FORM V

MATHEMATICS EXTENSION 1

Friday 7th May 2010

General Instructions

- Writing time -2 hours
- Write using black or blue pen.
- Board-approved calculators may be used.
- All necessary working should be shown in every question.
- Start each question on a new leaflet.

Structure of the paper

- Total marks - 96
- All eight questions may be attempted.
- All eight questions are of equal value.

Collection

- Write your name, class and master clearly on each leaflet.
- Hand in the eight questions in a single well-ordered pile.
- Hand in a leaflet for each question, even if it has not been attempted.
- If you use a second leaflet for a question, place it inside the first.
- Write your name on the question paper and place it inside your leaflet for Question One.

5A: DNW	5B: DS	5C: TCW
5D: MLS	5E: RCF	5F: PKH
5G: KWM	5H: REP	5I: SJE

Checklist

- Writing leaflets: 8 per boy.

Examiner

- Candidature - 149 boys

QUESTION ONE (12 marks) Start a new leaflet.
(a) Write down the exact value of $\cos 150^{\circ}$.
(b) Solve $|x+1|=3$.
(c) Consider the straight line $\sqrt{3} x-y+2=0$.
(i) Write down the gradient of the line.
(ii) Find the angle of inclination of the line.
(d) Write down the value of $8^{-\frac{2}{3}}$.
(e) Factorise $x^{3}-8$.
(f)

The diagram above shows the curve $y=x(x-3)$.
Use the curve to solve the inequation $x(x-3) \geq 0$.
(g)

The diagram above shows the graph of the relation $y=-\sqrt{9-x^{2}}$.
(i) Write down the domain of the relation.
(ii) Explain why the relation is a function.
(h) Calculate the limiting sum of the geometric series $3+1+\frac{1}{3}+\ldots$.

SGS Half-Yearly 2010 Form V Mathematics Extension 1 Page 3
QUESTION TWO (12 marks) Start a new leaflet.
(a) The first term of an arithmetic progression is -1 and the third term term is 9 .
(i) Find the common difference.
(ii) Find the fiftieth term.
(iii) Find the sum of the first fifty terms.
(b) By rationalising the denominator, express $\frac{3}{2+\sqrt{5}}$ in the form $a+b \sqrt{5}$.
(c) The function $f(x)$ is defined by $f(x)=x^{2}-x$.
(i) Find $f(x+h)$.
(ii) Use the definition $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ to find $f^{\prime}(x)$.
(iii) Find the equation of the tangent to the curve $y=x^{2}-x$ at the point $P(1,0)$.
(d) Solve for x

$$
2 \log _{a} 2+\log _{a} 3=\log _{a} x .
$$

QUESTION THREE (12 marks) Start a new leaflet.
(a)

In the diagram above $\triangle A B C$ has vertices $A(3,2), B(-2,1)$ and $C(1,-3) . A D$ is an altitude of the triangle.
(i) Find the length of the side $B C$.
(ii) Find the gradient of $B C$.
(iii) Show that the equation of $B C$ is $4 x+3 y+5=0$.
(iv) Use the perpendicular distance formula to find the length of the altitude $A D$.
(v) Hence or otherwise, calculate the area of $\triangle A B C$.
(b) Find the exact value of the pronumeral in each diagram below.
(i)

(ii)

(c) The sum of the first n terms of a sequence is given by $S_{n}=n^{2}-n$.
(i) Find S_{8} and S_{9}.
(ii) Hence find the ninth term of the sequence.

QUESTION FOUR (12 marks) Start a new leaflet.
(a) For each of the following functions find $\frac{d y}{d x}$.
(i) $y=x^{3}+2 x-3$
(ii) $y=(3 x+2)^{4}$
(iii) $y=\sqrt{x}$
(iv) $y=\frac{3 x-2}{x}$
(b) Use the quotient rule to differentiate $\frac{2 x}{x^{2}+1}$.
(c) Use the product rule to differentiate $(2 x+1)^{2}\left(x^{2}+1\right)$ and express the derivative in factored form.
(d) (i) Fully factorise $x^{3}-x^{2}-2 x$.
(ii) Sketch the curve $y=x^{3}-x^{2}-2 x$, indicating all intercepts with the axes.
(iii) Hence or otherwise, solve the inequation $x^{3}-x^{2}-2 x<0$.

QUESTION FIVE (12 marks) Start a new leaflet.
(a) Given $\tan \theta=-\frac{5}{12}$ and $\cos \theta>0$, find the exact value of $\sin \theta$.
(b) Sketch the graph of the function $y=1-|x-2|$.
(c) Find the equation of the straight line that passes through the point of intersection of the lines $2 x-y+1=0$ and $x+y-2=0$ and also passes through the point $(2,-1)$. Do not find the point of intersection of the two lines and leave your answer in general form.
(d) A function $h(x)$ is defined by $h(x)=\frac{2}{x^{2}+1}$.
(i) Evaluate $h(0)$.
(ii) Show that $h(x)$ is an even function.
(iii) What value does $h(x)$ approach as $x \rightarrow \infty$?
(iv) Sketch the function $y=h(x)$ and state its range.

QUESTION SIX (12 marks) Start a new leaflet.
(a) (i) Solve $\sin x+\sqrt{3} \cos x=0$, for $0^{\circ} \leq x \leq 360^{\circ}$.
(ii) Solve $\sec ^{2} x+\tan x=3$, for $0^{\circ} \leq x \leq 360^{\circ}$.
(Give your solutions correct to the nearest minute.)
(b) (i) Write down the radius and centre of the circle $(x+2)^{2}+(y-3)^{2}=25$.
(ii) Show that the line $4 x-3 y-8=0$ is a tangent to the circle $(x+2)^{2}+(y-3)^{2}=25$.
(c) Prove the identity $\frac{\cos \alpha}{1+\sin \alpha}+\frac{1+\sin \alpha}{\cos \alpha}=2 \sec \alpha$.

QUESTION SEVEN (12 marks) Start a new leaflet.
(a) The third and sixth terms of a geometric sequence are $\frac{1}{27}$ and $\frac{1}{729}$ respectively.
(i) Find the first term and the common ratio.
(ii) Find the sum of the first seven terms. (Express your answer as a fraction in simplest terms.)
(iii) How many terms of the sequence exceed $\frac{1}{1000000}$?
(b) (i) Show that $x=60^{\circ}$ is a solution to the equation $\sin x=\frac{1}{2} \tan x$.
(ii) On the same set of axes sketch the graphs of the functions $y=\sin x$ and $y=\frac{1}{2} \tan x$, for $-180^{\circ} \leq x \leq 180^{\circ}$.
(iii) Use your graphs to solve $\sin x \leq \frac{1}{2} \tan x$, for $-90^{\circ}<x<90^{\circ}$.

SGS Half-Yearly 2010 Form V Mathematics Extension 1 Page 7
QUESTION EIGHT (12 marks) Start a new leaflet.
(a)

In the diagram above the tangent and normal to the curve $y=\sqrt{x}$ at a variable point $P\left(a^{2}, a\right)$, where $a>0$, intersect the x-axis at the points Q and R respectively.
(i) Find the equation of the tangent at the point $P\left(a^{2}, a\right)$.
(ii) Find the co-ordinates of Q and R.
(iii) Hence show that the difference in the distances of the points Q and R from the origin is constant.
(b) The two curves $y=x^{2}+a x+b$ and $y=c x-x^{2}$ share a common tangent at the point $(1,0)$. Find the values of the constants a, b and c.
(c) Find the equation of the line which bisects the acute angle between the lines $\ell_{1}: 3 x-6 y-10=0$ and $\ell_{2}: 2 x-y-4=0$.

QUESTION 1
(a)

$$
\begin{aligned}
\cos 150^{\circ} & =-\cos 30^{\circ} \\
& =-\frac{\sqrt{3}}{2}
\end{aligned}
$$

(b)

$$
\begin{array}{rlrl}
|x+1|=3 & \\
x+1=3 & \text { or } & x+1=-3 \\
x=2 & \text { or } & x=-4
\end{array}
$$

(c)

$$
\begin{aligned}
\sqrt{3} x-y+2 & =0 \\
y & =\sqrt{3} x+2
\end{aligned}
$$

(i) gradient $=\sqrt{3}$
(ii)

$$
\tan \alpha=\sqrt{3}
$$

$$
\alpha=60^{\circ}
$$

angle of inclination is 60°
(d)

$$
\begin{aligned}
8^{-\frac{2}{3}} & =(2)^{-2} \\
& =\frac{1}{4}
\end{aligned}
$$

(a) $x^{3}-8=(x-2)\left(x^{2}+2 x+4\right)$
(f)

$$
\begin{aligned}
& x(x-3) \geqslant 0 \\
& x \leqslant 0, \quad x \geqslant 3
\end{aligned}
$$

(9)
(i) Domain: $-3 \leq x \leq 3$
(ii) the graph satisfies the vertical line test.
(h) $3+1+\frac{1}{3}+\cdots \cdot$

$$
\begin{aligned}
& \delta_{\infty}=\frac{a}{1-r} \\
& \delta_{\infty}=\frac{3}{1-1 / 3}
\end{aligned}
$$

QUESTION 2
(a)

$$
\left.\begin{array}{rl}
a & =-1 \tag{1}\\
a+2 d & =9
\end{array}\right\}
$$

(i)

$$
\begin{aligned}
2 d & =10 \\
d & =5 .
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& t_{n}=a+(n-1) d \\
& t_{50}=-1+49 \times 5 \\
& t_{50}=244
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& S_{n}=\frac{n}{2}(a+l) \\
& S_{50}=25(-1+244) \\
& S_{50}=6075
\end{aligned}
$$

$$
\text { (b) } \begin{aligned}
& \frac{3}{2+\sqrt{5}} \times \frac{2-\sqrt{5}}{2-\sqrt{5}} \\
= & \frac{6-3 \sqrt{5}}{4-5} \\
= & -6+3 \sqrt{5}
\end{aligned}
$$

(c) $\quad f(x)=x^{2}-x$
(i)

$$
\begin{aligned}
f(x+h) & =(x+h)^{2}-(x+h) \\
& =x^{2}+2 x h+h^{2}-x-h
\end{aligned}
$$

(ii)

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-x-h-x^{2}+x}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}-h}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(2 x+h-1)}{h}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} 2 x-1+h \\
& =2 x-1
\end{aligned}
$$

(iii)

$$
\text {) } \begin{aligned}
f^{\prime}(x) & =2 x-1 \\
f^{\prime}(1) & =1 \\
\text { g-apt } & =1 \\
y-y_{1} & =m(x-0) \\
y & =1(x-1)
\end{aligned}
$$

tagent: $\quad y=x-1$
(d) $2 \log _{a} 2+\log _{a} 3=\log _{a} x$

$$
\begin{aligned}
\log _{a} 4+\log _{a} 3 & =\log _{a} x \\
\log _{a} 12 & =\log _{a} x
\end{aligned}
$$

$$
x=12
$$

QUESTION 3
(a) $A(3,2), B(-2,1), C(1,-3)$
(i) $\overline{B C}=\sqrt{(-2-1)^{2}+(1--3)^{2}}$

$$
\overline{B C}=\sqrt{9+16}
$$

$$
=5 \text { units }
$$

(ii)

$$
\begin{aligned}
\text { gradient } B C & =\frac{1--3}{-2-1} \\
& =-\frac{4}{3}
\end{aligned}
$$

(iii)

$$
\text { (iii) } \begin{aligned}
m=-\frac{4}{3} & B(-2,1) \\
y-y & =m\left(x-x_{1}\right) \\
y-1 & =-\frac{4}{3}(x+2) \\
3 y-3 & =-4 x-8 \\
4 x+3 y+5 & =0
\end{aligned}
$$

(iv)

$$
\begin{aligned}
d & =\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}} \\
d & =\frac{|12+6+5|}{\sqrt{16+9}} \\
d & =\frac{23}{5} \\
& =43 / 5 \text { units }
\end{aligned}
$$

(v)

$$
\begin{aligned}
\text { Ara } \triangle A B C & =\frac{1}{2} b h \\
& =\frac{1}{2} \overline{B_{C}} \times \overline{A D} \\
& =\frac{1}{2} \times 5 \times \frac{23}{5} \\
& =\frac{23}{2} \\
& =11^{1 / 2} \text { sq units }
\end{aligned}
$$

(b)
(i)

$$
\begin{aligned}
\frac{x}{\sin 30^{\circ}} & =\frac{10}{\sin 135^{\circ}} \\
\frac{x}{1 / 2} & =\frac{10}{1 / 2} \\
2 x & =10 \sqrt{2} \\
x & =5 \sqrt{2} \text { units. }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& y^{2}=4+9-4 \times 3 \times \cos 60^{\circ} \\
& y^{2}=4+9-6 \\
& y=\sqrt{7} \text { units. }
\end{aligned}
$$

(c)

$$
\begin{array}{rlrl}
S_{n} & =n^{2}-n & \\
S_{8} & =64-8 \quad S_{9}=81-9 \\
& =56 \quad S_{q}=72
\end{array}
$$

(i)
(ii)

$$
\begin{align*}
t_{q} & =s_{q}-5_{8} \\
& =72-56 \\
t_{q} & =16 \tag{12}
\end{align*}
$$

OVESTION 4
(a)
(i)

$$
\begin{aligned}
& y=x^{3}+2 x-3 \\
& \frac{d y}{d x}=3 x^{2}+2
\end{aligned}
$$

(ii)

$$
\begin{aligned}
y & =(3 x+2)^{4} \\
\frac{d y}{d x} & =4(3 x+2)^{3} \times 3 \\
& =12(3 x+2)^{3}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& y=\sqrt{x} \\
& y=x^{1 / 2} \\
& \frac{d y}{d x}=\frac{1}{2} x^{-1 / 2} \\
& =\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

(iv)

$$
\begin{aligned}
& y=\frac{3 x-2}{x} \\
& y=3-2 x^{-1} \\
& \frac{d y}{d x}=\frac{2}{x^{2}}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& f(x)=\frac{2 x}{x^{2}+1} \\
& f^{\prime}(x)=\frac{\left(x^{2}+1\right) 2-2 x \times 2 x}{\left(x^{2}+1\right)^{2}} \\
&=\frac{2 x^{2}+2-4 x^{2}}{\left(x^{2}+1\right)^{2}} \\
&=\frac{2-2 x^{2}}{\left(x^{2}+1\right)^{2}} \\
&=\frac{2(1-x)(1+x)}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \Rightarrow \quad f(x)=(2 x+1)^{2}\left(x^{2}+1\right) \\
& f(x)=2(2 x+1)\left(x^{2}+1\right) 2+(2 x+1)^{2} \times 2 x \\
& \quad=2(2 x+1)\left\{2\left(x^{2}+1\right)+x(2 x+1)\right\} \\
& \quad=2(2 x+1)\left(4 x^{2}+x+2\right)
\end{aligned}
$$

(d) (i)

$$
\begin{aligned}
& x^{3}-x^{2}-2 x \\
= & x\left(x^{2}-x-2\right) \\
= & x(x+1 x x-2)
\end{aligned}
$$

(iii)

$$
\begin{gathered}
x(x+1)(x-2)<0 \\
x<-1 \text { OR } 0<x<2
\end{gathered}
$$

12

QVESTION 5
(a) $\tan \theta=-\frac{5}{12}$

(e)

$$
\begin{aligned}
& 2 x-y+1+k(x+y-2)=0 \\
&(2,-1): 4+1+1+k(2-1-2)=0 \\
& 6-k=0 \\
& k=6 \\
& 2 x-y+1+6(x+y-2)=0 \\
& 8 x+5 y-11=0
\end{aligned}
$$

(d) $\quad h(x)=\frac{2}{x^{2}+1}$
(i) $\quad h(0)=2$
(ii)

$$
\begin{aligned}
h(-x) & =\frac{2}{(-x)^{2}+1} \\
& =\frac{2}{x^{2}+1} \\
& =h(x)
\end{aligned}
$$

$\therefore h(x)$ is an even function.
(iii) as $x \rightarrow \infty, h(x) \rightarrow 0$
(iv)

Rage: $\quad 0<y \leq 2$

QUESTION 6
(a)
(i)

$$
\begin{aligned}
\sin x+\sqrt{3} \cos x & =0 \\
\sin x+\sqrt{3} & =0 \\
\cos x & \tan x
\end{aligned}=-\sqrt{3} . ~ \$
$$

$\xrightarrow{2}$

$$
\frac{x=120^{\circ} \text { or } x=300^{\circ}}{\sqrt{ }}
$$

(ii)

$$
\begin{aligned}
& \sec ^{2} x+\tan x=3 \\
& \left(1+\tan ^{2} x\right)+\tan x=3 \\
& \tan ^{2} x+\tan x-2=0 \\
& (\tan x-1 x \tan x+2)=0 \\
& \tan x=1 \quad \tan x=-2 \\
& x=45^{\circ}, 225^{\circ} \quad x=116^{\circ} 34^{\prime}, 296^{\circ} 34^{\prime}
\end{aligned}
$$

(b) (i)

$$
\begin{aligned}
& (x+2)^{2}+(y-3)^{2}=25 \\
& \text { radios }=5 \text { units } \\
& \text { cute }(-2,3)
\end{aligned}
$$

(ii) The distance from the line $4 x-3 y-8=0$ to the centre of the circle $(-2,3)$

$$
\begin{aligned}
& d=\frac{|-8-9-8|}{\sqrt{16+9}} \\
& d=\frac{25}{5} \\
& d=5 \text { units. }
\end{aligned}
$$

Since the peycendicular distance from the line to the centre equal the radius of the circle, the line intersects the circle at one point any. Hance the line is a tangent.
(c)

$$
\begin{aligned}
L H S & =\frac{\cos \alpha}{1+\sin \alpha}+\frac{1+\sin \alpha}{\cos \alpha} \\
& =\frac{\cos \alpha+(1+\sin \alpha)^{2}}{\cos \alpha} \\
& =\frac{\left.\cos ^{2} \alpha+\sin ^{2} \alpha+\sin \alpha\right)}{\cos \alpha(1+\sin \alpha)} \\
& =\frac{2+1}{\cos \alpha(1+\sin \alpha)} \\
& =\frac{2(1+\sin \alpha)}{\cos \alpha(1+\sin \alpha)} \\
& =\frac{2}{\cos \alpha} \\
& =2 \sec \alpha \\
& =\operatorname{RH}_{1+s}
\end{aligned}
$$

Qvestion 7
(a)
(i)

$$
\begin{align*}
a r^{2} & =1 / 27 \tag{1}\\
a r^{5} & =1 / 729 \tag{2}
\end{align*}
$$

(2)

$$
\begin{aligned}
\frac{a r^{5}}{a r^{2}} & =\frac{1}{729} \div \frac{1}{27} \\
r^{3} & =\frac{27}{729} \\
r & =\frac{3}{9} \\
r & =\frac{1}{3} \quad a=\frac{1}{3}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
S_{n} & =\frac{a\left(1-r^{n}\right)}{1-r} \\
S_{1} & =\frac{1 / 3\left(1-(1 / 3)^{7}\right)}{1-1 / 3} \\
S_{7} & =\frac{1}{2}\left(1-\frac{1}{2187}\right) \\
& =\frac{1}{2} \times \frac{2186}{2187} \\
& =\frac{1093}{2187}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
t_{n} & >10^{-6} \\
\arg ^{n-1} & >10^{-6} \\
\frac{1}{3}\left(\frac{1}{3}\right)^{n-1} & >10^{-6} \\
\frac{1}{3^{n}} & >\frac{1}{1000000} \\
3^{n} & <1000000 \\
n \log 3 & <\log 1000000 \\
n \log 3 & <6 \\
n & <\frac{6}{\log 3} \\
n & <12.57 \ldots \\
n & =12
\end{aligned}
$$

12 terms of the sequence exued 10^{-6}.
(b)

$$
\begin{aligned}
& \text { (i) } \quad \begin{aligned}
\sin x & =\frac{1}{2} \tan x \\
x=60^{\circ}: \angle H s & =\sin 60^{\circ} \\
& =\frac{\sqrt{3}}{2}
\end{aligned}
\end{aligned}
$$

$$
\text { RHS }=\frac{1}{2} \tan 60^{\circ}
$$

$$
=\frac{1}{2} \times \sqrt{3}
$$

$$
=\frac{\sqrt{3}}{2} \quad \therefore 60^{\circ} \text { is a solut. }
$$

(ii) $\quad \sin x \leqslant \frac{1}{2} \tan x \quad-90^{\circ}<x<90^{\circ}$

$$
60^{\circ} \leqslant x<90^{\circ} \text { or }-60^{\circ} \leqslant x \leqslant 0^{\circ}
$$

Question 8
(a) (i) $y=\sqrt{x}$

$$
\frac{d y}{d x}=\frac{1}{2 \sqrt{x}}
$$

at $P\left(a^{2}, a\right)$ gradient $=\frac{1}{2 a}$

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-a=\frac{1}{2 a}\left(x-a^{2}\right) \\
& 2 a y-2 a^{2}=x-a^{2}
\end{aligned}
$$

$$
x-2 a y+a^{2}=0 \text { tergent. }
$$

(ii) Q : put $y=0$.

$$
\theta\left(-a^{2}, 0\right)
$$

equation of the somal.

$$
\begin{aligned}
& y-a=-2 a\left(x-a^{2}\right) \\
& p a t=0 \\
&-a=-2 a\left(x-a^{2}\right) \\
& \frac{1}{2}=x-a^{2} \\
& x=a^{2}+\frac{1}{2} \\
& R\left(a^{2}+\frac{1}{2}, 0\right)
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& O R-O Q \\
= & \left|a^{2}+1 / 2\right|-|-a| \\
= & a^{2}+\frac{1}{2}-a^{2} \\
= & \frac{1}{2}
\end{aligned}
$$

(b) (1) $\left\{\begin{array}{l}y=x^{2}+a x+b \\ y=c x-x^{2}\end{array}\right.$
(2) $\left\{\begin{array}{l}y=c x-x^{2}\end{array}\right.$
$(1,0)$ his an tooth curves
0. $1+a+b=0$
(2)

$$
\begin{aligned}
& a-1=0 \\
& \therefore c=1
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d y}{d x}=2 x+a \\
& \frac{d y}{d x}=c-2 x
\end{aligned}
$$

at $x=1$ the gradients ae equal.

$$
\begin{array}{r}
a+2=c-2 \\
a+2=1-2 \\
a+2=-1 \\
a=-3 \\
1-3+b=0 \\
b=2
\end{array}
$$

(c)

Let $P(x, y)$ the any point on the agle hisector, d_{1} the distance from ρ to l_{1} and d_{2} the distance from ρ to l_{2}.

$$
\begin{aligned}
& \frac{|3 x-6 y-10|}{\sqrt{45}}=\frac{|2 x-y-4|}{\sqrt{5}} \\
& |3 x-6 y-10|=3|2 x-y-4| \\
& 3 x-6 y-10=6 x-3 y-12 \\
& \frac{3 x+3 y-2=0 \quad \text { OR }}{3 x-6 y-10=-6 x+3 y+12} \\
& 9 x-9 y-22=0
\end{aligned}
$$

The acute angle bisector must have a gradient that his between $l_{1}: m_{1}=1 / 2$ and $l_{2}: m_{2}=2$.
$\therefore \quad 9 x-9 y-22=0$ is
the acute angle director of l_{1} and l_{2}.

