

2014 Half-Yearly Examination

FORM V

MATHEMATICS 3 UNIT

Monday 19th May 2014

General Instructions

- Writing time - 1 hour 30 minutes
- Write using black or blue pen.
- Board-approved calculators and templates may be used.

Total - 80 Marks

- All questions may be attempted.

Section I-8 Marks

- Questions 1-8 are of equal value.
- Record your solutions to the multiple choice on the sheet provided.

Section II - 72 Marks

- Questions 9-14 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.
5A: BDD
5B: MLS
5C: LYL
5D: LRP
5E: PKH
5F: BR
5G: SG

Checklist

- SGS booklets - 6 per boy
- Multiple choice answer sheet
- Candidature - 125 boys

Examiner BDD

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

Given $f(x)=\frac{1}{3 x}$, what is the value of $f^{\prime}(2)$?
(A) $-\frac{1}{12}$
(B) $-\frac{1}{6}$
(C) $\frac{1}{3}$
(D) $-\frac{3}{4}$

QUESTION TWO

Which of the following statements is NOT correct?
(A) $1+\tan ^{2} \theta=\sec ^{2} \theta$
(B) $\cos \left(90^{\circ}-\theta\right)=\sin \theta$
(C) $\tan \theta=\frac{\sin \theta}{\cos \theta}$
(D) $\sec \theta=\frac{1}{\sin \theta}$

QUESTION THREE

The recurring decimal $0 \cdot 002020202 \ldots$ may be regarded as the limiting sum of a GP with common ratio:
(A) 0.001
(B) 0.002
(C) 0.01
(D) $\quad 0.02$

QUESTION FOUR

Which of the following is a correct limit statement about $y=\frac{1}{x-2}$?
(A) $y \rightarrow \infty$ as $x \rightarrow 2^{-}$.
(B) $\quad y \rightarrow \infty$ as $x \rightarrow-2$.
(C) $y \rightarrow-\infty$ as $x \rightarrow 2^{-}$.
(D) $y \rightarrow-\infty$ as $x \rightarrow-2$.

QUESTION FIVE

The expression $\frac{\log _{3} x^{2}}{\log _{3} x}$ simplifies to:
(A) x
(B) $\log _{3} x$
(C) $\quad \log _{3}\left(x^{2}-x\right)$
(D) 2

QUESTION SIX

A line passing through the point of intersection of $2 x+3 y-1=0$ and $4 x-9 y+3=0$ may be written in the form $2 x+3 y-1+k(4 x-9 y+3)=0$ for some real number k.

For what value of k does this line pass through the point $(2,1)$?
(A) $\quad k=2$
(B) $\quad k=-2$
(C) $\quad k=-3$
(D) $\quad k=3$

QUESTION SEVEN

The common ratio of the geometric sequence $\sqrt{2}-1,6 \sqrt{2}-3,45 \sqrt{2}+9, \ldots$ is:
(A) $3+\sqrt{2}$
(B) $9+3 \sqrt{2}$
(C) $5 \sqrt{2}-2$
(D) $\frac{3-\sqrt{2}}{9}$

QUESTION EIGHT

The value of $\cos \theta$ in the triangle above, for $a>-1$, is:
(A) $\frac{a+2}{a+3}$
(B) $\frac{a+6}{2 a+6}$
(C) $\frac{a^{2}+12 a+14}{2(a+3)(a+2)}$
(D) $\frac{a^{2}+12}{2 a^{2}+10 a+12}$
\qquad

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.
Show all necessary working.
Start a new booklet for each question.

QUESTION NINE (12 marks) Use a separate writing booklet. Marks
(a) Simplify $\frac{x^{2}-3 x-10}{x+2}$.
(b) Write down the natural domain of the function $f(x)=\sqrt{x^{2}-4}$.
(c) Differentiate:
(i) $y=3 x^{2}+2 x+4$
(ii) $y=6 \sqrt{x}$
(d) Find the sum of the first twelve terms of the sequence $3,7,11, \ldots$
(e) Given the geometric sequence $1536,768,384, \ldots$
(i) find the common ratio,
(ii) find the tenth term.
(f) Determine whether the function $f(x)=2^{x}-2^{-x}$ is even, odd or neither.
(g) Consider the function $f(x)=5 x^{2}+4 x$.
(i) Simplify the expression $f(x+h)-f(x)$.
(ii) Hence use the formula

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

to differentiate $f(x)=5 x^{2}+4 x$ from first principles.

QUESTION TEN (12 marks) Use a separate writing booklet. Marks
(a) Evaluate $\sum_{k=2}^{4} k^{2}$.
(b) Let A and B be points with coordinates $A(-9,7)$ and $B(6,3)$. Find the coordinates of the point $P(x, y)$ that divides $A B$ in the ratio $4: 1$.
(c) Suppose T divides $F G$ externally in the ratio $3: 5$. In what ratio does F divide $T G$?
(d) Solve:
(i) $2 \sin ^{2} \theta-\sin \theta-1=0$, for $0^{\circ} \leq \theta \leq 360^{\circ}$.
(ii) $\cos 2 \theta=\frac{\sqrt{3}}{2}$, for $0^{\circ} \leq \theta \leq 360^{\circ}$.
(e) Consider the limiting sum $45+15+5+\cdots$.
(i) Give a reason why the limiting sum is known to exist.
(ii) Find the limiting sum.

QUESTION ELEVEN (12 marks) Use a separate writing booklet.
(a) Find the equation of the tangent to $y=x^{2}-3 x+2$ at $x=4$.
(b) Differentiate:
(i) $y=(2 x-1)(x+3)$
(ii) $y=(7-4 x)^{9}$
(c) Consider the graphs of $y=x^{2}$ and $y=\frac{1}{2} x+3$.
(i) Determine the two points of intersection of the graphs.
(ii) Shade the region where $y>x^{2}$ and $y \leq \frac{1}{2} x+3$.

Be careful to mark the corners and boundaries of the region correctly.

QUESTION TWELVE (12 marks) Use a separate writing booklet.
(a) Solve the inequation $\frac{2 x}{x-3}>4$.
(b) A geometric sequence has fifth term 18 and ninth term 1458. Find the common ratio and the first term.
(c)

From two points A and C on a straight horizontal road a balloon at B directly above the road is observed to have angles of elevation of 50° and 55° respectively.
(i) Show that $B C \doteqdot 1.59 \mathrm{~km}$.
(ii) Find the height of the balloon above the road. Give your answer correct to 3 significant figures.
(d) The line ℓ has equation $12 x-5 y+c=0$ for some constant c.
(i) Write down a simplified expression for the perpendicular distance from ℓ to a point $P\left(x_{0}, y_{0}\right)$.
(ii) The line is known to be a tangent to the circle $(x-2)^{2}+(y-3)^{2}=1$. Find the possible values of c.
(a)

Use the graph above to solve the inequation $x(x-3)(x-4)>2 x$.
(b) Prove that $\frac{1}{1-\cos \theta}+\frac{1}{1+\cos \theta}=2 \operatorname{cosec}^{2} \theta$.
(c) Use mathematical induction to prove that for all positive integers n,

$$
\frac{1}{1 \times 3}+\frac{1}{3 \times 5}+\frac{1}{5 \times 7}+\cdots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1} .
$$

(d) Consider the graph of $y=\frac{(x-4)^{2}}{4 x(x-2)}$.
(i) Find any intercepts with the x and y axes.
(ii) Write down the equation(s) of any vertical asymptote(s).
(iii) Find the equation of the horizontal asymptote.
(iv) Copy and fill in the following table:

x	-1	1	3
y			

(v) Use parts (i)-(iv) to sketch the curve.
(a) For what values of x is the tangent to $y=\left(\frac{8}{x}-x^{2}\right)^{5}$ horizontal?
(b)

The diagram above shows the graphs of $y=3 x+3-x^{2}$ and $y=|2 x-1|$.
Find the exact value of the x-coordinate of the point P where the graphs intersect in the second quadrant.
(c) Consider a cubic $y=a x^{3}+b x^{2}+c x$, where $a, b \neq 0$, passing through the origin O. One such cubic is shown in the diagram below.

(i) Find the equation of the tangent at O for $y=a x^{3}+b x^{2}+c x$.
(ii) Find the coordinates of the point Q where the tangent in part (i) meets the cubic again.
(iii) Show that the y-intercept of the tangent at Q is independent of c.
(iv) Suppose the tangent at Q meets the cubic again at R. Show that the x-coordinates of R, O and Q form an arithmetic sequence.

Sydney Grammar School

NAME: \qquad

Class: \qquad Master:

Question One

2014
Half-Yearly Examination FORM V
MATHEMATICS 3 UNIT
Monday 19th May 2014

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

A

B

C

D \bigcirc

Question Two

A \bigcirc
B
C

D \bigcirc

Question Three

A
B
C

D \bigcirc

Question Four

A \bigcirc
B$\mathrm{C} \bigcirc$
D \bigcirc

Question Five
A
B
C
D \bigcirc

Question Six

A

B
C

D \bigcirc

Question Seven

A \bigcirc
BD \bigcirc

Question Eight

A
B \bigcirc
C
D \bigcirc

SECTION I - Multiple Choice

QUESTION ONE

$$
\begin{aligned}
f(x) & =\frac{1}{3 x} \\
& =\frac{1}{3} x^{-1}
\end{aligned}
$$

Hence $f^{\prime}(x)=\frac{1}{3} \times(-1) x^{-2}$

$$
\begin{aligned}
& =-\frac{1}{3 x^{2}} \\
f^{\prime}(2) & =-\frac{1}{3 \times(2)^{2}} \\
& =-\frac{1}{12}
\end{aligned}
$$

The correct answer is A

QUESTION TWO

$\sec \theta=\frac{1}{\cos \theta}$, hence the incorrect statement is D.

QUESTION THREE

$0 \cdot 002020202 \ldots=0 \cdot 002+0 \cdot 00002+0 \cdot 0000002+\ldots+0 \cdot 000000002+\cdots$

$$
=0.002+0.002 \div 100+0.002 \div 10000+0.002 \div 1000000+\cdots
$$

Each sucessive term is divided by 100 , hence the common ratio is $\frac{1}{100}=0.01$.
The correct answer is C.

QUESTION FOUR

The function has an asymptote at $x=2$, so we want a limit statement for $x \rightarrow 2$, that is A or C.
If x approaches 2 from below, it is less than 2 , so $x-2$ is negative.
Hence the correct answer is C .

QUESTION FIVE

$$
\begin{aligned}
\frac{\log _{3} x^{2}}{\log _{3} x} & =\frac{2 \times \log _{3} x}{\log _{3} x} \\
& =2
\end{aligned}
$$

Hence the correct answer is D.

QUESTION SIX

If we substitute the point $(2,1)$ into the expression $2 x+3 y-1+k(4 x-9 y+3)=0$, then we get:

$$
\begin{aligned}
2(2)+3(1)-1+k(4(2)-9(1)+3) & =0 \\
6+2 k & =0 \\
k & =-3
\end{aligned}
$$

Hence the correct answer is \qquad

QUESTION SEVEN

$$
\begin{aligned}
r & =\frac{6 \sqrt{2}-3}{\sqrt{2}-1} \\
& =\frac{(6 \sqrt{2}-3)(\sqrt{2}+1)}{\sqrt{2}^{2}-1^{2}} \\
& =\frac{12+6 \sqrt{2}-3 \sqrt{2}-3}{1} \\
& =9+3 \sqrt{2}
\end{aligned}
$$

Hence B .

QUESTION EIGHT

By the cosine rule,

$$
\begin{aligned}
\cos \theta & =\frac{A B^{2}+A C^{2}-B C^{2}}{2 \times A B \times A C} \\
& =\frac{(a+3)^{2}+(a+2)^{2}-(a+1)^{2}}{2(a+3)(a+2)} \\
& =\frac{(a+2)^{2}+(2 a+4)(2)}{2(a+3)(a+2)} \quad \text { (difference of squares) } \\
& =\frac{(a+2)((a+2)+4)}{2(a+3)(a+2)} \\
& =\frac{(a+6)}{2(a+3)}
\end{aligned}
$$

Hence the correct answer is B.
(The pupil could expand the numerator as an alternative to using difference of squares.)

SECTION II - Written Response

QUESTION NINE

(a) $\frac{x^{2}-3 x-10}{x+2}=\frac{(x-5)(x+2)}{(x+2)}$

$$
=x-5
$$

(b) The function is defined where $x^{2}-4 \geq 0$.

Thus the domain is $x \leq-2$ or $x \geq 2$.
(c) (i) $y^{\prime}=6 x+2$
(ii) $y=6 \sqrt{x}$
$=6 x^{\frac{1}{2}}$
$y^{\prime}=6 \times\left(\frac{1}{2}\right) x^{-\frac{1}{2}}$
$y^{\prime}=\frac{3}{\sqrt{x}}$
(d) This is an arithmetic progression. The first term is $a=3$ and the common difference is 4 .

$$
\begin{aligned}
S_{n} & =\frac{n}{2}(2 a+(n-1) d) \\
S_{12} & =\frac{12}{2}(2(3)+(12-1)(4)) \\
S_{12} & =6 \times 50 \\
S_{12} & =300
\end{aligned}
$$

(e) (i) $r=768 \div 1536$

$$
=\frac{1}{2}
$$

(ii) $T_{n}=a r^{n-1}$

$$
\begin{aligned}
T_{10} & =1536 \times\left(\frac{1}{2}\right)^{9} \\
& =1536 \div 512 \\
& =3
\end{aligned}
$$

(f) $\quad f(x)=2^{x}-2^{-x}$
$f(-x)=2^{(-x)}-2^{-(-x)}$
$f(-x)=2^{-x}-2^{x}$
$f(-x)=-\left(2^{x}-2^{-x}\right)$
$f(-x)=-f(x)$
hence the function has odd symmetry.
(g) (i) $f(x+h)-f(x)=5(x+h)^{2}+4(x+h)-\left(5 x^{2}+4 x\right)$

$$
\begin{aligned}
& =5\left(x^{2}+2 x h+h^{2}\right)+4 x+4 h-5 x^{2}-4 x \\
& =10 x h+5 h^{2}+4 h
\end{aligned}
$$

(ii) $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{10 x h+5 h^{2}+4 h}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(10 x+4+5 h)}{h} \\
& =\lim _{h \rightarrow 0}(10 x+4+5 h) \\
& =10 x+4
\end{aligned}
$$

QUESTION TEN

(a) $\sum_{k=2}^{4} k^{2}=2^{2}+3^{2}+4^{2}$

$$
\begin{aligned}
& =4+9+16 \\
& =29
\end{aligned}
$$

(b) $x=\frac{k x_{2}+\ell x_{1}}{k+\ell}$

$$
\begin{aligned}
& =\frac{4(6)+1(-9)}{4+1} \\
& =3 \\
y & =\frac{k y_{2}+\ell y_{1}}{k+\ell} \\
& =\frac{4(3)+1(7)}{4+1} \\
& =\frac{19}{5}
\end{aligned}
$$

The required point is $P\left(3, \frac{19}{5}\right)$.
(c)

$F T: T G=-3: 5$ so $T F: F G=3: 2$.
(d) (i) $2 \sin ^{2} \theta-\sin \theta-1=0$

$$
(2 \sin \theta+1)(\sin \theta-1)=0
$$

Hence $\quad 2 \sin \theta+1=0$

$$
\begin{aligned}
\sin \theta & =-\frac{1}{2} \\
\theta & =210^{\circ}, 330^{\circ}
\end{aligned}
$$

Or $\quad \sin \theta-1=0$
$\sin \theta=1$

$$
\theta=90^{\circ}
$$

(ii) Let $u=2 \theta$. Then

$$
\begin{aligned}
\cos 2 \theta & =\frac{\sqrt{3}}{2}, \quad \text { for } 0^{\circ} \leq \theta \leq 360^{\circ} \\
\cos u & =\frac{\sqrt{3}}{2}, \quad \text { for } 0^{\circ} \leq u \leq 720^{\circ} \\
u & =30^{\circ}, 330^{\circ}, 390^{\circ}, 690^{\circ} \\
2 \theta & =30^{\circ}, 330^{\circ}, 390^{\circ}, 690^{\circ} \\
\theta & =15^{\circ}, 165^{\circ}, 195^{\circ}, 345^{\circ}
\end{aligned}
$$

(e) This is a GP with common ratio $r=\frac{1}{3}$.
(i) Since $-1<r<1$, the limiting sum exists.
(ii) $S_{\infty}=\frac{a}{1-r}$

$$
\begin{aligned}
& =\frac{45}{1-\frac{1}{3}} \times 3 \\
& =\frac{135}{3-1} \\
& =67.5
\end{aligned}
$$

QUESTION ELEVEN

> (a)

$$
\begin{aligned}
y^{\prime} & =2 x-3 \\
& =2(4)-3 \quad \text { at } x=4 \\
& =5
\end{aligned}
$$

and

$$
\begin{aligned}
y & =x^{2}-3 x+2 \\
& =(4)^{2}-3(4)+2 \\
& =6
\end{aligned}
$$

Hence $\quad\left(y-y_{1}\right)=m\left(x-x_{1}\right)$

$$
\begin{aligned}
(y-6) & =5(x-4) \\
y & =5 x-14
\end{aligned}
$$

(b) (i) $y=(2 x-1)(x+3)$

$$
\begin{aligned}
& =2 x^{2}+5 x-3 \\
y^{\prime} & =4 x+5
\end{aligned}
$$

(ii) Let $y=7-4 x$.

$$
\text { Then } \begin{aligned}
y & =(7-4 x)^{9} \\
& =u^{9} \\
\frac{d y}{d x} & =\frac{d y}{d u} \times \frac{d u}{d x} \\
& =9 u^{8} \times-4 \\
& =-36(7-4 x)^{8}
\end{aligned}
$$

(c) The graphs intersect when:

$$
\begin{aligned}
x^{2} & =\frac{1}{2} x+3 \\
2 x^{2}-x-6 & =0 \\
(2 x+3)(x-2) & =0
\end{aligned}
$$

Hence they intersect at $\left(-\frac{3}{2}, \frac{9}{4}\right)$ and $(2,4)$.
(i)

QUESTION TWELVE

(a)

$$
\frac{2 x}{x-3}>4, \quad x \neq 3
$$

$$
\times(x-3)^{2} \quad 2 x(x-3)>4(x-3)^{2}
$$

$$
0>4(x-3)^{2}-2 x(x-3)
$$

$$
0>(x-3)(4 x-12-2 x)
$$

$$
0>(x-3)(2 x-12)
$$

Hence $3<x<6$.
(b) We have $T_{5}=a r^{4}$ and $T_{9}=a r^{8}$. Hence

$$
\begin{align*}
& a r^{4}=18 \\
& a r^{8}=1458
\end{align*}
$$

Thus $\sqrt[2]{1} \div \sqrt{1}$ gives:

$$
\begin{aligned}
r^{4} & =81 \\
r & = \pm 3
\end{aligned}
$$

Hence from
$a=\frac{18}{81}$

$$
=\frac{2}{9}
$$

(c) Note first that $\angle A B C=75^{\circ}$ (angle sum of triangle). Now by the Sine Rule;

$$
\begin{aligned}
\frac{B C}{\sin 50^{\circ}} & =\frac{2}{\sin 75^{\circ}} \\
B C & =\frac{2 \times \sin 50^{\circ}}{\sin 75^{\circ}} \\
& \doteqdot 1.59 \mathrm{~km}
\end{aligned}
$$

Construct $B X \perp A C$ with X on $A C$. Thus $B X$ is the required height of the balloon above the road. Then by right-angled triangle trigonometry,
(i) $\frac{B X}{1.59}=\sin 55^{\circ}$

$$
\begin{aligned}
B X & \doteqdot 1.59 \times \sin 55^{\circ} \\
& \doteqdot 1.30 \mathrm{~km}
\end{aligned}
$$

(d) (i) The perpendicular distance d from ℓ to $P\left(x_{0}, y_{0}\right)$ is given by

$$
\begin{aligned}
d & =\frac{\left|12 x_{0}-5 y_{0}+c\right|}{\sqrt{12^{2}+5^{2}}} \\
& =\frac{\left|12 x_{0}-5 y_{0}+c\right|}{13}
\end{aligned}
$$

(ii) If ℓ is a tangent, then its distance d from the centre of the circle is exactly the radius 1 . Thus

$$
\begin{aligned}
\frac{|12(2)-5(3)+c|}{13} & =1 \\
|12(2)-5(3)+c| & =13 \\
|c+9| & =13
\end{aligned}
$$

Hence $c+9=13$ or $c+9=-13$.
Thus $c=4$ or $c=-22$.

QUESTION THIRTEEN

(a) We want the x values for which the cubic $y=x(x-3)(x-4)$ is ABOVE the line $y=2 x$. Thus the solution set is $0<x<2$ or $x>5$.
(b) LHS $=\frac{1}{1-\cos \theta}+\frac{1}{1+\cos \theta}$

$$
\begin{aligned}
& =\frac{(1+\cos \theta)+(1-\cos \theta)}{(1+\cos \theta)(1-\cos \theta)} \\
& =\frac{2}{1-\cos ^{2} \theta} \\
& =\frac{2}{\sin ^{2} \theta} \\
& =2 \operatorname{cosec}^{2} \theta
\end{aligned}
$$

(c)
A. First we shall check the case $n=1$;

$$
\begin{aligned}
L H S & =\frac{1}{1 \times 3} & R H S & =\frac{1}{2 \times 1+1} \\
& =\frac{1}{3} & & =\frac{1}{3}
\end{aligned}
$$

Thus the result is true for $n=1$.
B. Now we assume the result holds for $n=k$, that is that

$$
\frac{1}{1 \times 3}+\frac{1}{3 \times 5}+\frac{1}{5 \times 7}+\cdots+\frac{1}{(2 k-1)(2 k+1)}=\frac{k}{2 k+1} .
$$

We want to show that the result holds for $n=k+1$, namely that

$$
\frac{1}{1 \times 3}+\frac{1}{3 \times 5}+\frac{1}{5 \times 7}+\cdots+\frac{1}{(2(k+1)-1)(2(k+1)+1)}=\frac{k+1}{2(k+1)+1} .
$$

Consider the LHS of this expression;

$$
\begin{aligned}
\text { LHS } & =\frac{1}{1 \times 3}+\frac{1}{3 \times 5}+\cdots+\frac{1}{(2(k+1)-1)(2(k+1)+1)} \\
& =\frac{1}{1 \times 3}+\frac{1}{3 \times 5}+\cdots+\frac{1}{(2 k-1)(2 k+1)}+\frac{1}{(2(k+1)-1)(2(k+1)+1)} \\
& =\frac{k}{2 k+1}+\frac{1}{(2 k+1)(2 k+3)} \\
& =\frac{k(2 k+3)+1}{(2 k+1)(2 k+3)} \\
& =\frac{2 k^{2}+3 k+1}{(2 k+1)(2 k+3)} \\
& =\frac{(2 k+1)(k+1)}{(2 k+1)(2 k+3)} \\
& =\frac{(k+1)}{(2 k+3)} \\
& =R H S
\end{aligned}
$$

C. The result now follows for all positive integers $n=1,2, \ldots$, by the principle of mathematical induction.
(d) (i) There is no y-intercept, since $x=0$ is not on the domain.

The x-intercept is $(4,0)$.
(ii) The vertical asymptotes are $x=0$ and $x=2$.
(iii) $y=\frac{(x-4)^{2}}{4 x(x-2)}$

$$
\begin{aligned}
& =\frac{x^{2}-8 x+16}{4 x^{2}-8 x} \div x^{2} \\
& =\frac{1-\frac{8}{x}+\frac{16}{x^{2}}}{4-\frac{8}{x}} \\
& \rightarrow \frac{1}{4} \quad \text { as } \frac{1}{x} \rightarrow 0
\end{aligned}
$$

Hence the horizontal asymptote is $y=\frac{1}{4}$.
(iv)

x	-1	1	3
y	$\frac{25}{12}$	$\frac{9}{-4}$	$\frac{1}{12}$

(v)

QUESTION FOURTEEN

(a) Let $u=8 x^{-1}-x^{2}$, and then

Then $y=u^{5}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d u} \times \frac{d u}{d x} \\
& =5 u^{4} \times\left(-8 x^{-2}-2 x\right) \\
& =5\left(\frac{8}{x}-x^{2}\right)^{4}\left(-\frac{8}{x^{2}}-2 x\right)
\end{aligned}
$$

The tangent is horizontal when

$$
\begin{aligned}
& \frac{8}{x}=x^{2} \\
& 8=x^{3} \\
& x=2 \\
& \text { OR } \quad-\frac{8}{x^{2}}=2 x \\
& -4=x^{3} \\
& x=-\sqrt[3]{4}
\end{aligned}
$$

(b) The graphs intersect where:

$$
\begin{aligned}
3 x+3-x^{2} & =-(2 x-1) \\
0 & =x^{2}-5 x-2
\end{aligned}
$$

The solutions of this quadratic are:

$$
\begin{aligned}
x & =\frac{5 \pm \sqrt{25-4 \times 1 \times(-2)}}{2 \times 1} \\
& =\frac{5 \pm \sqrt{33}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d y}{d u}=5 u^{4} \\
& \frac{d u}{d x}=-8 x^{-2}-2 x
\end{aligned}
$$

We need the negative root, i.e. $x=\frac{5-\sqrt{33}}{2}$.
(c) (i) $y^{\prime}=3 a x^{2}+2 b x+c$

$$
=c \quad \text { at } x=0
$$

The tangent to the cubic at $(0,0)$ is $y=c x$.
(ii) This tangent intersects the cubic when

$$
\begin{aligned}
a x^{3}+b x^{2}+c x & =c x \\
a x^{3}+b x^{2} & =0 \\
x^{2}(a x+b) & =0
\end{aligned}
$$

Hence it intersects at $x=0$ and again at $x=-\frac{b}{a}, y=-\frac{c b}{a}$.
(iii) We need to find the equation of the tangent at Q. Thus

$$
\begin{aligned}
y^{\prime} & =3 a x^{2}+2 b x+c \\
& =3 a\left(-\frac{b}{a}\right)^{2}+2 b\left(-\frac{b}{a}\right)+c \quad \text { at } x=-\frac{b}{a} \\
& =\frac{3 b^{2}}{a}-\frac{2 b^{2}}{a}+c \\
& =\frac{b^{2}}{a}+c
\end{aligned}
$$

and the tangent is

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y+\frac{c b}{a} & =\left(\frac{b^{2}}{a}+c\right)\left(x+\frac{b}{a}\right) \\
y+\frac{c b}{a} & =\left(\frac{b^{2}}{a}+c\right) x+\frac{b^{3}}{a^{2}}+\frac{c b}{a} \\
y & =\left(\frac{b^{2}}{a}+c\right) x+\frac{b^{3}}{a^{2}}
\end{aligned}
$$

The y-intercept is $\left(0, \frac{b^{3}}{a^{2}}\right)$, which is independent of c.
(iv) Now intersect THIS tangent and the original cubic:

$$
\begin{aligned}
a x^{3}+b x^{2}+c x & =\left(\frac{b^{2}}{a}+c\right) x+\frac{b^{3}}{a^{2}} \\
a x^{3}+b x^{2}-\left(\frac{b^{2}}{a}\right) x-\frac{b^{3}}{a^{2}} & =0 \\
a x^{2}\left(x+\frac{b}{a}\right)-\frac{b^{2}}{a}\left(x+\frac{b}{a}\right) & =0 \\
\left(a x^{2}-\frac{b^{2}}{a}\right)\left(x+\frac{b}{a}\right) & =0 \\
a\left(x-\frac{b}{a}\right)\left(x+\frac{b}{a}\right)^{2} & =0
\end{aligned}
$$

The tangent and cubic intersect again at $x=\frac{b}{a}$.
The coordinates $\frac{b}{a}, 0$ and $-\frac{b}{a}$ form an AP with common difference $-\frac{b}{a}$.

