SYDNEY GRAMMAR SCHOOL

2014 Half-Yearly Examination

FORM V

MATHEMATICS 3 UNIT

Monday 19th May 2014

General Instructions

- Writing time 1 hour 30 minutes
- Write using black or blue pen.
- Board-approved calculators and templates may be used.

Total — 80 Marks

• All questions may be attempted.

Section I – 8 Marks

- Questions 1–8 are of equal value.
- Record your solutions to the multiple choice on the sheet provided.

Section II – 72 Marks

- Questions 9–14 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Collection

- Write your name, class and master on each booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place your multiple choice answer sheet inside the answer booklet for Question Nine.
- Write your name and master on this question paper and submit it with your answers.

5A: BDD	5B: MLS	5C: LYL	5D: LRP
5E: PKH	5F: BR	5G: SG	

Checklist

- SGS booklets 6 per boy
- Multiple choice answer sheet
- Candidature 125 boys

Examiner BDD

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

Given $f(x) = \frac{1}{3x}$, what is the value of f'(2)? (A) $-\frac{1}{12}$ (B) $-\frac{1}{6}$ (C) $\frac{1}{3}$ (D) $-\frac{3}{4}$

QUESTION TWO

Which of the following statements is NOT correct?

(A)
$$1 + \tan^2 \theta = \sec^2 \theta$$
 (B) $\cos(90^\circ - \theta) = \sin \theta$
(C) $\tan \theta = \frac{\sin \theta}{\cos \theta}$ (D) $\sec \theta = \frac{1}{\sin \theta}$

QUESTION THREE

The recurring decimal 0.002020202... may be regarded as the limiting sum of a GP with common ratio:

(A)	0.001		(B)	0.002

(C) 0.01 (D) 0.02

QUESTION FOUR

Which of the following is a correct limit statement about $y = \frac{1}{x-2}$?

(A) $y \to \infty$ as $x \to 2^-$. (B) $y \to \infty$ as $x \to -2$. (C) $y \to -\infty$ as $x \to 2^-$. (D) $y \to -\infty$ as $x \to -2$.

QUESTION FIVE

The expression	$\frac{\log_3 x^2}{\log_3 x}$ simplifies to:		
(A)	x	(B)	$\log_3 x$
(C)	$\log_3(x^2 - x)$	(D)	2

Exam continues next page ...

QUESTION SIX

A line passing through the point of intersection of 2x + 3y - 1 = 0 and 4x - 9y + 3 = 0may be written in the form 2x + 3y - 1 + k(4x - 9y + 3) = 0 for some real number k.

For what value of k does this line pass through the point (2,1)?

(A) k = 2 (B) k = -2(C) k = -3 (D) k = 3

QUESTION SEVEN

The common ratio of the geometric sequence $\sqrt{2} - 1$, $6\sqrt{2} - 3$, $45\sqrt{2} + 9$, ... is:

(A) $3 + \sqrt{2}$ (B) $9 + 3\sqrt{2}$ (C) $5\sqrt{2} - 2$ (D) $\frac{3 - \sqrt{2}}{9}$

QUESTION EIGHT

The value of $\cos \theta$ in the triangle above, for a > -1, is:

(A) $\frac{a+2}{a+3}$ (B) $\frac{a+6}{2a+6}$ (C) $\frac{a^2+12a+14}{2(a+3)(a+2)}$ (D) $\frac{a^2+12}{2a^2+10a+12}$

End of Section I

Exam continues overleaf ...

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.

Show all necessary working.

Start a new booklet for each question.

QUESTION NINE (12 marks) Use a separate writing booklet.

(a) Simplify $\frac{x^2 - 3x - 10}{x + 2}$.

(b) Write down the natural domain of the function $f(x) = \sqrt{x^2 - 4}$.

- (c) Differentiate:
 - (i) $y = 3x^2 + 2x + 4$

(ii)
$$y = 6\sqrt{x}$$

- (d) Find the sum of the first twelve terms of the sequence 3, 7, 11,
- (e) Given the geometric sequence $1536, 768, 384, \ldots$
 - (i) find the common ratio,
 - (ii) find the tenth term.
- (f) Determine whether the function $f(x) = 2^x 2^{-x}$ is even, odd or neither.
- (g) Consider the function $f(x) = 5x^2 + 4x$.
 - (i) Simplify the expression f(x+h) f(x).
 - (ii) Hence use the formula

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

to differentiate $f(x) = 5x^2 + 4x$ from first principles.

Marks

1

1

1

1

 $\mathbf{2}$

1

1

1

 $\frac{2}{1}$

QUESTION TEN (12 marks) Use a separate writing booklet.

(a) Evaluate
$$\sum_{k=2}^{4} k^2$$
. 1

- (b) Let A and B be points with coordinates A(-9,7) and B(6,3). Find the coordinates **2** of the point P(x, y) that divides AB in the ratio 4:1.
- (c) Suppose T divides FG externally in the ratio 3 : 5. In what ratio does F divide TG? 1
- (d) Solve:
 - (i) $2\sin^2\theta \sin\theta 1 = 0$, for $0^{\circ} \le \theta \le 360^{\circ}$.

(ii)
$$\cos 2\theta = \frac{\sqrt{3}}{2}$$
, for $0^\circ \le \theta \le 360^\circ$. 3

- (e) Consider the limiting sum $45 + 15 + 5 + \cdots$.
 - (i) Give a reason why the limiting sum is known to exist.
 - (ii) Find the limiting sum.

QUESTION ELEVEN (12 marks) Use a separate writing booklet.

- (a) Find the equation of the tangent to $y = x^2 3x + 2$ at x = 4.
- (b) Differentiate:
 - (i) y = (2x 1)(x + 3)
 - (ii) $y = (7 4x)^9$

(c) Consider the graphs of $y = x^2$ and $y = \frac{1}{2}x + 3$.

- (i) Determine the two points of intersection of the graphs.
- (ii) Shade the region where $y > x^2$ and $y \le \frac{1}{2}x + 3$.

Be careful to mark the corners and boundaries of the region correctly.

Marks

3

1

1

Marks

3

 $\mathbf{2}$

 $\mathbf{2}$

 $\mathbf{2}$

3

QUESTION TWELVE (12 marks) Use a separate writing booklet.

(a) Solve the inequation
$$\frac{2x}{x-3} > 4$$
.

(b) A geometric sequence has fifth term 18 and ninth term 1458. Find the common ratio and the first term.

(c)

From two points A and C on a straight horizontal road a balloon at B directly above the road is observed to have angles of elevation of 50° and 55° respectively.

- (i) Show that $BC \doteq 1.59$ km.
- (ii) Find the height of the balloon above the road. Give your answer correct to 3 significant figures.
- (d) The line ℓ has equation 12x 5y + c = 0 for some constant c.
 - (i) Write down a simplified expression for the perpendicular distance from ℓ to a point $P(x_0, y_0)$.
 - (ii) The line is known to be a tangent to the circle $(x-2)^2 + (y-3)^2 = 1$. Find the **2** possible values of c.

3

3

Marks

Exam continues next page ...

QUESTION THIRTEEN (12)

(a)

(12 marks) Use a separate writing booklet.

Marks

1

 $\mathbf{2}$

3

1

1

1

1

 $\mathbf{2}$

Use the graph above to solve the inequation x(x-3)(x-4) > 2x.

(b) Prove that
$$\frac{1}{1 - \cos \theta} + \frac{1}{1 + \cos \theta} = 2 \operatorname{cosec}^2 \theta.$$

(c) Use mathematical induction to prove that for all positive integers n,

$$\frac{1}{1\times 3} + \frac{1}{3\times 5} + \frac{1}{5\times 7} + \dots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1}$$

(d) Consider the graph of $y = \frac{(x-4)^2}{4x(x-2)}$.

- (i) Find any intercepts with the x and y axes.
- (ii) Write down the equation(s) of any vertical asymptote(s).
- (iii) Find the equation of the horizontal asymptote.
- (iv) Copy and fill in the following table:

x	-1	1	3
y			

(v) Use parts (i)-(iv) to sketch the curve.

QUESTION FOURTEEN (12 marks) Use a separate writing booklet.

(a) For what values of x is the tangent to $y = \left(\frac{8}{x} - x^2\right)^5$ horizontal?

(b)

The diagram above shows the graphs of $y = 3x + 3 - x^2$ and y = |2x - 1|. Find the exact value of the x-coordinate of the point P where the graphs intersect in the second quadrant.

(c) Consider a cubic $y = ax^3 + bx^2 + cx$, where $a, b \neq 0$, passing through the origin O. One such cubic is shown in the diagram below.

- (i) Find the equation of the tangent at O for $y = ax^3 + bx^2 + cx$.
- (ii) Find the coordinates of the point Q where the tangent in part (i) meets the cubic again.
- (iii) Show that the y-intercept of the tangent at Q is independent of c.
- (iv) Suppose the tangent at Q meets the cubic again at R. Show that the x-coordinates of R, O and Q form an arithmetic sequence.

End of Section II

1 2

Marks

 $\mathbf{2}$

3

L	2	
Γ	2	

Sydney Grammar School

2014 Half-Yearly Examination FORM V MATHEMATICS 3 UNIT Monday 19th May 2014

•	Record your multiple choice answers
	by filling in the circle corresponding
	to your choice for each question.

- Fill in the circle completely.
- Each question has only one correct answer.

Question One				
A 🔿	В ()	С ()	D ()	
Question '	Гwo			
A 🔿	В ()	С ()	D 🔘	
Question '	Three			
A 🔿	В ()	С ()	D 🔘	
Question 1	Four			
A 🔿	В ()	С ()	D ()	
Question 1	Five			
A 🔾	В ()	С ()	D 🔿	
Question 8	Six			
A 🔿	В ()	С ()	D 🔘	
Question 8	Seven			
A 🔿	В ()	С ()	D ()	
Question 1	Eight			
A 🔾	В ()	$C \bigcirc$	D ()	

SECTION I - Multiple Choice

QUESTION ONE

$$f(x) = \frac{1}{3x}$$
$$= \frac{1}{3}x^{-1}$$
Hence $f'(x) = \frac{1}{3} \times (-1)x^{-2}$
$$= -\frac{1}{3x^2}$$
$$f'(2) = -\frac{1}{3 \times (2)^2}$$
$$= -\frac{1}{12}$$
The correct answer is A

QUESTION TWO

 $\sec \theta = \frac{1}{\cos \theta}$, hence the incorrect statement is D.

QUESTION THREE

 $0.002020202... = 0.002 + 0.00002 + 0.0000002 + ... + 0.000000002 + ... = 0.002 + 0.002 \div 100 + 0.002 \div 10000 + 0.002 \div 1000000 + ...$

Each successive term is divided by 100, hence the common ratio is $\frac{1}{100} = 0.01$.

The correct answer is C.

QUESTION FOUR

The function has an asymptote at x = 2, so we want a limit statement for $x \to 2$, that is A or C.

If x approaches 2 from below, it is less than 2, so x - 2 is negative. Hence the correct answer is C.

QUESTION FIVE

$$\frac{\log_3 x^2}{\log_3 x} = \frac{2 \times \log_3 x}{\log_3 x}$$
$$= 2$$

Hence the correct answer is D.

QUESTION SIX

If we substitute the point (2, 1) into the expression 2x + 3y - 1 + k(4x - 9y + 3) = 0, then we get:

$$2(2) + 3(1) - 1 + k(4(2) - 9(1) + 3) = 0$$

$$6 + 2k = 0$$

$$k = -3$$

Hence the correct answer is C.

QUESTION SEVEN

$$r = \frac{6\sqrt{2} - 3}{\sqrt{2} - 1}$$

= $\frac{(6\sqrt{2} - 3)(\sqrt{2} + 1)}{\sqrt{2}^2 - 1^2}$
= $\frac{12 + 6\sqrt{2} - 3\sqrt{2} - 3}{1}$
= $9 + 3\sqrt{2}$
Hence B.

QUESTION EIGHT

By the cosine rule,

$$\cos \theta = \frac{AB^2 + AC^2 - BC^2}{2 \times AB \times AC}$$

$$= \frac{(a+3)^2 + (a+2)^2 - (a+1)^2}{2(a+3)(a+2)}$$

$$= \frac{(a+2)^2 + (2a+4)(2)}{2(a+3)(a+2)}$$
(difference of squares)

$$= \frac{(a+2)((a+2)+4)}{2(a+3)(a+2)}$$

$$= \frac{(a+6)}{2(a+3)}$$
Hence the correct ensure is P

Hence the correct answer is **B**.

(The pupil could expand the numerator as an alternative to using difference of squares.)

SECTION II - Written Response

QUESTION NINE

(a)
$$\frac{x^2 - 3x - 10}{x + 2} = \frac{(x - 5)(x + 2)}{(x + 2)}$$

= $x - 5$

(b) The function is defined where $x^2 - 4 \ge 0$.

Thus the domain is $x \leq -2$ or $x \geq 2$.

(c) (i)
$$y' = 6x + 2$$

(ii) $y = 6\sqrt{x}$
 $= 6x^{\frac{1}{2}}$
 $y' = 6 \times (\frac{1}{2})x^{-\frac{1}{2}}$
 $y' = \frac{3}{\sqrt{x}}$

(d) This is an arithmetic progression. The first term is a = 3 and the common difference is 4. $S_n = \frac{n}{2}(2a + (n - 1)d)$ $S_{12} = \frac{12}{2}(2(3) + (12 - 1)(4))$ $S_{12} = 6 \times 50$ $S_{12} = 300$

(e) (i)
$$r = 768 \div 1536$$

 $= \frac{1}{2}$
(ii) $T_n = ar^{n-1}$
 $T_{10} = 1536 \times (\frac{1}{2})^9$
 $= 1536 \div 512$
 $= 3$
(f) $f(x) = 2^x - 2^{-x}$
 $f(-x) = 2^{(-x)} - 2^{-(-x)}$
 $f(-x) = 2^{-x} - 2^x$
 $f(-x) = -(2^x - 2^{-x})$
 $f(-x) = -f(x)$
hence the function has odd symmetry.

(g) (i)
$$f(x+h) - f(x) = 5(x+h)^2 + 4(x+h) - (5x^2 + 4x)$$

 $= 5(x^2 + 2xh + h^2) + 4x + 4h - 5x^2 - 4x$
 $= 10xh + 5h^2 + 4h$
(ii) $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
 $= \lim_{h \to 0} \frac{10xh + 5h^2 + 4h}{h}$
 $= \lim_{h \to 0} \frac{h(10x + 4 + 5h)}{h}$
 $= \lim_{h \to 0} (10x + 4 + 5h)$
 $= 10x + 4$

$\underset{4}{\mathbf{QUESTION TEN}}$

(a)
$$\sum_{k=2} k^2 = 2^2 + 3^2 + 4^2$$
$$= 4 + 9 + 16$$
$$= 29$$
(b)
$$x = \frac{kx_2 + \ell x_1}{k + \ell}$$
$$= \frac{4(6) + 1(-9)}{4 + 1}$$
$$= 3$$
$$y = \frac{ky_2 + \ell y_1}{k + \ell}$$
$$= \frac{4(3) + 1(7)}{4 + 1}$$
$$= \frac{19}{5}$$

The required point is $P(3, \frac{19}{5})$.

$$T = \frac{3}{F} = \frac{2}{G}$$

$$FT : TG = -3 : 5 \text{ so } TF : FG = 3 : 2.$$
(d) (i) $2\sin^2\theta - \sin\theta - 1 = 0$
 $(2\sin\theta + 1)(\sin\theta - 1) = 0$
Hence $2\sin\theta + 1 = 0$ Or $\sin\theta - 1 = 0$
 $\sin\theta = -\frac{1}{2}$ $\sin\theta = 1$
 $\theta = 210^\circ, 330^\circ$ $\theta = 90^\circ$

(ii) Let
$$u = 2\theta$$
. Then
 $\cos 2\theta = \frac{\sqrt{3}}{2}$, for $0^{\circ} \le \theta \le 360^{\circ}$
 $\cos u = \frac{\sqrt{3}}{2}$, for $0^{\circ} \le u \le 720^{\circ}$
 $u = 30^{\circ}, 330^{\circ}, 390^{\circ}, 690^{\circ}$
 $2\theta = 30^{\circ}, 330^{\circ}, 390^{\circ}, 690^{\circ}$
 $\theta = 15^{\circ}, 165^{\circ}, 195^{\circ}, 345^{\circ}$

- (e) This is a GP with common ratio $r = \frac{1}{3}$.
 - (i) Since -1 < r < 1, the limiting sum exists.

(ii)
$$S_{\infty} = \frac{a}{1-r}$$
$$= \frac{45}{1-\frac{1}{3}} \times 3$$
$$= \frac{135}{3-1}$$
$$= 67.5$$

QUESTION ELEVEN y' = 2x - 3(a)= 2(4) - 3 at x = 4= 5 $y = x^2 - 3x + 2$ and $= (4)^2 - 3(4) + 2$ = 6 $(y - y_1) = m(x - x_1)$ Hence (y-6) = 5(x-4)y = 5x - 14(b) (i) y = (2x - 1)(x + 3) $=2x^{2}+5x-3$ y' = 4x + 5(ii) Let y = 7 - 4x. $\frac{dy}{du} = 9u^8$ Then $y = (7 - 4x)^9$ $= u^9$ $\frac{du}{dx} = -4$ $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$ $=9u^8 \times -4$ $= -36(7 - 4x)^8$

```
(c) The graphs intersect when:

x^{2} = \frac{1}{2}x + 3
2x^{2} - x - 6 = 0
(2x + 3)(x - 2) = 0
Hence they intersect at \left(-\frac{3}{2}, \frac{9}{4}\right) and (2, 4).

(i)
```


QUESTION TWELVE

Hence 3 < x < 6.

(b) We have
$$T_5 = ar^4$$
 and $T_9 = ar^8$. Hence
 $ar^4 = 18$ 1
 $ar^8 = 1458$ 2
Thus 2 \div 1 gives:
 $r^4 = 81$
 $r = \pm 3$
Hence from 1,
 $a = \frac{18}{81}$
 $= \frac{2}{9}$

(c) Note first that $\angle ABC = 75^{\circ}$ (angle sum of triangle). Now by the Sine Rule; BC 2

 $\frac{BC}{\sin 50^{\circ}} = \frac{2}{\sin 75^{\circ}}$ $BC = \frac{2 \times \sin 50^{\circ}}{\sin 75^{\circ}}$ $\approx 1.59 \,\mathrm{km}$

Construct $BX \perp AC$ with X on AC. Thus BX is the required height of the balloon above the road. Then by right-angled triangle trigonometry,

i)
$$\frac{BX}{1\cdot 59} = \sin 55^{\circ}$$

 $BX \doteq 1\cdot 59 \times \sin 55^{\circ}$
 $\doteq 1\cdot 30 \text{ km}$

(

(d) (i) The perpendicular distance d from ℓ to $P(x_0, y_0)$ is given by

$$d = \frac{|12x_0 - 5y_0 + c|}{\sqrt{12^2 + 5^2}} = \frac{|12x_0 - 5y_0 + c|}{13}$$

(ii) If ℓ is a tangent, then its distance d from the centre of the circle is exactly the radius 1. Thus

$$\frac{|12(2) - 5(3) + c|}{13} = 1$$

$$|12(2) - 5(3) + c| = 13$$

$$|c + 9| = 13$$
Hence $c + 9 = 13$ or $c + 9 = -13$.
Thus $c = 4$ or $c = -22$.

QUESTION THIRTEEN

(a) We want the x values for which the cubic y = x(x-3)(x-4) is ABOVE the line y = 2x. Thus the solution set is 0 < x < 2 or x > 5.

(b) LHS =
$$\frac{1}{1 - \cos \theta} + \frac{1}{1 + \cos \theta}$$

= $\frac{(1 + \cos \theta) + (1 - \cos \theta)}{(1 + \cos \theta)(1 - \cos \theta)}$
= $\frac{2}{1 - \cos^2 \theta}$
= $\frac{2}{\sin^2 \theta}$
= $2 \operatorname{cosec}^2 \theta$

(c)

A. First we shall check the case n = 1; $LHS = \frac{1}{1 \times 3} RHS = \frac{1}{2 \times 1 + 1}$ $= \frac{1}{3} = \frac{1}{3}$

Thus the result is true for n = 1.

B. Now we assume the result holds for n = k, that is that

$$\frac{1}{1\times 3} + \frac{1}{3\times 5} + \frac{1}{5\times 7} + \dots + \frac{1}{(2k-1)(2k+1)} = \frac{k}{2k+1}$$

We want to show that the result holds for n = k + 1, namely that

$$\frac{1}{1\times 3} + \frac{1}{3\times 5} + \frac{1}{5\times 7} + \dots + \frac{1}{(2(k+1)-1)(2(k+1)+1)} = \frac{k+1}{2(k+1)+1}$$

Consider the LHS of this expression;

$$LHS = \frac{1}{1 \times 3} + \frac{1}{3 \times 5} + \dots + \frac{1}{(2(k+1)-1)(2(k+1)+1)}$$

$$= \frac{1}{1 \times 3} + \frac{1}{3 \times 5} + \dots + \frac{1}{(2k-1)(2k+1)} + \frac{1}{(2(k+1)-1)(2(k+1)+1)}$$

$$= \frac{k}{2k+1} + \frac{1}{(2k+1)(2k+3)}$$

$$= \frac{k(2k+3)+1}{(2k+1)(2k+3)}$$

$$= \frac{2k^2 + 3k + 1}{(2k+1)(2k+3)}$$

$$= \frac{(2k+1)(k+1)}{(2k+1)(2k+3)}$$

$$= \frac{(k+1)}{(2k+3)}$$

$$= RHS$$

- C. The result now follows for all positive integers n = 1, 2, ..., by the principle of mathematical induction.
- (d) (i) There is no y-intercept, since x = 0 is not on the domain. The x-intercept is (4, 0).
 - (ii) The vertical asymptotes are x = 0 and x = 2. $(x - 4)^2$

(iii)
$$y = \frac{(x-4)^2}{4x(x-2)}$$

= $\frac{x^2 - 8x + 16}{4x^2 - 8x} \div x^2$
= $\frac{1 - \frac{8}{x} + \frac{16}{x^2}}{4 - \frac{8}{x}}$
 $\rightarrow \frac{1}{4}$ as $\frac{1}{x} \rightarrow 0$

Hence the horizontal asymptote is $y = \frac{1}{4}$.

(iv)

x	-1	1	3
y	$\frac{25}{12}$	$\frac{9}{-4}$	$\frac{1}{12}$

QUESTION FOURTEEN

(v)

(a) Let
$$u = 8x^{-1} - x^2$$
, and then
Then $y = u^5$
 $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$
 $= 5u^4 \times (-8x^{-2} - 2x)$
 $= 5(\frac{8}{x} - x^2)^4(-\frac{8}{x^2} - 2x)$

The tangent is horizontal when

$$\frac{8}{x} = x^{2}$$

$$8 = x^{3}$$

$$x = 2$$

$$OR \quad -\frac{8}{x^{2}} = 2x$$

$$-4 = x^{3}$$

$$x = -\sqrt[3]{4}$$

(b) The graphs intersect where: $3x + 3 - x^2 = -(2x - 1)$ $0 = x^2 - 5x - 2$ The solutions of this quadratic are: $x = \frac{5 \pm \sqrt{25 - 4 \times 1 \times (-2)}}{2 \times 1}$ $=\frac{5\pm\sqrt{33}}{2}$

We need the negative root, i.e. $x = \frac{5 - \sqrt{33}}{2}$.

(c) (i) $y' = 3ax^2 + 2bx + c$ = c at x = 0

The tangent to the cubic at (0,0) is y = cx.

(ii) This tangent intersects the cubic when

$$ax^{3} + bx^{2} + cx = cx$$
$$ax^{3} + bx^{2} = 0$$
$$x^{2}(ax + b) = 0$$

Hence it intersects at x = 0 and again at $x = -\frac{b}{a}$, $y = -\frac{cb}{a}$.

(iii) We need to find the equation of the tangent at Q. Thus

$$y' = 3ax^{2} + 2bx + c$$

$$= 3a(-\frac{b}{a})^{2} + 2b(-\frac{b}{a}) + c \quad \text{at } x = -\frac{b}{a}$$

$$= \frac{3b^{2}}{a} - \frac{2b^{2}}{a} + c$$

$$= \frac{b^{2}}{a} + c$$

and the tangent is

$$y - y_1 = m(x - x_1)$$

$$y + \frac{cb}{a} = (\frac{b^2}{a} + c)(x + \frac{b}{a})$$

$$y + \frac{cb}{a} = (\frac{b^2}{a} + c)x + \frac{b^3}{a^2} + \frac{cb}{a}$$

$$y = (\frac{b^2}{a} + c)x + \frac{b^3}{a^2}$$

The *y*-intercept is $(0, \frac{b^3}{a^2})$, which is independent of *c*.

(iv) Now intersect THIS tangent and the original cubic:

$$ax^{3} + bx^{2} + cx = \left(\frac{b^{2}}{a} + c\right)x + \frac{b^{3}}{a^{2}}$$
$$ax^{3} + bx^{2} - \left(\frac{b^{2}}{a}\right)x - \frac{b^{3}}{a^{2}} = 0$$
$$ax^{2}(x + \frac{b}{a}) - \frac{b^{2}}{a}(x + \frac{b}{a}) = 0$$
$$(ax^{2} - \frac{b^{2}}{a})(x + \frac{b}{a}) = 0$$
$$a(x - \frac{b}{a})(x + \frac{b}{a})^{2} = 0$$

The tangent and cubic intersect again at $x = \frac{b}{a}$. The coordinates $\frac{b}{a}$, 0 and $-\frac{b}{a}$ form an AP with common difference $-\frac{b}{a}$.

BDD