalent to this
 - d) the rate of simple interest (to 2 d.p.) equivalent to this compound interest.

33.

A <u>symmetrical</u> roof is to be supported at regular intervals by vertical posts.

The shortest posts are 'a' metres long and consecutive posts differ in length by 'd' metres. The total length of all posts is 'S' metres. Let the number of posts be (2n+1).

a) Prove that $S=dn^2+2an+a$ b) If S=64.4, d=0.1, a=2find:
i) The number of posts
ii) The length of the longest post.

END OF EXAMINATION

	Mathematics Continuers	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TIMITION COMMINCES	16.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{1} \left(\frac{1}{2} - \frac{1}{2} \right) = \frac{1}{2}$	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		10/ /10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
2. $\sqrt{x} = \sqrt{50} - \sqrt{18}$ $= \sqrt{35} \cdot \sqrt{2} - \sqrt{9} \cdot \sqrt{2}$ $= \sqrt{50} \cdot \sqrt{30}$ $= \sqrt{50} \cdot \sqrt{50}$ $= \sqrt{50}$	4 3 95	1C. LOSX = 16 +10 -8
	2 5 5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\alpha = 34.9$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	
3. $(2x-1)^2 = 6$ $2x-1 = \frac{1}{2} \sqrt{6}$ $2x-1 = \frac{1}{2} \sqrt{6}$ $2x-1 = \frac{1}{2} \sqrt{6}$ $2x-1 = \frac{1}{2} \sqrt{6}$ $3 = \frac{1}{2} \sqrt{6}$		$\frac{1}{1} \cdot \alpha = 1.026$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\frac{10\alpha = 10 \cdot 26}{100}$
3. $(2x-1)^2 = 6$ $2x-1 = \frac{1}{5} \sqrt{6}$ $2x-1 = \frac{1}{5} \sqrt{6}$ $3x-1 = \frac{1}{5} \sqrt{6}$ $3x$	$\mathcal{L} = \mathcal{B} \qquad \qquad (2)$	1005-1026-20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 ()2 (990x = 1016
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$, =	$\alpha = 1016 - 17495$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
4. $1 \times \sqrt{3}+2$ $3 \cdot 2 \times \sqrt{3} = 79^{\circ} \text{ (wet opp)} (2)$ $\sqrt{3}-2 \times \sqrt{3}+2$ $= \sqrt{3}+2$ $= \sqrt{3}+2$ $= \sqrt{3}+2$ $= \sqrt{3}+2$ $= -1$ $= -1(\sqrt{3}+2)$ $= -1$ $= -1(\sqrt{3}+2)$ $= \sqrt{3}-2$ $= -1$ $= -1(\sqrt{3}+2)$ $= -1$ $= -1(\sqrt{3}+2)$ $= -1$ $= -1(\sqrt{3}+2)$ $= -1$ $= -1(\sqrt{3}+2)$ $= -1$ $= -$		8. ZABC = 59° (coint L's)
4. $\int \sqrt{3}+2$ 3. $\chi^2 = 79^\circ \text{ (wet opp)} (2)$ $-\sqrt{3}-2 \sqrt{3}+2$ $-\sqrt{3}+2 9. \tan 120 \times \sin (-30^\circ)$ $-3-4 = -\sqrt{3} \times -1/2$ $-\sqrt{3}+2 = \sqrt{3}$ $-1 2$ $-1 2$ $-1 2$ $-1 5.3$ 5. $\int (a-5)(a+5)+25 9.6-3.7$ $-\sqrt{8}+25 9.6-3.7$ $-$	2 (3)	ZFBE = 59 (vert opp L's)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0° > /RFE = 79 (L SUM A)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		3. x = 79° (vert opp) (2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- · · · · · · · · · · · · · · · · · · ·	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	= \(\sqrt{3+2} \)	$=$ $\sqrt{3}$ (2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-1	2
$5. \sqrt{(9-5)(9+5)+25} \qquad \qquad 9.6-3.7$ $= 0.898305084$ $= \sqrt{9.6-3.7}$ $= 0.898305084$ $= \sqrt{9.6-3.7}$ $= 0.90 (2 sf) (2)$ $= \sqrt{9.6-3.7}$ $= 0.898305084$ $= \sqrt{9.6-3.7}$ $= 0.898305084$ $= \sqrt{9.6-3.7}$ $= 0.898305084$ $= \sqrt{9.6-3.7}$ $= 9$	$= -1(\sqrt{3}+2)$ (2)	
$= 0.898305084$ $= 10^{2} - 25 + 25$ $= 10^{2} - 25 + 25$ $= 11, 3.09 \times 10^{-5}$ $= 0$ $= 0$ $= 0$ $= 0$		10. 5.3
$= \sqrt{G^2 - 25 + 25}$ $= \sqrt{G^2}$ $= 0$	$5.\sqrt{(9-5)(9+5)+25}$	9.6-3.7
$= \sqrt{G^2} $		= 0.898305084
$= \sqrt{G^2} $	$= \sqrt{Q^2 - 25 + 25}$: 090 (2 sf) (2)
= Q (2)		
= Q (2)		11. 3.09×10^{-5}
12.2	= Q (2)	•
		12.2

13. AAS	d= 10x5+1x-1+21
	VO2 + 12
14. Sin 30, 3.4 (2)	= 10-1+21
	TT
15, 1 A	= 1 = 1
(7,3)	<u>l</u>
	+36 .
8 (6,1)	$16a)$ $3a^2 - 13a + 12$
	(3a-9)(3a-4)
	3
-	= (a-3)(3a-4) (2)
a) $M = 3 - 1 = 2 = 2$	
7-6	$\frac{60}{64 - a^3}$ = $(4^3 - a^3)$
	$= (4^3 - Q^3)$
y-3=2(x-7)	$= (4-a)(16+4a+q^2)(2)$
y-3= 2x-14	
J	c) $ay - ax - cx + cy$
y = 2x - 11	= 0 / (4 - x) + ((-x + 4))
02 2x-y-11 = 0. 2	= (a+c)(y-x) (2)
	, <u>V</u>
b) 2x-y-11=0 0	17. Triangles are similar
2x + 5y - 5 = 0 (2)	AAA : sides in
②-①	the same ratio.
6y +6=0	
<u> </u>	12
9=-1	30 24+X
	$12(24+3) = 30 \propto$
sub into 0	288 + 122 = 302
2x + -1 = 0	28B = 18x
2)(=10	$\alpha = 16$ 2
$\alpha = 5$	
	$18.9) x^2 - 6x - 0$
c) $d = \alpha x_1 + by_1 + c $	X(x-6) = 0
V Q2 + b2	x=0, $x=6$ (2)
$(\alpha_{i}, y_{i}) = (5, -1)$	
axiby: (= @ y+2	
	į

b. 3 - 2x 7,7	3. h + h = 30
$\begin{array}{cccc} -2x & 7 & 4 \\ 3 & \leq -2 & 2 \end{array}$	tan70 tan60
$19. \int (x) = 2x-5 $	htan60 + htan70 = 30tan70tan60
$\frac{f(4) = 2.4-5 }{= 8-5 }$ = 3 2	h (tan 60 + tan 70) = 30 tan 70 tan 60
20. $ 3+2x > x-1 $	h = 30+an70+an6 +an60 + +an70
3+22>, 2-1	= 31.87 (2dp) (3)
$3+2x \leq -x+1$	22. $10x - 5y = 7x + 1$ 3x - 5y = 1
$\frac{3x \leqslant -2}{x \leqslant -2}$	9x + 3y = 5x - 5y + 60 $4x + 8y = 60$
$-4 \le x \le -2/3$ (3)	$0 \times 4 12x - 20y = 4 3$ $0 \times 3 12x + 24y = 180 4$
21	(4) -(3) 44y = 176
B 10 7 60 D	Sub into (1)
$\frac{a}{tan70} = \frac{b}{lac}$	$3\alpha - 20 = 1$ $3\alpha = 21$
a = h $tan70$	check in 2
tango = h/y	4×7 + 8×4 = 60 V.
$\frac{x + y}{2} = 30$	

23. $140^{\circ} = (n-2) \times 180$	b. Aren of A ABO
	= 1 × 24 × 18
1400 = 1800 - 360	2
360 = 40 n	= 216
n = 9 sides. (2)	
	50 216 = 1/2 × 30 × AM
24. 5 , $(x+3)(x-3)$	AM = 14.4
2-3 $x(x+3)$	
	$324^2 = 14.4^2 + BM^2$
5	BM = 19-2 2
$\underline{\qquad}$	
	28.a. a. 27750
25. (OSC180-A) = - (OSA	d = 1050
Sin(90-A) COSA	n ≥ 8
= - (2)	
$\frac{1}{2}$	$S_n = Q + (n-1)d$
20. / 9	$= 27750 + (7) \times 1050$
	=\$35100 (2)
$\frac{1}{(\frac{1}{2})^5}$, $(81)^3$	
25/	b. $37200 = 27750 + (n-1)$
= 531441 = 531441	×1050
<u> </u>	9450 = (n-1)1050
- CO : - OT/ CO C	()-(= 9
<u>= 531441</u> <u>, 9765625</u>	: n - 10 years 2
15625 53144	
	C. Sn = n (a+1)
= 625	in (07777)772-0)
= 3° × 5 ⁴	= 10 (27750 + 37200)
- 3 × S	= \$324 750 (2)
· · · · · · · · · · · · · · · · · · ·	= \$324 750 ②
-3.2=0, $y=4$	29. 0.29 = 0.29 ± 0.0029
$27a (BD)^2 = 18^2 + 24^2$	
Q 14 (D)) = 10 + LT	+0.000029 +
BD = 30 (2)	r= 1/100, a= 0.29
	12 100 / 42 0 22
	S _{00 = 0}
	1-1

= 0.29	A300 = 60000 (1.015) - M
1-1/100	(1+1.015++1.015 ²⁹⁹)
0.29	
0.99	$M = 60006(1.015)^{300}$
= 29	1+1.015+ +1.015 299
$\overline{99}$ (2)	
	= 60000 (1.012)3as
30. A = P(1+r/1)^	1.015 300 -1
30. $A = P(1 + r'/)^{n}$ = $11750(1 + \frac{2.25}{100})^{20}$	0.15
=\$18335°DB	
	= \$910.46 (3)
: Interest is \$6585.980	
	b. \$910.46 x 300 =\$2731382
31. Year 1 A = 950 (1+7.51.)40	
$\frac{1}{2}$ Year 2 A = 950(1+7.5%) ³⁹	$C.$273138 - $60000 = 213138_2
Year 40 A = 950 (1+7.5%)	d. \$213138 = 60000 x r x25
	i00
total = 950 (1.075) + 950 (1.075)2	
+····+ 950(1.075)40	r= 14-21/3 p.a flat. (2)
050 ()[
= 450(1.075) 1 + 1.075 + + 1.075	33 a Sn = = (29 + (n-1)d) x2 + a+nd
S (- () ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	
Super = 950(1.075) x 1.075"-1	= n(2a+nd-d)+a+nd
0.075	$= 29n + n^2d - dn + a + nd$
=\$232,086 (newest-\$)	$= dn^2 + 2an + a = (3)$
<u>(4)</u>	
	$\frac{6)64.4 = 0.1^{2} + 2 \times 20 + 2}{60.4}$
32. \$6000	$62.4 = 0.10^{2} + 40$
18/29 = 1.5/ pmonth	$0^2 + 400 - 624 = 0$
300 months.	
O (O	$N = \frac{40 - 1600 - 4 \times 1 \times -624}{2}$
P, = 60000 (1+0.015) - M	2
=60000(1·01s)-M	= -40±64, the case
$A_2 = 60000(1.015)^2 - 1.015M-M$	2 <u>0=12</u>
=6(111)(1·U/5) - M(1+1.015)	c) longest post and = 2×12×0.1
P. C.	= 3.2 m@