

FORM V

MATHEMATICS EXTENSION 1

Wednesday 15th May 2013

General Instructions

- Writing time - 2 hours
- Write using black or blue pen.
- Board-approved calculators and templates may be used.

Total - 100 Marks

- All questions may be attempted.

Section I-9 Marks

- Questions 1-9 are of equal value.
- Record your solutions to the multiple choice on the sheet provided.

Section II - 91 Marks

- Questions 10-16 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Collection

- Write your name, class and master on each booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place your multiple choice answer sheet inside the answer booklet for Question Ten.
- Write your name and master on this question paper and submit it with your answers.

5A: DNW	5B: PKH	5C: RCF	5D: BDD
5E: KWM	5F: FMW	5G: LRP	$5 H:$ TCW

Checklist

- SGS booklets - 7 per boy
- Multiple choice answer sheet
- Candidature - 152 boys

Examiner

RCF
\qquad

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

$(2 \sqrt{3}+3 \sqrt{2})^{2}$ simplifies to:
(A) 30
(B) $30+6 \sqrt{6}$
(C) $4 \sqrt{3}+9 \sqrt{2}$
(D) $30+12 \sqrt{6}$

QUESTION TWO

The area of the triangle drawn above is:
(A) $4 u^{2}$
(B) $2 \sqrt{3} u^{2}$
(C) $4 \sqrt{3} u^{2}$
(D) $2 \sqrt{6} u^{2}$

QUESTION THREE

The expression $\cot x \times \sec x$ simplifies to:
(A) $\sin x$
(B) $\operatorname{cosec} x$
(C) $\cos x$
(D) $\sec x$

QUESTION FOUR

Which of the following is NOT an even function?
(A) $f(x)=\cos x$
(B) $f(x)=\frac{1}{x}$
(C) $f(x)=x^{2}+3$
(D) $f(x)=-\sqrt{4-x^{2}}$

QUESTION FIVE

When $2 \log a+\log b+\log b$ is simplified, the result is:
(A) $2 \log (a b)$
(B) $\log \left(2 a^{2} b\right)$
(C) $\log \left(a^{2}+2 b\right)$
(D) $\log (2 a+2 b)$

QUESTION SIX

The derivative of $\sqrt[3]{x}$ is:
(A) $3 x^{-\frac{2}{3}}$
(B) $\frac{1}{3} x^{-\frac{1}{3}}$
(C) $\frac{1}{3} x^{-\frac{2}{3}}$
(D) $\frac{1}{\sqrt[3]{x}}$

QUESTION SEVEN

The perpendicular distance from the point $(-1,2)$ to the line $2 x-3 y+4=0$ is:
(A) $\frac{4 \sqrt{13}}{13}$
(B) 0
(C) $\frac{8 \sqrt{13}}{13}$
(D) $-\frac{4 \sqrt{13}}{13}$

QUESTION EIGHT

Which of the following pairs of inequalities best describes the shaded region above?
(A) $y-x \leq 0$ and $y \geq 4 x-x^{2}$
(B) $y-x<0$ and $y<4 x-x^{2}$
(C) $y-x>0$ and $y \leq 4 x-x^{2}$
(D) $y-x<0$ and $y \geq 4 x-x^{2}$

QUESTION NINE

The sum of the first n terms of the geometric sequence $3,-9,27 \ldots$ is given by:
(A) $\frac{3}{4}\left(1-3^{n}\right)$
(B) $\frac{3}{4}\left(1-(-3)^{n}\right)$
(C) $\frac{3}{4}\left((-3)^{n}-1\right)$
(D) $\frac{3}{4}\left(3^{n}-1\right)$
\qquad
\qquad

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.
Show all necessary working.
Start a new booklet for each question.

QUESTION TEN (13 marks) Use a separate writing booklet. Marks
(a) Evaluate:
(i) $|-4|-|6|$
(ii) $\log _{3} 81$
(b) Determine the exact value of $\cos 150^{\circ}$.
(c) Simplify fully:
(i) $\frac{2 x+4}{6 x+12}$
(ii) $\sqrt{x}\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)$
(d) Rationalise the denominator of $\frac{4}{3-\sqrt{2}}$.
(e) Consider the points $A(-3,5)$ and $B(7,-2)$ in the number plane.
(i) Determine the co-ordinates of the midpoint of $A B$.
(ii) Find the exact length of the interval $A B$.
(iii) Calculate the gradient of the interval $A B$.
(f) (i) Given an arithmetic sequence with first term 4 and common difference 3, what is the tenth term?
(ii) Given a geometric sequence with first term 3 and common ratio $\frac{1}{2}$, what is the limiting sum?

QUESTION ELEVEN (13 marks) Use a separate writing booklet.
(a) (i) State the co-ordinates of the centre of the circle with equation $(x-3)^{2}+(y+2)^{2}=16$.
(ii) Find the co-ordinates of the vertex of the parabola with equation $y=(x-4)(x+2)$.
(b) Differentiate:
(i) $3 x^{2}+4 x$
(ii) x^{-3}
(iii) $3 \sqrt{x}$
(c) Solve:
(i) $3-x>5$
(ii) $|x+2|=7$
(iii) $x-2 x^{2}=0$
(iv) $x^{2}-4 x-12 \geq 0$

QUESTION TWELVE (13 marks) Use a separate writing booklet.
(a) Given $\sin \theta=\frac{2}{3}$ and $\cos \theta<0$, find the exact value of $\tan \theta$.
(b) The fourth term of an arithmetic progression is 5 and the seventh term is 23.
(i) Find the first term and the common difference.
(ii) Find the twentieth term.
(iii) Find the sum of the first twenty terms.
(iv) If the last term is 179 , how many terms are there in the AP?
(c) Solve the following trigonometric equations, for $0^{\circ} \leq \theta \leq 360^{\circ}$:
(i) $\cos \theta=\frac{1}{2}$
(ii) $\sqrt{2} \sin \theta \cos \theta=\sin \theta$
(d) In $\triangle A B C$, side $A B$ is 6 metres, $B C$ is 11 metres and $\angle B C A$ is 25°. Find the possible values for $\angle B A C$. Give your answers correct to the nearest degree.
(a) Let $f(x)=2^{x}$.
(i) Write down the equation of the function obtained by translating $y=f(x)$ two units to the right.
(ii) Write down the equation of the function obtained by reflecting $y=f(x)$ in the x-axis.
(b) State the natural domain of:
(i) $y=\frac{1}{2 x-3}$
(ii) $y=-\sqrt{16-x^{2}}$
(c)

The graph above shows the absolute value function $y=|2 x-3|$ and the straight line $y=\frac{9-x}{2}$. Use the graph to solve the inequation $|2 x-3| \geq \frac{9-x}{2}$.
(d) Consider the cubic function $y=3 x-x^{3}$.
(i) Determine the gradient of the tangent to the curve at the point where $x=2$.
(ii) Hence find the equation of the normal to the curve at the point where $x=2$.
(e) Differentiate:
(i) $y=\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)$
(ii) $y=\frac{x^{4}+2 x^{2}+4}{3 x^{3}}$

QUESTION FOURTEEN (13 marks) Use a separate writing booklet. Marks
(a) State the range of $y=\sec x$.
(b) Let the points P and Q be $(-2,5)$ and $(7,-13)$ respectively. Find the co-ordinates of the point R which divides the interval $P Q$ in the ratio $4: 5$.
(c) Solve the following trigonometric equations, for $0^{\circ} \leq \theta \leq 360^{\circ}$. Approximate your answers to the nearest degree where necessary.
(i) $3 \cos ^{2} \theta=2(1-\sin \theta)$
(ii) $\cos \left(2 \theta-50^{\circ}\right)=\frac{1}{\sqrt{2}}$
(d) Solve the inequation $\frac{x}{x-3} \leq 2$.

QUESTION FIFTEEN (13 marks) Use a separate writing booklet.
(a) Consider the function $f(x)=x^{2}-3 x$.
(i) Find $f(x+h)$.
(ii) Hence differentiate $f(x)$ from first principles.
(b) Consider the circle $(x-1)^{2}+(y-3)^{2}=4$ and the straight line $2 x-y+k=0$, where k is a constant.
(i) Use the perpendicular distance formula to get an expression for the distance from the line to the centre of the circle.
(ii) Determine the range of values of k for which the line intersects the circle.
(c) Prove the following trigonometric identities:
(i) $\cot \theta+\tan \theta=\sec \theta \operatorname{cosec} \theta$
(ii) $\frac{\operatorname{cosec} \alpha}{\operatorname{cosec} \alpha-\sin \alpha}=\sec ^{2} \alpha$
(d) In a certain geometric sequence, the sum of the first two terms is 9 and the sum of the first three terms is 21 . Find the possible values of the common ratio.

QUESTION SIXTEEN (13 marks) Use a separate writing booklet.
(a) Consider the rational function $f(x)=\frac{x^{2}+2 x-3}{2 x^{2}-x-3}$.
(i) Find the x-intercepts and y-intercept of the graph of $y=f(x)$.
(ii) Find the equations of any vertical asymptotes, showing clear working.
(iii) Find the equation of the horizontal asymptote, showing clear working.
(iv) Find the x value where the graph crosses the horizontal asymptote.
(v) Carefully sketch the function, showing these features.
(b) Find x given $\sum_{n=1}^{2 x}(\sqrt[4]{n}+\sqrt[4]{n+1})(\sqrt[4]{n+1}-\sqrt[4]{n})=2$.
(c) Inside a large semicircle with centre O and diameter $A O B$ of length $2 R$, a smaller semicircle is drawn with diameter $A O$ and centre P. A small circle is drawn with centre Q and radius r which is tangent to the large semicircle at T and the small semicircle at S. Let $\angle P O Q=\theta$.
(i) Carefully draw a diagram of the situation described.
(ii) What can be said about the points O, Q and T ? Justify your answer.
(iii) Use the cosine rule to show that

$$
\frac{r}{R}=\frac{1-\cos \theta}{3-\cos \theta}
$$

END OF EXAMINATION

Sydney Grammar School

NAME: \qquad

Class: Master:

Question One

2013
Half-Yearly Examination
FORM V
MATHEMATICS EXTENSION 1
Wednesday 15th May 2013

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

A

B

C \bigcirc
$\mathrm{D} \bigcirc$

Question Two

A \bigcirc
B$\mathrm{C} \bigcirc$
D \bigcirc

Question Three

A
B
C

D \bigcirc

Question Four

$\mathrm{A} \bigcirc$
B$\mathrm{C} \bigcirc$
D \bigcirc

Question Five
A
B \bigcirc
C
D \bigcirc

Question Six

A

B
C

D

Question Seven

A \bigcirc
BD \bigcirc

Question Eight

A \bigcirc
B \qquad
C

D \bigcirc

Question Nine

A
B

$\mathrm{C} \bigcirc$
D \bigcirc

Prestion One

$$
\begin{aligned}
& \text { Exlenson One } 2013 \\
& \begin{aligned}
3+3 \sqrt{2}) & =12+18+12 \sqrt{6} \\
& =30+12 \sqrt{6}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
(2 \sqrt{3}+3 \sqrt{2})(2 \sqrt{3}+3 \sqrt{2}) & =12+18+12 \sqrt{6} \\
& =30+12 \sqrt{6}
\end{aligned}
$$

neston Tro $A=\frac{1}{2} a b \sin C=\frac{1}{2} \times 4 \times 2 \sqrt{3} \times \sin 30^{\circ}=4 \sqrt{3} \times \frac{1}{2}=2 \sqrt{3} u^{2} \quad(B)$
2neston Thice

$$
\begin{aligned}
\cot x \sec x & =\frac{\cos x}{\sin x} \times \frac{1}{\cos x} \\
& =\frac{1}{\sin x}
\end{aligned}
$$

ineston Fow $=\operatorname{cosec} x$
$f(x)=\frac{1}{b c}$ has ODD symmety
2nestion Five

$$
\begin{aligned}
\text { Notion Five } \\
\begin{aligned}
2 \log a+\log b+\log b & =\log a^{2}+\log b^{2} \\
& =\log a^{2} b^{2} \\
& =2 \log a b .
\end{aligned} \\
\text { vestion Six }
\end{aligned}
$$

$\frac{\text { 2nestion Six }}{y=x^{1 / 3}}$

$$
\begin{aligned}
& y=x^{-2 / 3} \\
& \frac{d y}{d x}=1 / 3 x^{-2 / 2}
\end{aligned}
$$

2uestion Sven

$$
\begin{aligned}
& 2 x-3 y+4 \\
& (-1,2)
\end{aligned}
$$

$$
p=\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}}
$$

$$
=\frac{|(-2)+(-6)+4|}{\sqrt{4+9}}
$$

$$
=\frac{4}{\sqrt{13}}
$$

$$
=\frac{4 \sqrt{13}}{13}
$$

Questron 10
(a) (i) $|-4|-|6|=4-6$
(b)

$$
\text { b) } \begin{align*}
& \cos 150 \tag{A}\\
= & -\cos 30^{\circ} \sqrt{30} \lambda \sqrt{30^{\circ}} \tag{B}\\
= & -\sqrt{3} / 2
\end{align*}
$$

(c) (i) $\frac{2(x+2)}{6(x+2)}=1 / 3$
(c)

Question 8
$y<x$ is $y-x<0$ and $y \geqslant 4 x-x^{2}$
Queston 9.

$$
\begin{align*}
& G_{P} a=3 \tag{D}\\
& S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}=\frac{3(-3)}{\left.1-(-3)^{n}\right)} \tag{B}\\
&=\frac{3}{4}\left(1-(-3)^{n}\right) \tag{B}
\end{align*}
$$

(D)
(ii) $\log _{3} 81=4$
(ii) $\sqrt{x}\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)=x-1$
(d)

$$
\begin{aligned}
& 6(x+\alpha) \\
& \frac{4}{3-\sqrt{2}} \times(3+\sqrt{2})=\frac{12+4 \sqrt{3}}{9-2}
\end{aligned}
$$

(e) $A(-3,5) \quad B(7,-2)$
(ii) $M\left(\frac{-3+7}{2}, \frac{5+(-2)}{2}\right)=\left(2, \frac{3}{2}\right) \sqrt{(i i i)} m_{A B}=\frac{5-(-2)}{(-3)-7}$
(ii)

$$
\begin{equation*}
=\frac{12+4 \sqrt{3}}{7} \text {, or } \frac{4(3+\sqrt{2})}{7} \tag{A}
\end{equation*}
$$

$$
\begin{aligned}
A B & =\sqrt{10^{2}+7^{2}} \\
& =\sqrt{149} u
\end{aligned}
$$

$$
=\frac{7}{-10}
$$

$$
=\left(-\frac{10}{10}\right)
$$

(ii) GP $a=3 \quad-=\frac{1}{2} \quad S_{\infty}=\frac{a}{1-1}=\frac{3}{1-\frac{1}{2}}=6 / \operatorname{lnitg}$ is 8 mm

Question Eteven
(a) (i) $(x-3)^{2}+(y+2)^{2}=16$

Cincle
Cintie $(3,-2)$)
(ii) $y=(x-4)(x+2)$
x-unterepto are $(4,0)$ and $(-2,0)$
x cood of vetex is $x=1$
y a-ord $y=-3 \times 3=-9$
Vectex $(1,-9)$
b) $(i$

$$
y=3 x^{2}+4 x
$$

$$
\frac{d y}{d x}=6 x+4
$$

(iii) $y=3 x^{\frac{1}{2}}$
(ii)

$$
y=x^{-3}
$$

$$
\frac{\partial y}{d x}=-3 x^{-4}
$$

c) (i) $3-x>5$
(ii) $|x+2|=7$

$$
\begin{aligned}
& (+x)(+x) \\
& 3>x+5
\end{aligned}
$$

$$
(-5)\rangle(-5)
$$

$(-2)>x$
(iii)

$$
\begin{aligned}
& x-2 x^{2}=0 \\
& x(1-2 x)=0 \\
& x=0 \sqrt{\text { or }} \quad x=1
\end{aligned}
$$

(iv $\begin{aligned} & x^{2}-4 x-12 \geqslant 0 \\ & (x-6)(x+2) \geqslant 0 \\ & x \geqslant 6 \text { ox } x \leqslant(-2) / \underbrace{}_{-2} \uparrow \uparrow\end{aligned}$

Exuconon itweure
a) $\sin \theta=\frac{2}{3} \quad \cos \theta<0 \Rightarrow 2^{\text {ad }}$ mad 2
b)

$$
\therefore \tan \theta=\left(-\frac{2}{\sqrt{5}}\right)
$$

$$
\begin{aligned}
& a+3 d=5.1 \\
& a+6 d=23(2)
\end{aligned}
$$

(2)-(1) $3 d=18$

Futte is (-13)
Common differemce is 6 .
Subinto (1)

$$
d=6
$$

$$
a+18=5
$$

(ii)

$$
\begin{aligned}
& a+18=3 \\
& a=(-13)
\end{aligned}
$$

$$
\begin{aligned}
t_{20} & =a+19 d \\
& =(-13)+19 \times 6 \\
& =(-13)+114 \\
& =101 .
\end{aligned}
$$

(ii)

$$
\begin{array}{rlrl}
S_{n} & =\frac{n}{2}(2 a+(n-1) d) & \text { or } S_{n} & =\frac{n}{2}(a+1) \\
& =10(-26+19 \times 6) & & =10(-13+101) \\
& =10(114-26) & & =880 \\
& =880
\end{array}
$$

(iv)
$t_{n}=179=a+(n-1) d$
$(-B)+6(n-1)=179$
$6 n-19=179$

$$
6 n=198
$$

$$
n=33
$$

(c) Abootute Value above stringhl wine
(i) $\cos \theta=\frac{1}{2}$

$$
\begin{aligned}
& \cos \theta=2 \\
& \theta=60^{\circ}, 300^{\circ} .
\end{aligned}
$$

(i) $\sqrt{2} \sin \theta \cos \theta=\sin \theta$
$\sin \theta(\sqrt{2} \cos \theta-1)=0$
$\sin \theta=0$ or $\cos \theta=\frac{1}{\sqrt{2}}$
$\theta=0,180^{\circ}, 360_{0}^{\circ} \theta=45^{\circ}, 315^{\circ}$
d)

Let $\angle B A C=\theta$

$$
\begin{aligned}
\frac{\sin \theta}{11} & =\frac{\sin 25}{6} \\
\sin \theta & =\frac{11 \sin 25}{6} \\
& \doteqdot 0.7748 \ldots
\end{aligned}
$$

Note: Ambagrows
Question Thistien
a) (i) $f(x)=2^{x-2}$
(ii) $g(x)=-2^{x}$
b) (i) $y=\frac{1}{2 x-3} \quad \therefore \begin{gathered}2 x-3 \neq 0 \\ x \neq 3 / 2\end{gathered}$

Domsin $\left\{x: x \in \mathbb{R}, x \neq \frac{3}{2}\right\}$
(i) $y=-\sqrt{16-x^{2}} \quad \therefore \quad 16-x^{2} \geqslant 0$
$\binom{$ or reognixe }{ lover semicincle } $\left.\begin{array}{c}(4-x)(4+x) \geqslant 0 \\ (-4) \leqslant x \leqslant 4\end{array}\right) \rightarrow 4 \rightarrow$ Domin $\{x: x \in \mathbb{R}(-4) x \leq 54\}$

$$
\begin{aligned}
& x \geqslant 3 \text { or } x \leqslant(-1) \\
& (d x i) y=3 x-x^{3} \\
& \frac{d y}{d x}=3-3 x^{2}
\end{aligned}
$$

$$
\left(\frac{d x}{d x}\right)_{x=2}=3-3(2)^{2}=(-9) \cdot \sqrt{\text { Grachet of tanget is }}(-9)
$$

(ii)

$$
\left.\begin{array}{l}
\eta_{\text {nom }}=1 / 9 \\
y=3(2)-2^{3} \\
=6-8 \text { Eq of nomal } \\
=(-2)
\end{array}\right\} \sqrt{ }
$$

$$
y-(-2)=1 / 9(x-2)
$$

$$
\begin{aligned}
& y+2=1 / 9(x-2) \\
& 9 x+18=x-7
\end{aligned}
$$

$$
\begin{aligned}
9 y+18 & =x-2 \\
0 & =x-9 v
\end{aligned}
$$

(e),(i)

$$
\begin{aligned}
y & =\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right) \\
& =x-x \\
& =x-x^{-1}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d y}{d x} & =1+x^{-2} \\
& =1+\frac{1}{x^{2}}
\end{aligned}
$$

$$
=x-9 y-20
$$

(ii)

$$
\begin{aligned}
y & =\frac{x^{4}+2 x^{2}+4}{3 x^{3}} \\
& =\frac{1}{3} x+\frac{2}{3} x^{-1}+4 x^{-3}
\end{aligned}
$$

$$
=\frac{x^{2}+1}{x^{2}}
$$

$\frac{d y}{d x}=\frac{1}{3}-\frac{2}{3} x^{-2}-4 x^{-4}$

$$
\begin{aligned}
& =1-2 x-\frac{4}{x^{4}} \\
& =\frac{x^{4}-2 x^{2}-4}{3 x^{4}}
\end{aligned}
$$

Queston Fourteen
a) $y=\sec x \quad y \geqslant 1$ or $y \leqslant(-1)$
$\because F(-2,5) \quad Q(7,-13)$ in ratio $4: 5$

Sout

$$
\begin{aligned}
x & =\frac{5(-2)+4 \times 7}{4+5} & y & =\frac{5 \times 5+4 \times(-1}{4+5} \\
& =\frac{18}{9} & & =\frac{25-52}{9} \\
& =2 & & =-3
\end{aligned}
$$

$$
R(2,-3)
$$

c)

$$
\begin{aligned}
& \begin{array}{ll}
3 \cos ^{2} \theta=2(1-\sin \theta) \\
3 \cos ^{2} \theta+2 \sin \theta-2=0
\end{array} \quad 0 \leqslant \theta \leqslant 360^{\circ} \\
& \begin{array}{l}
3 \cos \theta+2 \sin \theta-2=0 \\
3\left(1-\sin ^{2} \theta\right)+2 \sin \theta-2=0
\end{array} \\
& -3 \sin ^{2} \theta+2 \sin \theta+1=0 \\
& 3 \sin ^{2} \theta-2 \sin \theta-1=0 \\
& (3 \sin \theta+1)(\sin \theta-1)=0 \\
& \therefore \sin \theta=\left(-\frac{1}{3}\right) \propto \sin \theta=1 \\
& \theta=199^{\circ}, 341^{\circ} \quad \theta=90^{\circ} \\
& \text { (ii) } \cos \left(2 \theta-50^{\circ}\right)=\frac{1}{\sqrt{2}} \quad 0^{\circ} \leqslant \theta<360^{\circ} \\
& \begin{array}{c}
2 \theta-50^{\circ}=-45^{\circ}, 45^{\circ}, 315^{\circ} /-50^{\circ} \leq 2 \theta<7200^{\circ} \\
405^{\circ}, 475^{\circ}
\end{array}
\end{aligned}
$$

(d)

$$
\left.\begin{array}{ll}
\frac{x}{x-3} \leqslant 2 ;(x+3) \\
(x x-3)^{2} / \\
x(x-3) \leqslant 2(x-3)^{2} & 0 \leqslant(x-3)[2 x-6-x] \\
0 \leqslant 2(x-3)^{2}-x(x-3) & 0 \leqslant(x-3)(x-6)
\end{array}\right]
$$

Queston Fifteen
(a) $f(x)=x^{2}-3 x$

$$
\text { (i) } \begin{aligned}
(x+h) & =(x+h)^{2}-3(x+h) \\
& =x^{2}+2 x h+h^{2}-3 x-3 h
\end{aligned}
$$

(ii)

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0}\left\{\frac{f(x+h)-f(x)}{(x+h)-x}\right\} \\
& =\lim _{h \rightarrow 0}\left\{\frac{\left(x^{2}+2 x h+h^{2}-3 x-3 h\right)-\left(x^{2}-3 x\right)}{h}\right\} \\
& =\lim _{h \rightarrow 0}\left\{\frac{2 x h+h^{2}-3 h}{h}\right\} \\
& =\lim _{h \rightarrow 0}\{2 x-3+h\} \\
& =2 x-3
\end{aligned}
$$

$y(x-1)+(y-5)=-1$

$$
y=2 x+k
$$

Centre $(1,3) \quad r=2 \quad \because \quad \therefore 2 x-y+k=0$

$$
\begin{aligned}
P & =\frac{|2 \times|+3 \times(-1)+k|}{\sqrt{4+1}} \quad a=2, b=(-1), c=k \\
& =\frac{|k-1|}{\sqrt{5}}
\end{aligned}
$$

For intersection or tangency $\begin{aligned} & p \leqslant r \\ & \frac{|k-1|}{\sqrt{5}} \leqslant 2\end{aligned}$

$$
\begin{gathered}
1 k-1 \mid \leqslant 2 \sqrt{5} \\
-2 \sqrt{5} \leqslant k-1 \leqslant 2 \sqrt{5} \\
1-2 \sqrt{5} \leqslant k \leqslant 2 \sqrt{5}+1
\end{gathered}
$$

$\Rightarrow(i) \cot \theta+\tan \theta \equiv \sec \theta \operatorname{cosec} \theta$

$$
\begin{aligned}
\text { HS } & =\frac{\cos \theta}{\sin \theta}+\frac{\sin \theta}{\cos \theta} \\
& =\frac{\cos ^{2} \theta}{\sin \theta \cos \theta}+\frac{\sin ^{2} \theta}{\sin \theta \cos \theta} \\
& =\frac{\cos ^{2} \theta+\sin 2 \theta}{\sin \theta \cos \theta} \\
& =\frac{1}{\sin \theta \cos \theta}
\end{aligned}
$$

$-\operatorname{cosec} \theta \sec \theta$

$$
=\operatorname{RHS}
$$

(a)

$$
\text { (a) } \begin{aligned}
f(x) & =\frac{x^{2}+2 x-3}{2 x^{2}-x-3} \\
& =\left(\frac{x+3)(x-1)}{(2 x-3)(x+1)}\right.
\end{aligned}
$$

(i) x-int $f(x)=0 \quad x=-3$ ox $x=1$
y-uts $x=0 \quad$ is $(-3,0),(1,0)$

$$
\text { (ii) } \begin{aligned}
& f(x)=\frac{x^{2}+2 x-3}{2 x^{2}-x-3}\left(4 x^{2}\right) \\
&=\frac{1+\frac{2}{x}-3}{2-\frac{3}{2}}\left(-\frac{x^{2}}{2}\right) \\
& 2-\frac{1}{5-3} x^{2}
\end{aligned}
$$

(ii) Vertual Aspmpototes whe $\quad y=\frac{1}{2}$
is $x=(-1)$ or $x=3 / 2$ senominater is new and
(iv) Graph croses howioutal asymptote where $y=1 / 2$

$$
\begin{aligned}
\therefore \frac{1}{2} & =\frac{x^{2}+2 x-3}{2 x^{2}-x-3} \\
2 x^{2}-x-3 & =2 x^{2}+4 x-6 \\
3 & =5 x \\
3 / 5 & =x \text { ie }(3 / 5,1 / 2)
\end{aligned}
$$

(b) $\sum_{n=12 x}^{2 x}(\sqrt[4]{n+1}+4 \sqrt{n})(4 \sqrt{n+1}-\sqrt[4]{n})=2$ Diff of 2595

$$
\sum_{n=1}^{n=12 x}(\sqrt{n+1}-\sqrt{n})=2
$$

$$
(\sqrt{2}-\sqrt{1})+(\sqrt{3}-\sqrt{2})+\ldots+(\sqrt{2 x}-\sqrt{2 x-1})+(\sqrt{2 x+1}-\sqrt{2 x})
$$

$$
\sqrt{2 x+1}-\sqrt{1}=2
$$

$$
\sqrt{2 x+1}=3
$$

$$
\begin{gathered}
2 x+1=9 \\
x=4
\end{gathered}
$$

(c)
(i)

(ii) Points O, Q and T are collinear since T is pout of contact of common tangent of andes cited at O and Q. Sinilail P, S and Q are collinear
with common tangent at S.
(iii) Cosine Rule in $\triangle P O Q . \quad P O=\frac{R}{2}$

$$
\begin{aligned}
& P Q^{2}=O P^{2}+O Q^{2}-2 \times O \times O Q \times \cos \theta \quad O Q=(R-\mu) \\
& \left(\frac{R}{2}+r\right)^{2}-\left(\frac{R}{2}\right)^{2}+(R-r)^{2}-2\left(\frac{R}{2}\right)(R-r) \cos \theta / P Q=\left(\frac{R}{2}+r\right) \\
& \frac{R^{2}}{4}+R r+R^{2}=\frac{K^{2}}{4}+R^{2}-2 R r+K^{2}-R(R-r) \cos \theta \\
& R(R-r) \cos \theta=R^{2}-3 R r \\
& \left(\div r^{2}\right) \\
& \left(\frac{R^{2}}{r^{2}}-\frac{R}{r}\right) \cos \theta=\frac{R^{2}-3 R}{r^{2}} \frac{R}{r} \\
& \text { Let } \frac{R}{F}=k \text {. } \\
& \begin{array}{l}
\therefore\left(k^{2}-k\right) \cos \theta=k^{2}-3 k \\
(\div k)
\end{array} \\
& (k-1) \cos \theta=k-3 . \\
& k \cos \theta-k=\cos \theta-3 \\
& k(\cos \theta-1)=\cos \theta-3 \\
& k=\frac{\cos \theta-3}{\cos \theta-1} \\
& \frac{R}{r}=\frac{\cos \theta-3}{\cos \theta-1}(x-1) \\
& \frac{R}{F}=\frac{3-\cos \theta}{1-\cos \theta} \\
& \frac{k}{K}=\frac{1-\cos \theta}{3-\cos \theta}
\end{aligned}
$$

