SYDNEY GRAMMAR SCHOOL

2012 Half-Yearly Examination

FORM V MATHEMATICS EXTENSION 1

Wednesday 16th May 2012

General Instructions

- Writing time 2 hours
- Write using black or blue pen.
- Board-approved calculators and templates may be used.

Total — 99 Marks

• All questions may be attempted.

Section I – 11 Marks

- Questions 1–11 are of equal value.
- Record your solutions to the multiple choice on the sheet provided.

Section II – 88 Marks

- Questions 12–19 are of equal value.
- All necessary working should be shown in every question.
- Start each question in a new booklet.

Collection

- Write your name, class and master clearly on each booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place your multiple choice answer sheet inside the answer booklet for Question Twelve.
- Write your name and master on this question paper and submit it with your answers.

5A: DS	5B: TCW	5C: REP
5D: DNW	5E: LYL	5F: MLS
5G: SO	5H: BR	5I: SJE

Checklist

- SGS booklets 8 per boy
- Multiple choice answer sheet
- Candidature 134 boys

Examiner DNW

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

The value of $(3 - \sqrt{2})^2$ is: (A) 7 (B) 11 (C) $7 - 6\sqrt{2}$ (D) $11 - 6\sqrt{2}$

QUESTION TWO

The gradient of the line 4x - 3y + 2 = 0 is:

(A)
$$-\frac{4}{3}$$
 (B) $-\frac{3}{4}$ (C) $\frac{4}{3}$ (D) $\frac{3}{4}$

QUESTION THREE

Which of the following are the correct two factors of $x^3 + 64$?

(A)
$$(x-4)(x^2+4x+16)$$

(B) $(x+4)(x^2-4x+16)$
(C) $(x-4)(x^2+4x-16)$
(D) $(x+4)(x^2+4x+16)$

QUESTION FOUR

The domain of
$$y = \frac{1}{x^2 - 4}$$
 is:
(A) $x = 2$ or $x = -2$
(B) $x \neq 2$ and $x \neq -2$
(C) $-2 < x < 2$
(D) $x < -2$ or $x > 2$

QUESTION FIVE

The exact value of $\csc 240^{\circ}$ is:

(A)
$$\frac{\sqrt{3}}{2}$$
 (B) $-\frac{\sqrt{3}}{2}$ (C) $\frac{2}{\sqrt{3}}$ (D) $-\frac{2}{\sqrt{3}}$

QUESTION SIX

The centre of the circle with equation $x^2 - 8x + y^2 + 2y = 3$ is: (A) (4,-1) (B) (8,-2) (C) (-4,1) (D) (-8,2)

QUESTION SEVEN

The solution of $2x - x^2 < 0$ is: (A) 0 < x < 2(C) x > 2(B) x < 0 or x > 2(D) x < 0

Exam continues overleaf ...

QUESTION EIGHT

The solution of |x - 2| = -1 is: (A) x = 1(B) x = 3(C) x = 3 or 1
(D) there is no solution

QUESTION NINE

The limiting sum of the geometric series $6 - 3 + 1\frac{1}{2} - \dots$ is: (A) 4 (B) $4\frac{1}{2}$ (C) 5 (D) 12

QUESTION TEN

Let
$$A = (-1, -2)$$
 and $B = (5, 1)$. The point that divides AB in the ratio 2 : 1 is:
(A) $(0, -1\frac{1}{2})$ (B) $(1, -1)$ (C) $(2, -\frac{1}{2})$ (D) $(3, 0)$

QUESTION ELEVEN

The derivative of $3x^3 + 2x$ is: (A) $3x^2 + 2$ (B) $9x^2 + 2x$ (C) $9x^2 + 2$ (D) $3x^2$

End of Section I

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.

Show all necessary working.

Start a new booklet for each question.

QUESTION TWELVE (11 marks) Use a separate writing booklet.

- (a) Write down the exact value of:
 - (i) $\sec 60^{\circ}$
 - (ii) $\cot 30^{\circ}$
 - (iii) $\sin(-225^{\circ})$
- (b) Simplify $\sqrt{54} + \sqrt{24}$.

(c) Express
$$\frac{2}{3-\sqrt{5}}$$
 in the form $a + b\sqrt{5}$, where a and b are rational.

(d)

(a)

 $\begin{array}{ccc} 1 & 3 \\ \overrightarrow{A} & \overrightarrow{B} & \overrightarrow{P} \end{array}$

Write down the ratio in which P divides the interval AB.

- (e) Find the fifteenth term of the arithmetic sequence $5, 8, 11, \ldots$
- (f) Differentiate:

(i)
$$g(x) = x(x^2 + 1)$$

(ii) $h(x) = \sqrt{x}$

(iii)
$$f(x) = \frac{3}{x^2}$$

QUESTION THIRTEEN (11 marks) Use a separate writing booklet.

Determine the equation of the line shown in the diagram above.

QUESTION THIRTEEN (Continued)

- (b) Use a suitable series to express $0.\dot{2}\dot{1}$ as a fraction in simplest form.
- (c) Solve $\frac{3}{x-1} \leq 2$.
- (d) Given that $\sin \theta = -\frac{3}{7}$ and that $\tan \theta < 0$, find the exact value of $\cos \theta$.

QUESTION FOURTEEN (11 marks) Use a separate writing booklet.

(a) y = f(x) 1-1 1 x

The graph of y = f(x) is shown above. Sketch the following on separate axes, showing all key features.

(i) y = f(-x)

(ii)
$$y = f(x+1)$$

(b) Simplify
$$\frac{\tan\theta}{\sec\theta}$$
.

(e)

- (c) Solve $\tan 2\theta = \frac{1}{\sqrt{3}}$, for $0^\circ \le \theta < 360^\circ$.
- (d) (i) Sketch y = (x+2)(x-1), showing the intercepts with the axes.
 - (ii) Hence sketch y = |(x+2)(x-1)| on a separate set of axes.

The graph of y = f(x) is shown above, where $f(x) = -\sqrt{1-x^2}$. Use the fact that the tangent to a circle is perpendicular to the radius at the point of contact to find the derivative of $f(x) = -\sqrt{1-x^2}$.

Exam continues next page ...

QUESTION FIFTEEN (11 marks) Use a separate writing booklet.

(a) Prove the identity:

 $\tan\theta + \cot\theta = \sec\theta \csc\theta$

- (b) In music, the frequencies $f_1, f_2, f_3 \dots$ of the notes in a chromatic scale form a geometric progression. It is known that the frequency of A below middle C is $f_1 = 220$ Hz. The frequency of A above middle C is $f_{13} = 440$ Hz. Find f_9 , the frequency of F above middle C. Round your answer to one decimal place.
- (c) (i) Find $\frac{dy}{dx}$ when $y = (x^2 1)^4$. (ii) Find $\frac{dy}{dx}$ when $y = x^2(x - 3)^5$. Give your answer in factored form.
- (d) Let f(x) be the function:

$$f(x) = \begin{cases} ax^2 & \text{when } x \le 3\\ \sqrt{25 - x^2} & \text{when } 3 < x \le 5 \end{cases}$$

Given that f(x) is continuous at x = 3, find the value of a.

QUESTION SIXTEEN (11 marks) Use a separate writing booklet.

- (a) What is the least number of terms of the series 50 + 43 + 36 + ... that must be taken so that the sum is negative?
- (b)

The diagram above shows $\triangle ABC$ where AB = 4, BC = 5, AC = 7 and $\angle ABC = \theta$.

- (i) Find the value of $\cos \theta$.
- (ii) Hence find the exact area of $\triangle ABC$.

(c) Differentiate
$$f(x) = \left(x + \frac{1}{x}\right)^2$$

(d) Determine the perpendicular distance between the lines

3x - y + 1 = 0 and 3x - y + 3 = 0.

Exam continues overleaf ...

QUESTION SEVENTEEN (11 marks) Use a separate writing booklet.

- (a) How many positive integer powers of 3 are less than 10^{12} ?
- (b) Use the quotient rule to show that the derivative of $y = \frac{x}{x^2 + 1}$ is $\frac{dy}{dx} = \frac{1 x^2}{(x^2 + 1)^2}$.
- (c) (i) Determine the coordinates of the points where the line y = x + 2 intersects the parabola $y = x^2$.
 - (ii) Sketch the intersection of the regions y < x+2 and $y \ge x^2$. Pay careful attention to any corners.
- (d) The lines ℓ_1 and ℓ_2 intersect at P. The equations of the lines are:

 $\ell_1 : x + 2y + 3 = 0$ $\ell_2 : 3x + y - 2 = 0$

Determine the equation of the line PQ where Q = (-1, 2), without finding the coordinates of P.

QUESTION EIGHTEEN (11 marks) Use a separate writing booklet.

- (a) Let y = f(x) where $f(x) = \frac{x}{x^2 1}$.
 - (i) (a) Show that f(x) is an odd function.
 - (β) Solve f(x) = 1.
 - (γ) Hence, or otherwise, solve f(x) = -1.
 - (ii) Find any x-intercepts of y = f(x).
 - (iii) Find the equations of any asymptotes.
 - (iv) Sketch the graph of y = f(x) for $-4 \le x \le 4$, showing the features you have found.
- (b) Let $h(x) = \frac{1}{2} \left(1 + \frac{x}{|x|} \right)$, where $x \neq 0$.

Sketch y = h(x) by considering separately x < 0 and x > 0.

QUESTION NINETEEN (11 marks) Use a separate writing booklet.

- (a) Let $f(x) = x^3 2x^2 + 1$. The function g(x) is the result of shifting f(x) to the right by k units. Given that the coefficient of x^2 in g(x) is zero, find the value of k.
- (b) Consider the parabola with equation $y = -x^2 + 4x 3$.
 - (i) Find the equation of the tangent to this parabola at the point where x = p.
 - (ii) Given that the tangent in part (i) passes through the origin, determine p.
- (c) Consider the sequence defined by:

$$x_1 = 3$$

 $x_n = \frac{(x_{n-1})^2 + 6}{2x_{n-1}}$ for $n \ge 2$.

In the following you may assume that every term of this sequence is positive.

- (i) Write down the first three terms, simplifying any fractions.
- (ii) Show that $x_n \sqrt{6} \ge 0$ for $n \ge 2$.
- (iii) Let $\epsilon_n = x_n \sqrt{6}$.
 - (α) Write down the exact value of ϵ_1 .
 - $(\beta) \text{ Show that } \frac{\epsilon_n}{\epsilon_{n-1}} < \frac{1}{2} \text{ for } n \geq 2 \,.$
 - (γ) Hence determine $\lim_{n \to \infty} x_n$.

End of Section II

END OF EXAMINATION

BLANK PAGE

SYDNEY GRAMMAR SCHOOL

2012 Half-Yearly Examination FORM V MATHEMATICS EXTENSION 1 Wednesday 16th May 2012

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

NAME:	•	
-------	---	--

CLASS: MASTER:

Question One

A 🔾	В ()	С ()	D ()
Question '	Γwo		
A 🔿	В ()	С ()	D ()
Question '	Three		
A 🔿	В ()	С ()	D 🔘
Question 1	Four		
A 🔾	В ()	С ()	D ()
Question 1	Five		
А ()	В ()	С ()	D ()
Question S	Six		
A 🔾	В ()	С ()	D ()
Question S	Seven		
A 🔾	В ()	С ()	D ()
Question 1	Eight		
А ()	В ()	СО	D ()
Question 1	Nine		
A 🔾	В ()	С ()	D ()
Question '	Гen		
А ()	В ()	СО	D ()
Question 1	Eleven		
A 🔾	В ()	$C \bigcirc$	D ()

SGS Half-Yearly 2012	FORM V — MATHEMATICS EXTENSION 1	Solutions

Q 1 (D)	Q 2 (C)	Q 3 (B)	Q 4 (B)
Q 5 (D)	Q 6 (A)	Q 7 (B)	Q 8 (D)
Q 9 (A)	Q 10 (D)	Q 11 (C)	

QUESTION TWELVE (11 marks)

(a) (i)
$$\sec 60^\circ = 2$$

(ii) $\cot 30^\circ = \sqrt{3}$
(iii) $\sin(-225^\circ) = \frac{1}{\sqrt{2}}$

(b)
$$\sqrt{54} + \sqrt{24} = 3\sqrt{6} + 2\sqrt{6}$$

= $5\sqrt{6}$

(c)
$$\frac{2}{3-\sqrt{5}} = \frac{2}{3-\sqrt{5}} \times \frac{3+\sqrt{5}}{3+\sqrt{5}}$$

= $\frac{3+\sqrt{5}}{2}$ or $\frac{3}{2} + \frac{1}{2}\sqrt{5}$

(d)
$$-4:3$$
 or $4:-3$ or externally $4:3$

(e)
$$T_{15} = 5 + 14 \times 3$$

= 47

(f) (i)
$$g'(x) = 3x^2 + 1$$

(ii)
$$h'(x) = \frac{1}{2}x^{-\frac{1}{2}}$$
 or $\frac{1}{2\sqrt{x}}$

(iii)
$$f'(x) = -6x^{-3}$$
 or $-\frac{6}{x^3}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

QUESTION THIRTEEN (11 marks)

(b)
$$0 \cdot 2\dot{1} = 0 \cdot 21 + 0 \cdot 0021 + 0 \cdot 000021 + \dots$$

 $= \frac{0 \cdot 21}{1 - \frac{1}{100}}$
 $= \frac{21}{99}$
 $= \frac{7}{33}$

(d) Both $\sin \theta$ and $\tan \theta$ are negative so θ is in the 4th quadrant, and $\cos \theta > 0$.

so
$$\cos \theta = \frac{2\sqrt{1}}{7}$$

Total for Question 13: 11 Marks

QUESTION FOURTEEN (11 marks)

 $\sqrt{}$

 $\sqrt{}$

 \checkmark

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

Total for Question 14: 11 Marks

QUESTION FIFTEEN (11 marks)

(a)
$$LHS = \frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta}$$

 $= \frac{\sin^2\theta + \cos^2\theta}{\cos\theta\sin\theta}$
 $= \frac{1}{\cos\theta\sin\theta}$ (by Pythagoras)
 $= RHS$

[Do not penalise the lack of a reason above.]

$$a = 220$$

and $ar^{12} = 440$
so $r = \sqrt[12]{2}$ (positive only since all frequencies are positive)
[Do not penalise a negative answer so long as the positive is also given.]
 $f_9 = 220 \times 2^{\frac{2}{3}}$

 $\Rightarrow 349.2$ (correct to 1 decimal place)

 $y = (x^2 - 1)^4$

 $=4u^3 \times u'$

 $=8x(x^2-1)^3$

 $u = x^2 - 1$

u' = 2x $y = u^4$.

(c) (i)
$$y = (x^2 - 1)^4$$

Let $u = x^2 - 1$
so $u' = 2x$
and $y = u^4$.
Thus $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

[Accept an answer with no working only if it is completely correct.]

(ii)
$$y = x^{2}(x-3)^{5}$$

 $= uv$
where $u = x^{2}$ so $u' = 2x$
and $v = (x-3)^{5}$ so $v' = 5(x-3)^{4}$.
 $y' = uv' + u'v$
 $= x^{2}5(x-3)^{4} + 2x(x-3)^{5}$
 $= x(x-3)^{4}(7x-6)$

(d) For continuity at x = 3 we require $\lim_{x \to 3^-} f(x) = f(3) = \lim_{x \to 3^+} f(x)$.

Now
$$f(3) = 9a$$

and $\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} \sqrt{25 - x^2}$
 $= 4$
Thus $9a = 4$
or $a = \frac{4}{9}$

 $\sqrt{}$

QUESTION SIXTEEN (11 marks)

Total for Question 16: 11 Marks

QUESTION SEVENTEEN (11 marks)

(a) That is, find the largest n such that $3^n < 10^{12}$ Taking logs of both sides $n \log_{10} 3 < 12$ $n < \frac{12}{\log_{10} 3}$ or < 25.15...n = 25thus $y = \frac{x}{x^2 + 1}$ (b) $=\frac{u}{v}$ u = x so u' = 1 $v = x^2 + 1$ so v' = 2xwhere and $\frac{dy}{dx} = \frac{u'v - uv'}{v^2}$ Then $= \frac{1 \times (x^2 + 1) - x \times 2x}{(x^2 + 1)^2}$ $= \frac{1 - x^2}{(x^2 + 1)^2}$ (c) (i) That is, solve $x^2 = x + 2$ $x^2 - x - 2 = 0$ so (x-2)(x+1) = 0or x = -1 or 2 thus y = 1 or 4 and That is: (-1, 1) and (2, 4). [Do not penalise failure to find y-values.]

The regions is below the line, above the parabola, and excludes the corners and line.

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

(d) The general equation of the line through P is

$$(x + 2y + 3) + k(3x + y - 2) = 0$$

So at $Q(-1, 2)$ this gives
$$6 - 3k = 0$$

so
$$k = 2$$

Thus the equation of PQ is
$$(x + 2y + 3) + 2(3x + y - 2) = 0$$

or
$$7x + 4y - 1 = 0$$

Total for Question 17: 11 Marks

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

QUESTION EIGHTEEN (11 marks)

(a) For
$$y = f(x)$$
 where $f(x) = \frac{x}{x^2 - 1}$:

(i) (
$$\alpha$$
) $f(-x) = \frac{(-x)}{(-x)^2 - 1}$
 $= -\frac{x}{x^2 - 1}$
 $= -f(x)$

(
$$\beta$$
) That is $\frac{x}{x^2 - 1} = 1$
so $x^2 - x - 1 = 0$
or $x = \frac{1 \pm \sqrt{5}}{2}$

(
$$\gamma$$
) Since $f(x)$ is odd, the values are $x = -\frac{1 \pm \sqrt{5}}{2}$.

(ii) f(0) = 0. There are no other intercepts.

(iii)
$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{\frac{1}{x}}{1 - \frac{1}{x^2}}$$
$$= 0$$

hence also, by the oddness of f(x),

$$\lim_{x \to -\infty} f(x) = 0.$$

So the x-axis is an asymptote (or y = 0)

There are vertical asymptotes at x = -1 or 1 where the denominator is zero and the numerator is not zero.

(iv)

odd function

shape

[Do not penalise failure to show coordinates where $y = \pm 1$.]

(b)
$$h(x) = \frac{1}{2} \left(1 + \frac{x}{|x|} \right)$$
$$= \begin{cases} \frac{1}{2} \left(1 + \frac{x}{-x} \right) & \text{when } x < 0 \\ \frac{1}{2} \left(1 + \frac{x}{x} \right) & \text{when } x > 0 \end{cases}$$
$$= \begin{cases} 0 & \text{when } x < 0 \\ 1 & \text{when } x > 0 \end{cases}$$

Total for Question 18: 11 Marks

QUESTION NINETEEN (11 marks)

g(x) = f(x - k)

$$= (x - k)^{3} - 2(x - k)^{2} + 1$$

$$= x^{3} - (3k + 2)x^{2} + (3k^{2} + 4k)x + (1 - 2k^{2} - k^{3})$$
so $3k + 2 = 0$
thus $k = -\frac{2}{3}$

(b) For
$$y = -x^2 + 4x - 3$$
:

(i)
$$y' = -2x + 4$$

so at $x = p$ $y' = 4 - 2p$
and $y = -p^2 + 4p - 3$
Thus the equation of the tangent is:
 $y + p^2 - 4p + 3 = (4 - 2p)(x - p)$
(ii) The point (0,0) is on the tangent so:
 $p^2 - 4p + 3 = 2p^2 - 4p$

so
$$p^2 = 3$$

or $p = -\sqrt{3}$ or $\sqrt{3}$

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

(i)
$$x_1 = 3$$

 $x_2 = \frac{9+6}{6} = \frac{5}{2}$
 $x_3 = \frac{\frac{25}{4}+6}{5} = \frac{49}{20}$

(ii) LHS =
$$x_n - \sqrt{6}$$

= $\frac{(x_{n-1})^2 + 6}{2x_{n-1}} - \sqrt{6}$ for $n \ge 2$
= $\frac{(x_{n-1})^2 - 2x_{n-1}\sqrt{6} + 6}{2x_{n-1}}$
= $\frac{(x_{n-1} - \sqrt{6})^2}{2x_{n-1}}$

(c)

Now the numerator is positive or zero and the denominator is positive hence $LHS \ge 0$.

(iii) (
$$\alpha$$
) $\epsilon_1 = 3 - \sqrt{6}$
(α) $\epsilon_n = x_n - \sqrt{6}$

$$(\beta) \qquad \frac{\frac{n}{\epsilon_{n-1}} = \frac{x_n - \sqrt{\epsilon}}{x_{n-1} - \sqrt{6}} \\ = \frac{(x_{n-1} - \sqrt{6})^2}{2x_{n-1}} \times \frac{1}{(x_{n-1} - \sqrt{6})} \\ = \frac{x_{n-1} - \sqrt{6}}{2x_{n-1}} \\ < \frac{x_{n-1}}{2x_{n-1}} \qquad \text{(increased numerator)} \\ < \frac{1}{2}.$$

 (γ) Since $\frac{\epsilon_n}{\epsilon_{n-1}} < \frac{1}{2}$ and $\epsilon_n \ge 0$,

every term of the sequence ϵ_n is no larger than the corresponding term of the geometric progression

$$(3 - \sqrt{6}), \frac{1}{2}(3 - \sqrt{6}), \frac{1}{4}(3 - \sqrt{6}), \dots$$

 $0 \le \epsilon_n \le (3 - \sqrt{6})(\frac{1}{2})^n$

That is

 \mathbf{SO}

 \mathbf{SO}

and

 $0 \le \lim_{n \to \infty} \epsilon_n \le \lim_{n \to \infty} (3 - \sqrt{6}) (\frac{1}{2})^n$ $0 \le \lim_{n \to \infty} \epsilon_n \le 0.$ $\lim_{n \to \infty} \epsilon_n = 0$ $\lim_{n \to \infty} x_n - \sqrt{6} = 0$ Thus $\lim_{n \to \infty} x_n = \sqrt{6} \,.$ hence

Total for Question 19: 11 Marks

DNW

 $\sqrt{}$

 $\sqrt{}$