SYDNEY GRAMMAR SCHOOL

2011 Half-Yearly Examination

FORM V MATHEMATICS EXTENSION 1

Wednesday 11th May 2011

General Instructions

- Writing time 2 hours
- Write using black or blue pen.
- Board-approved calculators and templates may be used.
- All necessary working should be shown in every question.
- Start each question on a new leaflet.

Structure of the paper

- Total marks 96
- All eight questions may be attempted.
- All eight questions are of equal value.

Collection

- Write your name, class and master clearly on each leaflet.
- Hand in the eight questions in a single well-ordered pile.
- Hand in a leaflet for each question, even if it has not been attempted.
- If you use a second leaflet for a question, place it inside the first.
- Write your name on the question paper and place it inside your leaflet for Question One.

5A: BDD	5B: PKH	5C: FMW
5D: KWM	5E: SJE	5F: RCF
5G: MW	5H: SO	5I: MLS

Checklist

• Writing leaflets: 8 per boy.

Examiner RCF

• Candidature — 149 boys

<u>QUESTION ONE</u> (12 marks) Start a new leaflet.

- (a) Simplify:
 - (i) $\sqrt{48} \sqrt{27}$
 - (ii) $(2\sqrt{5}+5)^2$
- (b) (i) Write down the exact value of $\cos 45^{\circ}$.
 - (ii) Find the exact value of $\sec 135^{\circ}$.
- (c) Differentiate the following functions:
 - (i) $2x^3 x^5$ (ii) x^{-3}
 - $(\Pi) x$
 - (iii) $\sqrt[3]{x}$
- (d) Find the equation of the straight line perpendicular to the line y = 3x 5 and passing through the point (-1, 2). Give your answer in general form.
- (e) Factorise $x^3 + 27$.

<u>QUESTION TWO</u> (12 marks) Start a new leaflet.

- (a) Write down the domain of the function $y = \frac{1}{x-3}$.
- (b) Consider the sequence $2, \frac{2}{3}, \frac{2}{9}, \ldots$
 - (i) Show the sequence is geometric.
 - (ii) State the values of a and r.
 - (iii) Find the limiting sum of the geometric series $2 + \frac{2}{3} + \frac{2}{9} + \cdots$.
- (c) Given the points A(-2,5) and B(1,-1), find the length of the interval AB. Give your answer in simplest exact form.
- (d) Solve |x 4| = 5.
- (e) The area of $\triangle ABC$ is 14 cm^2 . Given that AB = 8 cm and AC = 7 cm, find all possible values of $\angle BAC$.
- (f) Solve $(x+3)(x-4) \ge 0$.

<u>QUESTION THREE</u> (12 marks) Start a new leaflet.

(a) By rationalising the denominator and simplifying, find the values of a, b and c such that

$$\frac{3+\sqrt{12}}{2-\sqrt{3}} = a + b\sqrt{c}.$$

(b) Given that $\sin \theta = \frac{5}{7}$ and θ is obtuse, find in simplest form the exact values of:

(i) $\tan \theta$

- (ii) $\sec \theta$
- (c) Complete the square to find the centre and the radius of the circle with equation $x^2 + y^2 + 10y = 39.$

(d) Show that
$$\frac{\cos^2 x - \sin^2 x}{\cos^2 x + \cos x \sin x} = 1 - \tan x.$$

(e) Find the perpendicular distance from the point (4, 2) to the line 3x + 4y - 5 = 0.

<u>QUESTION FOUR</u> (12 marks) Start a new leaflet.

- (a) Given $f(x) = \sqrt{x} (3x^2 2x + 1)$, find f'(x).
- (b) Given the points A(-2,5) and B(7,-1), find the point P which divides the interval AB internally in the ratio 2 : 1.
- (c) (i) If $f(x) = x^2 + 3x$, find f(x+h).
 - (ii) Hence differentiate f(x) from first principles.
- (d) The third term of an AP is 125 and the sixth term is 116.
 - (i) Find the first term a and the common difference d.
 - (ii) Find the value of the thirtieth term.
 - (iii) Find the minimum number of terms to be added for the sum to be negative.

<u>QUESTION FIVE</u> (12 marks) Start a new leaflet.

- (a) (i) Sketch the graph of $y = \tan x$ for the restricted domain $0^{\circ} \le x \le 360^{\circ}$. Clearly indicate all intercepts and asymptotes.
 - (ii) Using your graph and knowledge of special angles, solve $\tan x = -\sqrt{3}$ for $0^{\circ} \le x \le 360^{\circ}$.
- (b) Use the chain, product or quotient rules to differentiate the following functions:

(i)
$$\frac{5x+1}{5-x}$$

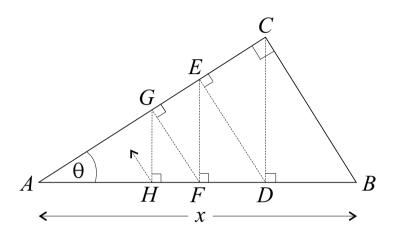
- (ii) $(x^3 + 3)(3x 2)^3$ (Give your final answer in factored form.)
- (c) The lines x 2y + 3 = 0 and 3x + y 2 = 0 intersect at point A. Without finding the co-ordinates of A, find the equation of the line that passes through A and (2, 1). Give your answer in general form.

<u>QUESTION SIX</u> (12 marks) Start a new leaflet.

- (a) Find the values of x for which the geometric series $(2 x) + (2 x)^2 + (2 x)^3 + \cdots$ has a limiting sum.
- (b) Solve the following equations over the domain $0^{\circ} \le \theta \le 360^{\circ}$.
 - (i) $\operatorname{cosec} \theta = -\sqrt{2}$
 - (ii) $2\sin^2\theta + \cos\theta = 1$
 - (iii) $\cos(2\theta + 60^{\circ}) = \frac{1}{\sqrt{2}}$

<u>QUESTION SEVEN</u> (12 marks) Start a new leaflet.

- (a) Sketch the graph of the function $y = 2^{-x} 4$, clearly indicating any asymptotes and intercepts with the axes.
- (b) Solve $\frac{3x}{x-2} \ge 1$.



In the diagram above, let side AB = x and $\angle BAC = \theta$

- (i) Write down an expression for the side BC.
- (ii) Find expressions for CD and EF in terms of x and θ .
- (iii) Hence find the limiting sum of the series $CD + EF + GH + \cdots$.

<u>QUESTION EIGHT</u> (12 marks) Start a new leaflet.

- (a) Consider the points A(2,1) and B(-2,4) in the number plane.
 - (i) Write down the equation of a line with gradient m that passes through A. Give your answer in general form.
 - (ii) Find the equations, in general form, of the two lines ℓ_1 and ℓ_2 that pass through A and are 3 units from B.
 - (iii) Find the equations of the two lines that bisect the angles at A between ℓ_1 and ℓ_2 .
- (b) Consider the function $f(x) = \frac{x+4}{2x^2-8}$.
 - (i) Determine whether f(x) is even, odd or neither.
 - (ii) Find all intercepts and asymptotes of the graph of y = f(x).
 - (iii) Find the gradient function f'(x), and hence find the x co-ordinates of the two points where the graph has zero gradient.
 - (iv) Sketch the graph of the function y = f(x).

END OF EXAMINATION

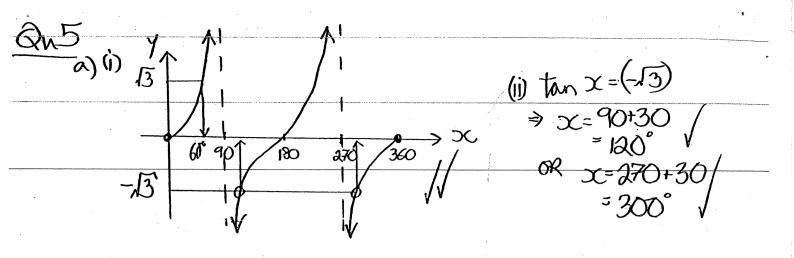
HY 2011 (RCF ORM EXTENSION (") (25+5) = (25+5)(25+5)a)(i) 40-07 =413-313/ = 20+105+105+25/ = 45+205 for 5(9+4J5) { (ii) sec $B5^{\circ} = \frac{1}{40} = -\frac{1}{40} = (-\sqrt{2})/$ $c)iy = 2x^{3}-x^{5}$ $dy = 6x^{2}-5x^{4} /$ $(ii) \gamma = \tilde{x}^{2}$ (iii) $\gamma = \chi^3 /$ $dy = -3x^{-4}/$ x = 3x - 3 / for 3. for 33/22 } :- Rep Grad Ma= (-1/3) then (-1,2) a) $\gamma = 3x - 5$ m = 3 $y - 2 = -\frac{1}{3}(x - (-1))$ $e)x^{3}+27 = (x+3)(x^{2}-3x+9)$ 3y-6=-x-1 x+3y-5=0

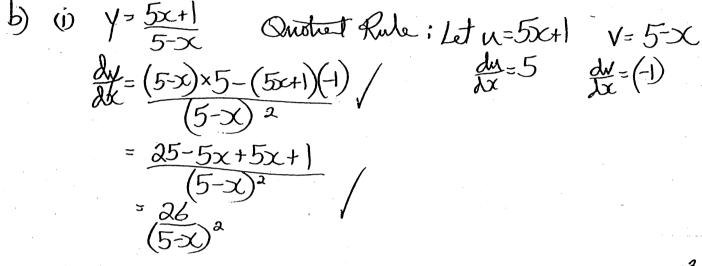
Quí b) 2, 3, 24, 27 n) x-3+0 $\angle x \in \mathbb{R}, x \neq 3 \checkmark$ $\frac{t_3}{t_2} = \frac{y_1}{3} = \frac{y_1}{3} = \frac{y_1}{5} = \frac{y_1}{5} = \frac{y_2}{5} = \frac{y_1}{5} = \frac{$: GP common jatus r=3 (11) a=2, r=3 (iii) 500= a = 2 1-4 = 2/2 = 31, since |H< c) A (-2,5) B (1,-1) $AB = \sqrt{(5--1)^{a} + (-2-1)^{a}}$ $=\sqrt{6^{+}+3^{2}}$ = $\sqrt{2}+9$ = $\sqrt{15}$ = $3\sqrt{5}$ W/ d) |x-4=5 e) 8cn $A = 14cn^{2}$ $A = \frac{14}{2}bcsinA$ $A = \frac{14}{2}bcsinA$ $A = \frac{14}{2}bcsinA$ $A = \frac{14}{2}bcsinA$ k = sinB\$=sin0 = 0=30° or 150 e) (x+3)(x-4)>0 x>t or x <-3

 $\frac{3+\sqrt{12}}{2-\sqrt{3}} = (3+\sqrt{12})(2+\sqrt{3}) / (2-\sqrt{3})(2+\sqrt{3}) / (2-\sqrt{3})(2+\sqrt{3})$ b) 5-0=1/7 a) 5 7 0 = 6+2102+313+6 4-3 = 12+7/3/-a+b/c -: x= 17-25 attuse = 2'd gud ~a>12, b=7, c=3 / () tan 0= -3/6/ $(ii) \sec \Theta = 1 = -7 \cdot \left(-\frac{7}{12} \right)$ c) $x^{2} + y^{2} + |0y| = 39$ $x^{2} + y^{2} + |0y| + 25 = 64$ $x^{2} + (y+5)^{2} = 64$ Circle: centre (0,-5) radius BU d) $\frac{\cos^2 x - \sin^2 x}{\cos^2 x + \cos x \sin x} = \frac{(\cos x + \sin x)(\cos x - \sin x)}{\cos x + \cos x \sin x} / \frac{1}{\cos x (\cos x + \sin x)}$ Cosx-sinx / 5 = 1-ton X = RHS = e) (4,2) 3x+4y-5=0 $P = |ax_{1}+by_{1}+c|$ Va2+62 = 3×4+4×2-5 N32+42 = <u>12+8-5</u>] = 3unto

Ju 4 a) $\sqrt[4]{x} (3x^2 - 2x + 1)$ Y= 3x2-2x2+x2 $\frac{dy}{dx} = \frac{15}{2}x^3 - 3x^4 + \frac{1}{2}x^{-\frac{1}{2}}$ for 15(1)-6.1x+ 1x] $\begin{cases} \sigma x & \frac{15x^{2}-6x+1}{2\sqrt{x}} \end{cases}$ b) A(-2,5) B(7,-1) k: l = 2: l $\gamma_{p} = \frac{1 \times 5 + 2 \times (-1)}{2 + 1}$ $P: x_p = kx_+ kx_p$ k+l $|\times(-2)+2\times7$ 2+)3 $=\frac{12}{3}$ = 4 : P(4, 1)c) (i) $f(x) = x^{2} + 3x$ $f(x+h) = (x+h)^2 + 3(x+h)$ = $x^2 + 2xh + h^2 + 3x + 3h$ $(ii) - f(x) = \lim_{L \to 0} \left(\frac{f(x+h) - f(x)}{(x+h) - x} \right)$ = Lim (archthat 3h h=0 (h = Lim (2x+3+h) 2x+3

 $\frac{d(i)AP}{t_{c}} = a + 2\lambda = 125 \text{ (i)} \\ t_{c} = a + 5\lambda = 116 \text{ (i)}$ Q - (I) 32 Sub into (1) a-6=125 a=131 , Rustle a=13/ Common diference, d=(-3) (ii) $t_{30} = a + 29d$ (ii) $S_n = n (2at(n-1)d)$ = 131+29(-3) = 131 - 87 = 44 $S_{n} = \frac{1}{2} \left(262 + (n-1)(-3) \right)$ = 2(265-3n) Require Sn <) N(2(5-3n)< since n>O n > 265 $n = 89^{1}$ Sig 265





(ii) Y= (x3+3) (x-2) Roduct Rule: Let u= (x+3), V= (3x2) $\frac{dy}{dx} = (3x-a)^{3} x 3x^{2} + (x+3)^{9} (3x-a)^{2} / \frac{dy}{dx} = 3x^{2} \frac{dy}{dx} = 3(3y-a)^{2} / \frac{dy}{dx} = -3(3y-a)^{2} / \frac{dy}{dx} = -3(3y-a)^{2}$ $= 3(3x-2)^{2} [x^{2}(3x-2)+3(x^{3}+3)]$ $= 3(3x-2)^{2} \begin{bmatrix} 3x^{3}-2x^{2}+3x^{3}+9 \end{bmatrix} = 3(3x-2)^{2}(6x^{3}-2x^{2}+9) /$ c) $\int x - \partial y + 3 = 0$ $\lambda_a: 3x+y-2=0$ Concurrent lines x-2y+3+k(3x+y-2)=0 (1+3k)x+(k-2)y+(3-2k)=0Passes thin (2,1) - 2(1+3k)+(k-2)+(3-2k)=0 2+6k+k-2+3-2k=0 5k+3=(k = (-35): Line is - zx-==0 4x+3y-21=0

Qn6 a) $(2-x) + (2-x)^{2} + (2-x)^{3} + \dots$ GP A = (2 - x)r = (2 - x)14< for timiting sum -1<2-2<1 -3 < -x < -137 x>1 ie 1<×<3 b) (i) cover $O = -\sqrt{2}$ sin O= - 1/2 /: 3th 4 quadrants Ø= 225°, 315° √ (ii) $2\sin^2\Theta + \cos\Theta = 1$ 2(1-60)+600-1=0 $1 - 2\cos^2 \Theta + \cos \Theta = O$ $2co^{2}\Theta - co\Theta - |= 0$ (200 - 1)(00 - 1) = 0 $\cos\Theta = \left(-\frac{1}{2}\right) \circ R$ @ = 120°, 240°/, 0°, 360°/ $(111) \operatorname{CO} (20+60) = 1$ / Change Doma \$<0<36° $20+60^{\circ} = 315,405,675,765,455$ / $60^{\circ} < 360^{\circ}$ 20 = 255,345,615,705 145° / $60^{\circ} < 20+60^{\circ} <$.780/ Ø= 1275, 1726, 3075, 3526° √

yn +Reflect in y asdo 2-4 = 1-4 5-3 Tianstate dan 4 v (0, -3)Y=2-x-4 Y=0 $\lambda^{-x} = 4$ Y=(1), 1/2=4-Both 1 Asymptote igx 1/4 Into b) $\frac{3x}{x-2} > 1$ $\times (x-z)^{2} \sqrt{2}$ x = -2(-20)m: X = 2 $3x(x-2) > (x-2)^{2}$ $3x(x-2) - (x-2)^{2} > 0$ (x-2)[3x-(x-2)]>0 (x-2) (2x+2) >0 $(x-\hat{a})(x+1)>0$ $x \leq (1)/oR \quad x > 2 / (x \neq 2)$ b) ∠CBA=90 G in JABC (i) SinO = BC(90-9) BC= Xsin (ii) in sCBD $\frac{(x\sin\theta)\cos\theta}{\cos\theta} = \frac{CD}{BC}$ LBCD = O (Angle Si of BB(

<DE= (Alternate angles BC//DE) in *xDEC* COO = DEΞ. DE= xsinOcod ZFED = O (Attenute Angle, CD // EF) in a DEF co0 = EF $EF = x sin \theta co \theta / (\vec{m})$ OD + EF + GH + ... $x \sin \theta \cos \theta + x \sin \theta \cos^3 \theta + x \sin^5 \theta \cos^5 \theta + \dots$ GP A=XSinOcoO / Y= C0°8 $S_{0} = \alpha = \chi Sh_{0} O correction O correc$ 1-400 = xsidaso Siap = xcat 0 IQ

Qn B B (-2,4 A(2,1)(i) y - 1 = m(x - 2)(OR Graduet-Intercept assepted) $\frac{y-1=mx-2m}{10=mx-y+(1-2m)}$ (ii) Reptotance from (2,4.) to mx+(1-2m) to 3 $[-2m^{-1} + 1 - 2m] = 3.$ $\sqrt{m^{2}+(-1)^{2}}$ $|-3-4m| = 3\sqrt{m^2+1}$ $(3+4m)^{2} = 9m^{2}+9$ (sq)9+24m+16m= 9m+9. $Am + 7m^2 = 0$ m(2477m) = 0m=0 or $m=\left(\frac{24}{7}\right)v$ +48 0 = -22x - y + (La: X; Y=) 0 = -24 Bott 24x+7

One angle projector is his AB. $M_{AB} = \frac{4-1}{-2-2} = \begin{pmatrix} 3\\4 \end{pmatrix}$ $Eqn AB \quad Y-1 = -\frac{3}{4}(x-2)$ 4y-4= -3x+6 3x + 4y - 10 = 0Rep Line m= 3 ignote angle breitor ×-1= 42(x-2) 34-3= 42-8 4x-3y-5=0 Angle breators are 3x+4y-10=0 and 4x-34y-5=0.) - f(x) = xc+42-2-8 Dom: x = 2 or (-2) = 56+4 2(242)(2-2) (i) f(-x) = -x+42(-2)2-8 $= \frac{-x+4}{2x^2-8} \neq f(x)$ $\neq -f(x)$ $\neq -f(x)$: No Symmetry (ii) y-intercept $\chi=0$ $f(0)=\frac{4}{-8}=\begin{pmatrix}4\\2\end{pmatrix}$ $\begin{pmatrix}0,-4\\2\end{pmatrix}$ $x_{4} = 0$ $x_{=}(4)$ (-4,0)x-intercept Y=0 Vertical Asymptotes X=2 and X=(-2)Howcontal Asymptote $f(x) = \frac{1}{2 - 8} \frac{1}{4} \frac{1}{2} \frac$ $n \xrightarrow{x \to \pm \infty} f(x) \to 0$:. Y= O

 $(ii) f(x) = \frac{x+4}{2x^2-8}$ Quotre Parle U=x+4 V-2x-8 dus=1 dw-4x $f'(x) - (2x^2 - 8) - 4x(x+4)$ (2-x2-8)2 -8-2x2-16× $f(\alpha) = \frac{4}{-(4+8x+x^2)} - \frac{(4+8x+x^2)}{2(x^2-4)^2}$ $x^{2} + 8x + 4 = 0$ Homeontal Graduet f(2)=0 $\Delta = 8^2 - 4 \times 4$ Zero Gradret at $x = -4 + 2/3 = -0.5 = -8 + .48^{\circ} / 2000 = -4.48^{\circ} / 2000 = -4.48^{\circ$ (N) $(-\delta \cdot 5)$ -2) 2 $f(x) = \frac{(x+4)}{2(x+2)(x-2)}$ $f(x) \rightarrow \frac{6}{2 \times 4 \times (-\epsilon)} \rightarrow -\infty. \text{ (Not Read.)}$ $f(x) \rightarrow \frac{6}{2 \times 4 \times (-\epsilon)} \rightarrow \infty$ as $x \rightarrow 2^{-}$ as $x \rightarrow 2^+$ $x \to (-2)^{-} f(x) \to 2 \longrightarrow \infty$ $x \rightarrow (-2)^{\dagger} f(x) \rightarrow 2 \rightarrow -\infty$