FORM V MATHEMATICS EXTENSION 1

Wednesday 16th May 2012

General Instructions

- Writing time - 2 hours
- Write using black or blue pen.
- Board-approved calculators and templates may be used.
Total - 99 Marks
- All questions may be attempted.

Section I-11 Marks

- Questions 1-11 are of equal value.
- Record your solutions to the multiple choice on the sheet provided.

Section II - 88 Marks

- Questions 12-19 are of equal value.
- All necessary working should be shown in every question.
- Start each question in a new booklet.

Collection

- Write your name, class and master clearly on each booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place your multiple choice answer sheet inside the answer booklet for Question Twelve.
- Write your name and master on this question paper and submit it with your answers.

5A: DS	5B: TCW	5C: REP
5D: DNW	5E: LYL	5F: MLS
5G: SO	5H: BR	5I: SJE

SGS Half-Yearly 2012 Form V Mathematics Extension 1 Page 2

Checklist

- SGS booklets - 8 per boy
- Multiple choice answer sheet

Examiner

- Candidature - 134 boys

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

The value of $(3-\sqrt{2})^{2}$ is:
(A) 7
(B) 11
(C) $7-6 \sqrt{2}$
(D) $11-6 \sqrt{2}$

QUESTION TWO

The gradient of the line $4 x-3 y+2=0$ is:
(A) $-\frac{4}{3}$
(B) $-\frac{3}{4}$
(C) $\frac{4}{3}$
(D) $\frac{3}{4}$

QUESTION THREE

Which of the following are the correct two factors of $x^{3}+64$?
(A) $(x-4)\left(x^{2}+4 x+16\right)$
(B) $(x+4)\left(x^{2}-4 x+16\right)$
(C) $(x-4)\left(x^{2}+4 x-16\right)$
(D) $(x+4)\left(x^{2}+4 x+16\right)$

QUESTION FOUR

The domain of $y=\frac{1}{x^{2}-4}$ is:
(A) $x=2$ or $x=-2$
(B) $x \neq 2$ and $x \neq-2$
(C) $-2<x<2$
(D) $x<-2$ or $x>2$

QUESTION FIVE

The exact value of $\operatorname{cosec} 240^{\circ}$ is:
(A) $\frac{\sqrt{3}}{2}$
(B) $-\frac{\sqrt{3}}{2}$
(C) $\frac{2}{\sqrt{3}}$
(D) $-\frac{2}{\sqrt{3}}$

QUESTION SIX

The centre of the circle with equation $x^{2}-8 x+y^{2}+2 y=3$ is:
(A) $(4,-1)$
(B) $(8,-2)$
(C) $(-4,1)$
(D) $(-8,2)$

QUESTION SEVEN

The solution of $2 x-x^{2}<0$ is:
(A) $0<x<2$
(B) $x<0$ or $x>2$
(C) $x>2$
(D) $x<0$

QUESTION EIGHT

The solution of $|x-2|=-1$ is:
(A) $x=1$
(B) $x=3$
(C) $x=3$ or 1
(D) there is no solution

QUESTION NINE

The limiting sum of the geometric series $6-3+1 \frac{1}{2}-\ldots$ is:
(A) 4
(B) $4 \frac{1}{2}$
(C) 5
(D) 12

QUESTION TEN

Let $A=(-1,-2)$ and $B=(5,1)$. The point that divides $A B$ in the ratio $2: 1$ is:
(A) $\left(0,-1 \frac{1}{2}\right)$
(B) $(1,-1)$
(C) $\left(2,-\frac{1}{2}\right)$
(D) $(3,0)$

QUESTION ELEVEN

The derivative of $3 x^{3}+2 x$ is:
(A) $3 x^{2}+2$
(B) $9 x^{2}+2 x$
(C) $9 x^{2}+2$
(D) $3 x^{2}$

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.
Show all necessary working.
Start a new booklet for each question.

QUESTION TWELVE (11 marks) Use a separate writing booklet.
(a) Write down the exact value of:
(i) $\sec 60^{\circ}$
(ii) $\cot 30^{\circ}$
(iii) $\sin \left(-225^{\circ}\right)$
(b) Simplify $\sqrt{54}+\sqrt{24}$.
(c) Express $\frac{2}{3-\sqrt{5}}$ in the form $a+b \sqrt{5}$, where a and b are rational.
(d)

Write down the ratio in which P divides the interval $A B$.
(e) Find the fifteenth term of the arithmetic sequence $5,8,11, \ldots$
(f) Differentiate:
(i) $g(x)=x\left(x^{2}+1\right)$
(ii) $h(x)=\sqrt{x}$
(iii) $f(x)=\frac{3}{x^{2}}$

QUESTION THIRTEEN (11 marks) Use a separate writing booklet.
(a)

Determine the equation of the line shown in the diagram above.

QUESTION THIRTEEN (Continued)
(b) Use a suitable series to express 0.21 as a fraction in simplest form.
(c) Solve $\frac{3}{x-1} \leq 2$.
(d) Given that $\sin \theta=-\frac{3}{7}$ and that $\tan \theta<0$, find the exact value of $\cos \theta$.

QUESTION FOURTEEN (11 marks) Use a separate writing booklet.
(a)

The graph of $y=f(x)$ is shown above. Sketch the following on separate axes, showing all key features.
(i) $y=f(-x)$
(ii) $y=f(x+1)$
(b) Simplify $\frac{\tan \theta}{\sec \theta}$.
(c) Solve $\tan 2 \theta=\frac{1}{\sqrt{3}}$, for $0^{\circ} \leq \theta<360^{\circ}$.
(d) (i) Sketch $y=(x+2)(x-1)$, showing the intercepts with the axes.
(ii) Hence sketch $y=|(x+2)(x-1)|$ on a separate set of axes.
(e)

The graph of $y=f(x)$ is shown above, where $f(x)=-\sqrt{1-x^{2}}$. Use the fact that the tangent to a circle is perpendicular to the radius at the point of contact to find the derivative of $f(x)=-\sqrt{1-x^{2}}$.

SGS Half-Yearly 2012 Form V Mathematics Extension 1 Page 7
QUESTION FIFTEEN (11 marks) Use a separate writing booklet.
(a) Prove the identity:

$$
\tan \theta+\cot \theta=\sec \theta \operatorname{cosec} \theta
$$

(b) In music, the frequencies $f_{1}, f_{2}, f_{3} \ldots$ of the notes in a chromatic scale form a geometric progression. It is known that the frequency of A below middle C is $f_{1}=220 \mathrm{~Hz}$. The frequency of A above middle C is $f_{13}=440 \mathrm{~Hz}$. Find f_{9}, the frequency of F above middle C. Round your answer to one decimal place.
(c) (i) Find $\frac{d y}{d x}$ when $y=\left(x^{2}-1\right)^{4}$.
(ii) Find $\frac{d y}{d x}$ when $y=x^{2}(x-3)^{5}$. Give your answer in factored form.
(d) Let $f(x)$ be the function:

$$
f(x)= \begin{cases}a x^{2} & \text { when } x \leq 3 \\ \sqrt{25-x^{2}} & \text { when } 3<x \leq 5\end{cases}
$$

Given that $f(x)$ is continuous at $x=3$, find the value of a.

QUESTION SIXTEEN (11 marks) Use a separate writing booklet.
(a) What is the least number of terms of the series $50+43+36+\ldots$ that must be taken so that the sum is negative?
(b)

The diagram above shows $\triangle A B C$ where $A B=4, B C=5, A C=7$ and $\angle A B C=\theta$.
(i) Find the value of $\cos \theta$.
(ii) Hence find the exact area of $\triangle A B C$.
(c) Differentiate $f(x)=\left(x+\frac{1}{x}\right)^{2}$.
(d) Determine the perpendicular distance between the lines

$$
3 x-y+1=0 \quad \text { and } \quad 3 x-y+3=0 .
$$

SGS Half-Yearly 2012 Form V Mathematics Extension 1 Page 8
QUESTION SEVENTEEN (11 marks) Use a separate writing booklet.
(a) How many positive integer powers of 3 are less than 10^{12} ?
(b) Use the quotient rule to show that the derivative of $y=\frac{x}{x^{2}+1}$ is $\frac{d y}{d x}=\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}}$.
(c) (i) Determine the coordinates of the points where the line $y=x+2$ intersects the parabola $y=x^{2}$.
(ii) Sketch the intersection of the regions $y<x+2$ and $y \geq x^{2}$. Pay careful attention to any corners.
(d) The lines ℓ_{1} and ℓ_{2} intersect at P. The equations of the lines are:

$$
\begin{aligned}
\ell_{1}: & x+2 y+3
\end{aligned}=0
$$

Determine the equation of the line $P Q$ where $Q=(-1,2)$, without finding the coordinates of P.

QUESTION EIGHTEEN (11 marks) Use a separate writing booklet.
(a) Let $y=f(x)$ where $f(x)=\frac{x}{x^{2}-1}$.
(i) (α) Show that $f(x)$ is an odd function.
(β) Solve $f(x)=1$.
(γ) Hence, or otherwise, solve $f(x)=-1$.
(ii) Find any x-intercepts of $y=f(x)$.
(iii) Find the equations of any asymptotes.
(iv) Sketch the graph of $y=f(x)$ for $-4 \leq x \leq 4$, showing the features you have found.
(b) Let $h(x)=\frac{1}{2}\left(1+\frac{x}{|x|}\right)$, where $x \neq 0$.

Sketch $y=h(x)$ by considering separately $x<0$ and $x>0$.

QUESTION NINETEEN (11 marks) Use a separate writing booklet.
(a) Let $f(x)=x^{3}-2 x^{2}+1$. The function $g(x)$ is the result of shifting $f(x)$ to the right by k units. Given that the coefficient of x^{2} in $g(x)$ is zero, find the value of k.
(b) Consider the parabola with equation $y=-x^{2}+4 x-3$.
(i) Find the equation of the tangent to this parabola at the point where $x=p$.
(ii) Given that the tangent in part (i) passes through the origin, determine p.
(c) Consider the sequence defined by:

$$
\begin{aligned}
& x_{1}=3 \\
& x_{n}=\frac{\left(x_{n-1}\right)^{2}+6}{2 x_{n-1}} \text { for } n \geq 2 .
\end{aligned}
$$

In the following you may assume that every term of this sequence is positive.
(i) Write down the first three terms, simplifying any fractions.
(ii) Show that $x_{n}-\sqrt{6} \geq 0$ for $n \geq 2$.
(iii) Let $\epsilon_{n}=x_{n}-\sqrt{6}$.
(α) Write down the exact value of ϵ_{1}.
(β) Show that $\frac{\epsilon_{n}}{\epsilon_{n-1}}<\frac{1}{2}$ for $n \geq 2$.
(γ) Hence determine $\lim _{n \rightarrow \infty} x_{n}$.

SGS Half-Yearly 2012 Form V Mathematics Extension 1 Page 10

B L A N K P A G E

2012
Half-Yearly Examination
FORM V

MATHEMATICS EXTENSION 1

Wednesday 16th May 2012

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

Name: \qquad

Class: Master:

Question One
A \bigcirc
B \bigcirc
C
D \bigcirc

Question Two

A \bigcirc
B \bigcirc
C
D \bigcirc

Question Three
A \bigcirc
B

C \bigcirc
D \bigcirc

Question Four

A
B \bigcirc
$\mathrm{C} \bigcirc$
D \bigcirc

Question Five
A \bigcirc
B \bigcirc
C
D \bigcirc

Question Six

A \bigcirc
BC

D \bigcirc

Question Seven

A \bigcirc
B \bigcirc
C
D \bigcirc

Question Eight

A \bigcirc
B \bigcirc
C
D \bigcirc

Question Nine
A \bigcirc
B
C
D \bigcirc

Question Ten

A \bigcirc
B
\bigcirc
C

D \bigcirc

Question Eleven

ABC
D
D
Q 1 (D)
Q 2 (C)
Q 3 (B)
Q 4 (B)
Q 5 (D)
Q 6 (A)
Q 7 (B)
Q 8 (D)
Q 9 (A)
Q 10 (D)
Q 11 (C)

QUESTION TWELVE (11 marks)

(a) (i) $\sec 60^{\circ}=2$
(ii) $\cot 30^{\circ}=\sqrt{3}$
(iii) $\sin \left(-225^{\circ}\right)=\frac{1}{\sqrt{2}}$
(b) $\sqrt{54}+\sqrt{24}=3 \sqrt{6}+2 \sqrt{6}$

$$
=5 \sqrt{6}
$$

(c) $\frac{2}{3-\sqrt{5}}=\frac{2}{3-\sqrt{5}} \times \frac{3+\sqrt{5}}{3+\sqrt{5}}$

$$
=\frac{3+\sqrt{5}}{2} \quad \text { or } \quad \frac{3}{2}+\frac{1}{2} \sqrt{5}
$$

(d) $\quad-4: 3$ or $4:-3$ or externally $4: 3$
(e) $\quad T_{15}=5+14 \times 3$

$$
=47
$$

(f) (i) $g^{\prime}(x)=3 x^{2}+1$
(ii) $\quad h^{\prime}(x)=\frac{1}{2} x^{-\frac{1}{2}} \quad$ or $\quad \frac{1}{2 \sqrt{x}}$
(iii) $\quad f^{\prime}(x)=-6 x^{-3} \quad$ or $\quad-\frac{6}{x^{3}}$

Total for Question 12: 11 Marks

QUESTION THIRTEEN (11 marks)

(a) \quad gradient $=\tan 30^{\circ}$
so

$$
\begin{aligned}
& =\frac{1}{\sqrt{3}} \\
y & =\frac{1}{\sqrt{3}} x+1
\end{aligned}
$$

(b) $\quad 0 \cdot \dot{2} \dot{1}=0 \cdot 21+0.0021+0.000021+\ldots$

$$
\begin{aligned}
& =\frac{0 \cdot 21}{1-\frac{1}{100}} \\
& =\frac{21}{99} \\
& =\frac{7}{33}
\end{aligned}
$$

(c)

$$
\frac{3}{x-1} \leq 2 \quad ; \quad x \neq 1
$$

so $\quad 3(x-1) \leq 2(x-1)^{2}$
or $\quad 0 \leq 2(x-1)^{2}-3(x-1)$
thus $\quad 0 \leq(x-1)(2 x-5) \quad ; \quad x \neq 1$
hence $\quad x<1$ or $x \geq \frac{5}{2}$

(d) Both $\sin \theta$ and $\tan \theta$ are negative so θ is in the 4 th quadrant, and $\cos \theta>0$.

so $\quad \cos \theta=\frac{2 \sqrt{10}}{7}$
(a) (i)

SGS Half-Yearly 2012 Solutions Form V Mathematics Extension 1
(ii)

(b) $\frac{\tan \theta}{\sec \theta}=\frac{\sin \theta}{\cos \theta \times \frac{1}{\cos \theta}}$

$$
=\sin \theta
$$

(c) $\quad \tan 2 \theta=\frac{1}{\sqrt{3}} \quad 0^{\circ} \leq \theta<360^{\circ}$

Let $u=2 \theta$ then

$$
\tan u=\frac{1}{\sqrt{3}} \quad 0^{\circ} \leq \theta<720^{\circ}
$$

The related angle is 30° so

$$
\begin{aligned}
& u=30^{\circ}, 210^{\circ}, 390^{\circ}, 570^{\circ} \\
& \theta=15^{\circ}, 105^{\circ}, 195^{\circ}, 285^{\circ}
\end{aligned}
$$

thus
(d) (i)

$$
\begin{aligned}
& x \text {-int } \\
& y \text {-int }
\end{aligned}
$$

(ii)

(e) $\quad \operatorname{grad} O P=-\frac{\sqrt{1-x^{2}}}{x}$
so $\quad f^{\prime}(x)=\frac{x}{\sqrt{1-x^{2}}}$

QUESTION FIFTEEN (11 marks)

(a) LHS $=\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}$

$$
\begin{aligned}
& =\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos \theta \sin \theta} \\
& =\frac{1}{\cos \theta \sin \theta} \quad \text { (by Pythagoras) } \\
& =\text { RHS }
\end{aligned}
$$

[Do not penalise the lack of a reason above.]
(b) $\quad a=220$
and $a r^{12}=440$
so $\quad r=\sqrt[12]{2} \quad$ (positive only since all frequencies are positive)
[Do not penalise a negative answer so long as the positive is also given.]

$$
\begin{aligned}
f_{9} & =220 \times 2^{\frac{2}{3}} \\
& \doteqdot 349 \cdot 2 \quad(\text { correct to } 1 \text { decimal place })
\end{aligned}
$$

(c) (i) $\quad y=\left(x^{2}-1\right)^{4}$

Let $\quad u=x^{2}-1$
so $\quad u^{\prime}=2 x$
and $\quad y=u^{4}$.
Thus $\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}$

$$
\begin{aligned}
& =4 u^{3} \times u^{\prime} \\
& =8 x\left(x^{2}-1\right)^{3}
\end{aligned}
$$

[Accept an answer with no working only if it is completely correct.]
(ii)

$$
\begin{aligned}
y & =x^{2}(x-3)^{5} \\
& =u v
\end{aligned}
$$

where

$$
u=x^{2}
$$

$$
\text { so } \quad u^{\prime}=2 x
$$

and $\quad v=(x-3)^{5}$
so $\quad v^{\prime}=5(x-3)^{4}$.

$$
\begin{aligned}
y^{\prime} & =u v^{\prime}+u^{\prime} v \\
& =x^{2} 5(x-3)^{4}+2 x(x-3)^{5}
\end{aligned}
$$

$$
=x(x-3)^{4}(7 x-6)
$$

(d) For continuity at $x=3$ we require $\lim _{x \rightarrow 3^{-}} f(x)=f(3)=\lim _{x \rightarrow 3^{+}} f(x)$.

Now $\quad f(3)=9 a$
and $\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}} \sqrt{25-x^{2}}$

$$
=4
$$

Thus $9 a=4$
or
$a=\frac{4}{9}$
Total for Question 15: 11 Marks

QUESTION SIXTEEN (11 marks)

(a) For the arithmetic sequence $a=50$ and $d=-7$, so:

$$
S_{n}=\frac{1}{2} n(107-7 n)
$$

Thus we need to solve

$$
\frac{1}{2} n(107-7 n)<0
$$

hence

$$
n>\frac{107}{7} \quad \text { or } \quad 15 \frac{2}{7}
$$

Thus
$n=16$

(b) (i) Now $7^{2}=4^{2}+5^{2}-2 \times 4 \times 5 \cos \theta \quad$ (by the cosine rule) so $\quad \cos \theta=-\frac{1}{5}$
(ii) \quad Area $=\frac{1}{2} \times 4 \times 5 \times \sin \theta$

$$
\begin{aligned}
& =\frac{1}{2} \times 4 \times 5 \times \frac{\sqrt{24}}{5} \\
& =4 \sqrt{6} \text { square units }
\end{aligned}
$$

(c) Expanding $f(x)=x^{2}+2+x^{-2}$
so $\quad f^{\prime}(x)=2 x-2 x^{-3} \quad$ or $\quad 2 x-\frac{2}{x^{3}}$
(d) The point $(0,3)$ is on the second line (y-intercept), so the distance d to the first line is:

$$
\begin{aligned}
d & =\frac{|3 \times 0-1 \times 3+1|}{\sqrt{3^{2}+(-1)^{2}}} \\
& =\frac{\sqrt{10}}{5}
\end{aligned}
$$

QUESTION SEVENTEEN (11 marks)

(a) That is, find the largest n such that

$$
3^{n}<10^{12}
$$

Taking logs of both sides

$$
\begin{aligned}
& \begin{aligned}
n \log _{10} 3 & <12 \\
& \text { or } \quad n
\end{aligned} \quad<\frac{12}{\log _{10} 3} \\
& \\
\text { thus } \quad & <25 \cdot 15 \ldots \\
n & =25
\end{aligned}
$$

(b)

$$
\begin{aligned}
y & =\frac{x}{x^{2}+1} \\
& =\frac{u}{v}
\end{aligned}
$$

where $\quad u=x$ so $\quad u^{\prime}=1$
and $\quad v=x^{2}+1 \quad$ so $\quad v^{\prime}=2 x$
Then $\quad \frac{d y}{d x}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$

$$
\begin{aligned}
& =\frac{1 \times\left(x^{2}+1\right)-x \times 2 x}{\left(x^{2}+1\right)^{2}} \\
& =\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

(c) (i) That is, solve

$$
\begin{array}{rlrl}
& & x^{2} & =x+2 \\
& & \\
\text { so } & x^{2}-x-2 & =0 \\
& \text { or } & (x-2)(x+1) & =0 \\
& \text { thus } & x & =-1 \text { or } 2 \\
& \text { and } & y & =1 \text { or } 4
\end{array}
$$

That is: $(-1,1)$ and $(2,4)$.
[Do not penalise failure to find y-values.]
(ii)

The regions is below the line, above the parabola, and excludes the corners and line.
(d) The general equation of the line through P is

$$
(x+2 y+3)+k(3 x+y-2)=0
$$

So at $Q(-1,2)$ this gives
so

$$
\begin{aligned}
6-3 k & =0 \\
k & =2
\end{aligned}
$$

Thus the equation of $P Q$ is

$$
(x+2 y+3)+2(3 x+y-2)=0
$$

or

$$
7 x+4 y-1=0
$$

Total for Question 17: $\overline{11 \text { Marks }}$

QUESTION EIGHTEEN (11 marks)

(a) For $y=f(x)$ where $f(x)=\frac{x}{x^{2}-1}$:
(i) $(\alpha) \quad f(-x)=\frac{(-x)}{(-x)^{2}-1}$

$$
\begin{aligned}
& =-\frac{x}{x^{2}-1} \\
& =-f(x)
\end{aligned}
$$

(β) That is $\quad \frac{x}{x^{2}-1}=1$
so

$$
x^{2}-x-1=0
$$

$$
x=\frac{1 \pm \sqrt{5}}{2}
$$

(γ) Since $f(x)$ is odd, the values are $x=-\frac{1 \pm \sqrt{5}}{2}$.
(ii) $f(0)=0$. There are no other intercepts.
(iii) $\quad \lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{1-\frac{1}{x^{2}}}$

$$
=0
$$

hence also, by the oddness of $f(x)$,

$$
\lim _{x \rightarrow-\infty} f(x)=0 .
$$

So the x-axis is an asymptote (or $y=0$)
There are vertical asymptotes at $x=-1$ or 1
where the denominator is zero and the numerator is not zero.
(iv)

odd function
shape
[Do not penalise failure to show coordinates where $y= \pm 1$.]
(b) $\quad h(x)=\frac{1}{2}\left(1+\frac{x}{|x|}\right)$

$$
\begin{aligned}
& = \begin{cases}\frac{1}{2}\left(1+\frac{x}{-x}\right) & \text { when } x<0 \\
\frac{1}{2}\left(1+\frac{x}{x}\right) \quad \text { when } x>0\end{cases} \\
& = \begin{cases}0 & \text { when } x<0 \\
1 & \text { when } x>0\end{cases}
\end{aligned}
$$

\qquad
(a)

$$
\begin{aligned}
g(x) & =f(x-k) \\
& =(x-k)^{3}-2(x-k)^{2}+1 \\
& =x^{3}-(3 k+2) x^{2}+\left(3 k^{2}+4 k\right) x+\left(1-2 k^{2}-k^{3}\right)
\end{aligned}
$$

so $\quad 3 k+2=0$
thus $\quad k=-\frac{2}{3}$
(b) For $y=-x^{2}+4 x-3$:
(i)

$$
y^{\prime}=-2 x+4
$$

so at $x=p \quad y^{\prime}=4-2 p$
and $\quad y=-p^{2}+4 p-3$
Thus the equation of the tangent is:

$$
y+p^{2}-4 p+3=(4-2 p)(x-p)
$$

(ii) The point $(0,0)$ is on the tangent so:

$$
\left.\begin{array}{rlrl}
& & p^{2}-4 p+3 & =2 p^{2}-4 p \\
& \text { so } & p^{2} & =3 \\
& \text { or } & & p
\end{array}\right)=-\sqrt{3} \text { or } \sqrt{3}
$$

(c) (i) $\quad x_{1}=3$

$$
\begin{aligned}
& x_{2}=\frac{9+6}{6}=\frac{5}{2} \\
& x_{3}=\frac{\frac{25}{4}+6}{5}=\frac{49}{20}
\end{aligned}
$$

(ii) \quad LHS $=x_{n}-\sqrt{6}$

$$
\begin{aligned}
& =\frac{\left(x_{n-1}\right)^{2}+6}{2 x_{n-1}}-\sqrt{6} \quad \text { for } n \geq 2 \\
& =\frac{\left(x_{n-1}\right)^{2}-2 x_{n-1} \sqrt{6}+6}{2 x_{n-1}} \\
& =\frac{\left(x_{n-1}-\sqrt{6}\right)^{2}}{2 x_{n-1}}
\end{aligned}
$$

Now the numerator is positive or zero and the denominator is positive hence LHS ≥ 0.
(iii) $(\alpha) \quad \epsilon_{1}=3-\sqrt{6}$
(β) $\quad \frac{\epsilon_{n}}{\epsilon_{n-1}}=\frac{x_{n}-\sqrt{6}}{x_{n-1}-\sqrt{6}}$
$=\frac{\left(x_{n-1}-\sqrt{6}\right)^{2}}{2 x_{n-1}} \times \frac{1}{\left(x_{n-1}-\sqrt{6}\right)}$
$=\frac{x_{n-1}-\sqrt{6}}{2 x_{n-1}}$
$<\frac{x_{n-1}}{2 x_{n-1}} \quad$ (increased numerator)
$<\frac{1}{2}$.
(γ) Since $\frac{\epsilon_{n}}{\epsilon_{n-1}}<\frac{1}{2}$ and $\epsilon_{n} \geq 0$, every term of the sequence ϵ_{n} is no larger than the corresponding term of the geometric progression

$$
(3-\sqrt{6}), \frac{1}{2}(3-\sqrt{6}), \frac{1}{4}(3-\sqrt{6}), \ldots .
$$

That is

$$
0 \leq \epsilon_{n} \leq(3-\sqrt{6})\left(\frac{1}{2}\right)^{n}
$$

so

$$
0 \leq \lim _{n \rightarrow \infty} \epsilon_{n} \leq \lim _{n \rightarrow \infty}(3-\sqrt{6})\left(\frac{1}{2}\right)^{n}
$$

and

$$
0 \leq \lim _{n \rightarrow \infty} \epsilon_{n} \leq 0
$$

Thus

$$
\lim _{n \rightarrow \infty} \epsilon_{n}=0
$$

so $\quad \lim _{n \rightarrow \infty} x_{n}-\sqrt{6}=0$
hence $\quad \lim _{n \rightarrow \infty} x_{n}=\sqrt{6}$.

