SYDNEY GRAMMAR SCHOOL

2014 Half-Yearly Examination

FORM V

MATHEMATICS 3 UNIT

Monday 19th May 2014

General Instructions
e Writing time — 1 hour 30 minutes
e Write using black or blue pen.

e Board-approved calculators and tem-
plates may be used.

Total — 80 Marks

e All questions may be attempted.
Section I - 8 Marks

e Questions 1-8 are of equal value.

e Record your solutions to the multiple
choice on the sheet provided.

Section II — 72 Marks

e Questions 9-14 are of equal value.

e All necessary working should be shown.

e Start each question in a new booklet.

5A: BDD
5E: PKH

5B: MLS
5F: BR

Checklist

e SGS booklets — 6 per boy
e Multiple choice answer sheet
e Candidature — 125 boys

Collection

e Write your name, class and master
on each booklet and on your multiple
choice answer sheet.

e Hand in the booklets in a single well-
ordered pile.

e Hand in a booklet for each question
in Section II, even if it has not been
attempted.

e If you use a second booklet for a ques-
tion, place it inside the first.

e Place your multiple choice answer
sheet inside the answer booklet for
Question Nine.

e Write your name and master on this
question paper and submit it with
your answers.

5C: LYL
5G: SG

5D: LRP

Examiner
BDD
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SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet
handed out with this examination paper.

QUESTION ONE

1
Given f(x) = 32 what is the value of f'(2)?

1 1
A —— B _Z
A -3 ®) -
1 3
- D) -2
© 3 o) -
QUESTION TWO
Which of the following statements is NOT correct?
(A) 1+ tan®6 =sec?6 (B)  cos(90° — ) =sinf
i 1
(C) tanf = sin (D)  secl = —

sin 6

QUESTION THREE

The recurring decimal 0-002020202. .. may be regarded as the limiting sum of a GP with
common ratio:

(A)  0-001 (B)  0-002

(C) 001 (D)  0-02

QUESTION FOUR

Which of the following is a correct limit statement about y = 5 ?
x —_—
(A) y—oocasx — 2. (B) y—occasz— —2.
(C) y— —occasx —27. (D) y— —casz— —2.

QUESTION FIVE

1 2
The expression S simplifies to:
logs
(A) = (B) loggx
(C)  logs(a® — ) (D) 2

Exam continues next page ...
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QUESTION SIX

A line passing through the point of intersection of 2x +3y — 1 =0and 4z — 9y +3 =0
may be written in the form 2x 4+ 3y — 1 + k(4z — 9y + 3) = 0 for some real number k.

For what value of k does this line pass through the point (2,1)?
(A) k=2 B) k=-2

(C) k=-3 (D) k=3

QUESTION SEVEN
The common ratio of the geometric sequence v2 — 1, 6v/2 — 3, 45v/2 49, ... is:

(A)  3++V2 (B) 9+3v2

32

(C) 5vV2-2 (D) 5

QUESTION EIGHT

a+3 a+1

a+2

The value of cos @ in the triangle above, for a > —1, is:

a—+ 2 a+6
(A) (B)
a—+3 2a + 6
a? 4+ 12a + 14 a? + 12
(C) (D) 5
2(a+3)(a+2) 2a? + 10a + 12

End of Section 1

Exam continues overleaf ...
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SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.
Show all necessary working.

Start a new booklet for each question.

QUESTION NINE (12 marks) Use a separate writing booklet.

2 —3x—10
Simplify —M8M8 —.
(a) Simplify p——

(b) Write down the natural domain of the function f(x) = /z2? — 4.

(c) Differentiate:
(i) y = 32% + 22 + 4
(i) y = 6V
(d) Find the sum of the first twelve terms of the sequence 3, 7, 11, .. ..

(e) Given the geometric sequence 1536, 768, 384, . ..
(i) find the common ratio,

(ii) find the tenth term.
(f) Determine whether the function f(x) = 2 — 277 is even, odd or neither.

(g) Consider the function f(z) = 52 + 4.
(i) Simplify the expression f(z + h) — f(z).
(ii) Hence use the formula

) — i TR @)

h—0 h

to differentiate f(x) = 522 4 42 from first principles.

Exam continues next page ...

Marks

=1 =]
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(=] [~]
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QUESTION TEN (12 marks) Use a separate writing booklet.

4
(a) Evaluate Z k2.
k=2

(b) Let A and B be points with coordinates A(—9,7) and B(6,3). Find the coordinates

of the point P(z,y) that divides AB in the ratio 4 : 1.

(c) Suppose T divides F'G externally in the ratio 3 : 5. In what ratio does F' divide TG?

(d) Solve:
(i) 2sin?6 —sinf — 1 = 0, for 0° < 0 < 360°.

3
(ii) cos260 = g, for 0° < 0 < 360°.
(e) Consider the limiting sum 45 4+ 15+ 5+ - - -.

(i) Give a reason why the limiting sum is known to exist.

(ii) Find the limiting sum.

QUESTION ELEVEN (12 marks) Use a separate writing booklet.

(a) Find the equation of the tangent to y = 2> — 3z + 2 at = = 4.

(b) Differentiate:
(i) y= 2z —-1)(z +3)
(i) y = (7 — 42)°
(c) Consider the graphs of y = 2% and y = %az + 3.
(i) Determine the two points of intersection of the graphs.

(ii) Shade the region where y > 2 and y < 3z + 3.

Be careful to mark the corners and boundaries of the region correctly.

Exam continues overleaf ...

Marks
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QUESTION TWELVE (12 marks) Use a separate writing booklet. Marks

2x3>4.

(a) Solve the inequation

(b) A geometric sequence has fifth term 18 and ninth term 1458. Find the common ratio
and the first term.

()

50° 55°
2km ¢

From two points A and C on a straight horizontal road a balloon at B directly above
the road is observed to have angles of elevation of 50° and 55° respectively.

(i) Show that BC' = 1-59km.

(=] [~]

(ii) Find the height of the balloon above the road. Give your answer correct to
3 significant figures.

(d) The line ¢ has equation 12z — 5y + ¢ = 0 for some constant c.

=]

(i) Write down a simplified expression for the perpendicular distance from ¢ to a
point P(zg,yo).

(ii) The line is known to be a tangent to the circle (z —2)* + (y — 3)* = 1. Find the
possible values of c.

Exam continues next page ...
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QUESTION THIRTEEN (12 marks) Use a separate writing booklet.

(a) y

y =2z

-1 / 1 2 M 5

Use the graph above to solve the inequation x(z — 3)(x —4) > 2x.

1 1

=2 2.
1—cosf + 1+ cos@ coSee

(b) Prove that

(c) Use mathematical induction to prove that for all positive integers n,

1 N 1 N 1 P 1 _n
1x3 3x5 5xT 2n—1)2n+1) 2n+1°

(z—4)

(d) Consider the graph of y = =2

(i) Find any intercepts with the z and y axes.
(i

(iii

Write down the equation(s) of any vertical asymptote(s).

Find the equation of the horizontal asymptote.

)
)
)
)

(iv) Copy and fill in the following table:

x —1 1 3

Y

(v) Use parts (i)-(iv) to sketch the curve.

Exam continues overleaf ...

y=z(xr —3)(x—4)

o] [

=1 =] =1 =]

]
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QUESTION FOURTEEN (12 marks) Use a separate writing booklet. Marks
3 5
(a) For what values of x is the tangent to y = (— — 932) horizontal?
x
Y
(b)
P
. x
-2 f1 12 4
The diagram above shows the graphs of y = 3z +3 — 2% and y = |2z — 1.

Find the exact value of the z-coordinate of the point P where the graphs intersect in
the second quadrant.

(c) Consider a cubic y = az® + ba® + cx, where a,b # 0, passing through the origin O.
One such cubic is shown in the diagram below.
Y

(i) Find the equation of the tangent at O for y = ax® + bx? + cx.

] [=]

(ii) Find the coordinates of the point () where the tangent in part (i) meets the cubic
again.

(iii) Show that the y-intercept of the tangent at @) is independent of c.

][]

(iv) Suppose the tangent at ) meets the cubic again at R. Show that the z-coordinates
of R, O and @) form an arithmetic sequence.

End of Section 11

END OF EXAMINATION
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SECTION I - Multiple Choice

QUESTION ONE

fa) = 5

— 13';_1
3
Hence f'(z) = % x (—=1)z~?

B 1
Y

; 1

F@ =5 @
1
12

The correct answer is

QUESTION TWO

1
sec = ——, hence the incorrect statement is IEI
c

0s 6

QUESTION THREE
0-002020202... = 0-002 + 0-00002 + 0-0000002 + ... 4+ 0-000000002 + - - -
= 0-002 4 0-002 = 100 + 0-002 = 10000 + 0-002 = 1000000 + - - -

1
Each sucessive term is divided by 100, hence the common ratio is — = 0-01.

The correct answer is .

QUESTION FOUR

The function has an asymptote at z = 2, so we want a limit statement for x — 2, that is A
or C.

If = approaches 2 from below, it is less than 2, so x — 2 is negative.

Hence the correct answer is .

QUESTION FIVE
logs #* 2 X logg

logs logs
=2

Hence the correct answer is IEl
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QUESTION SIX
If we substitute the point (2, 1) into the expression 2x 4+ 3y — 1 + k(4x — 9y + 3) = 0, then we

get:
22)+3(1) -1+ k(4(2)—9(1)+3) =0
6+2k=0
k=-3
Hence the correct answer is .
QUESTION SEVEN
. 6v2—3
vV2-1
_(6V2-3)(V2+1)
V2 -2
C1246vV2-3v2-3
B 1
=9+3v2
Hence .
QUESTION EIGHT
By the cosine rule,
0— AB? + AC? — BC?
YT TN AB x AC
_ (@43 +(@+2)°—(a+1)
2(a+3)(a+2)
2)2 + (2a + 4)(2
= (at2)7+ (2a+4)(2) (difference of squares)
2(a+3)(a+2)
_(a+2)((a+2)+4)
2(a+3)(a+2)
_ (a+6)
2(a+3)

Hence the correct answer is .

(The pupil could expand the numerator as an alternative to using difference of squares.)
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SECTION II - Written Response

QUESTION NINE

(a) 2?2 —3x—10 _ (x —5)(z+2)

x+2 (x+2)
=z -5

(b) The function is defined where 2> — 4 > 0.
Y

AN /.

Thus the domain is z < —2 or x > 2.

(c) (i) ¥/ = 6x+2

(i) y=6vz
y =6x (1)z*
p_ 3
y_\/g

(d) This is an arithmetic progression. The first term is a = 3 and the common difference is 4.

Sn = 5(2a+ (n —1)d)

Si2 = 2 (2(3) + (12— 1)(4))
S12 =6 x 50

S12 =300

(e) (i) r =768 = 1536
1

—2
(ii) T, = ar™ !

Tio = 1536 x (3)°

= 1536 <+ 512
©) fa) =27 -2
fl-a) =29 — 22
flma) =27 —2°
flma) = - (27— 277)
f-2) = ~f()

hence the function has odd symmetry.
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(g) () flx+h)— f(z)=>5(x+ h)2 +4(z+ h) — (5332 + 4z)
= 5(2® + 2zh + h?) + 42 + 4h — 52% — 4z
= 10xh + 5h% + 4h

. . flx+h)— f(2)
/ JR—
(i) f(x) = lim T2
. 10xzh + 5h® + 4h
= lim
h—0 h
. h(10z + 4+ 5h)
= lim
h—0 h
= lim (10z + 4 + 5h)
h—0

=10z + 4

QUESTION TEN
4
(a) Y k* =243 +4
k=2

=4+9+16
=29
ko + Ll
(b) v =77
4(6) + 1(—9)
441
=3
_ ky2 + ly1
k+4¢
_4(3)+1(7)
o 4+1
19
5
The required point is P(3, %)

FT:TG=-3:5s0TF :FG=3:2.

(d) (i) 2sin?f —sinf — 1 =0
(2sinf + 1)(sinf — 1) =0

Hence 2sinf+1=0 Or sinf —1=0

sinez—% sinf =1

6 = 210°,330° 6 =90°
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(ii) Let u = 26. Then
cos 20 = ?, for 0° < 6 < 360°
3
COSUzg, for 0° < u < 720°

u = 30°,330°,390°, 690°
20 = 30°, 330°, 390°, 690°
6 = 15°,165°,195°, 345°

(e) This is a GP with common ratio r = 1.
(i) Since —1 < r < 1, the limiting sum exists.

(i) Soo = —

1—r
45 x3

1
1—§ X3
135

QUESTION ELEVEN

(a) y =2r—3
=2(4)—3 at x =4
=5
and y=a>—3x+2
= (4)* —3(4)+2
=6
Hence (y—1y1)=m(x— 1)
(y—6) =5(z—4)
y=>5xr—14

(ii) Let y =7 — 4a.

Then y = (7 — 4x)°
dy _dy du

de du dx

= 9u® x —4

= —36(7 — 42)®

du
du

dx
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(c) The graphs intersect when:
2? =1z +3

22 —2-6=0

2z +3)(x—2)=0

Hence they intersect at (—3,2) and (2,4).

(i)

QUESTION TWELVE

(2) x2—x3

x(z — 3)? 22(x — 3) > 4(x — 3)?

0> 4(x —3)? — 2z(x — 3)
> (z — 3) (4o — 12 — 22)
> (2 —3)(2x —12)

>4, x#3

Hence 3 < = < 6.

(b) We have Ts = ar* and Ty = arS. Hence
ar' =18
ar® = 1458
Thus |2 |+ 1] gives:
rt =81
r==x3
Hence from ,

18
R
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(c) Note first that ZABC = 75° (angle sum of triangle). Now by the Sine Rule;

BC 2
sin50°  sin 75°
2 x sin H0°
BC=""""
sin 75°
= 1.59km

Construct BX 1 AC with X on AC. Thus BX is the required height of the balloon above
the road. Then by right-angled triangle trigonometry,

. BX . rro
(i) T5g = 5o 55
BX =1-59 x sin55°
= 1-30km

(d) (i) The perpendicular distance d from ¢ to P(x,yo) is given by
g 1229 — 5yo + ¢

V122 + 52
1220 — 5y + ¢
N 13
(ii) If £ is a tangent, then its distance d from the centre of the circle is exactly the radius 1.
Thus
[12(2) = 5(3) +¢| 1
13 B
112(2) = 5(3) + ¢| =13
lce+9] =13

Hencec+9=130rc+9 = —13.
Thus ¢ =4 or ¢ = —22.

QUESTION THIRTEEN

(a) We want the x values for which the cubic y = z(x — 3)(z — 4) is ABOVE the line y = 2z.
Thus the solution set is 0 < x < 2 or x > 5.

1 1
1 —cosé * 14 cosf
(1 4+ cosf) + (1 — cosb)
(1 + cosB)(1 — cos )
2

1 —cos26
B 2
sin? 6

= 2 cosec? 6

(b) LHS =

(c)
A. First we shall check the case n = 1;

LHS = %3 RHS = 2><1+1

_ 1

3

Wl =
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Thus the result is true for n = 1.
B. Now we assume the result holds for n = k, that is that
LN S S 1 ok
1x3 3x5 5xT (2k—1)(2k+1) 2k+1°
We want to show that the result holds for n = k£ + 1, namely that
LN S S 1  k+1
1x3 3x5 5xT E+1D-1D)2Kk+1)+1)  2(k+1)+1°

Consider the LHS of this expression;

1 1 1
LHS = ——+ ——+ -+

1x3 3x5
1 1

+

2k+1)—12k+1)+1)
1

1

1x3 L
k 1
_2k+1+@k+U@k+$
k(2k+3) +1
(2k +1)(2k + 3)
2k + 3k + 1
(2k +1)(2k + 3)
(k4 1)(k+1)
- (2k+1)(2k +3)
(k+1)

2k + 3)
= RHS

~1x3  3x5

C. The result now follows for all positive integers n = 1,2, ..

ical induction.

The z-intercept is (4,0).

(ii) The vertical asymptotes are x = 0 and = = 2.

(=)
(lll)y_4x(x—2)
_332—833-1-16 +—x?
4z —8x a2
1-24 238
1
~ 1 as — — 0

=

1

25 9 1

(2k — 1)(2k + 1)

+

Ck+1) - D2Ek+1)+1)

., by the principle of mathemat-

There is no y-intercept, since z = 0 is not on the domain.
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(v)

QUESTION FOURTEEN

(a) Let u =8z ' — 22, and then

Then y=u’
dy _dy du
de  du = dx

= 5u* x (—8z7% — 2x)

=5(5 —2%)* (5 — 22)

The tangent is horizontal when

L —
T

8 =73
xr =2

(b) The graphs intersect where:
3r+3—2°=—(22—1)
0=2z>—5x—2
The solutions of this quadratic are:
5+ /25 —4x1x(-2)
- 2 x 1
51433
2

T

We need the negative root, i.e. x =

3 4
dy 4
— =5
du Y
d
ﬁ——8x_2—2x
OR —f—z—Qx
4 = o3
v =1
5—+/33

2
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(c) () ¥ = 3az? + 2bx + ¢
=c at x =0

The tangent to the cubic at (0,0) is y = cx.

(ii) This tangent intersects the cubic when
ax® + br® + cr = cx

ar® +bx? =0
2*(ax +b) =0
Hence it intersects at x = 0 and again at z = —g, Yy = —%b.

(iii) We need to find the equation of the tangent at ). Thus
y = 3ax* + 2bx + ¢

=3a(-2)?+20(-2)+¢c atz=-2
e w
= % +c
and the tangent is
y—y1 =m(z — 1)
y+ L=+t
y-l—%b:(%-l—c)x-l—g—z-i-%b
y=Z +o)r+%
The y-intercept is (0, Z—z), which is independent of c.

(iv) Now intersect THIS tangent and the original cubic:
az® + bx? + cx = (%-l—c)x-i-z—z
az® + ba? —(%)x— Z—z =0
az®(z+ %) — %(:Jc-l- by =0
(ax® — %)(w +4=0
az —2)(z+2)>=0
The tangent and cubic intersect again at x = g.

The coordinates g, 0 and —g form an AP with common difference —

b

a

BDD



	FormV_Extension1_HalfYearly_2014-3
	FormV_Extension1_HalfYearly_Solution_2014-2

