

2015 Half-Yearly Examination

FORM V

MATHEMATICS EXTENSION 1

Monday 18th May 2015

General Instructions

- Writing time - 1 hour 30 minutes
- Write using black pen.
- Board-approved calculators and templates may be used.

Total - 80 Marks

- All questions may be attempted.

Section I-8 Marks

- Questions 1-8 are of equal value.
- Record your answers to the multiple choice on the sheet provided.

Section II-72 Marks

- Questions 9-14 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Collection

- Write your name, class and Master on each answer booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Write your name, class and Master on this question paper and hand it in with your answers.
- Place everything inside the answer booklet for Question Nine.
5A: DS
5B: RCF
5E: SJE
5F: REJ

5C: SO
5D: DNW
5G: DWH

5H: KWM

Checklist

- SGS booklets - 6 per boy
- Multiple choice answer sheet

Examiner

- Candidature - 125 boys

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

If $f(x)=\frac{3^{x}+3^{-x}}{2}$, then $f(0)$ is:
(A) 0
(B) $\frac{1}{2}$
(C) 1
(D) 3

QUESTION TWO

Given $f(x)=\frac{1}{\sqrt[3]{x}}$, the correct expression for $f^{\prime}(x)$ is:
(A) $\frac{1}{\sqrt[3]{x^{4}}}$
(B) $-\frac{1}{\sqrt[3]{x^{4}}}$
(C) $\frac{4}{3 \sqrt[3]{x^{4}}}$
(D) $-\frac{1}{3 \sqrt[3]{x^{4}}}$

QUESTION THREE

Consider the curve $f(x)=x^{3}-a x$. The x-coordinates of the points where the tangent to the curve is horizontal are:
(A) 0 and a
(B) ± 1
(C) $\pm \sqrt{\frac{a}{3}}$
(D) $3-a$ and $3+a$

SGS Half-Yearly 2015 Form V Mathematics Extension 1 Page 3

QUESTION FOUR

Which of the following is NOT an odd function?
(A) $f(x)=x^{3}$
(B) $f(x)=\frac{1}{x}$
(C) $f(x)=\sin x$
(D) $f(x)=\cos x$

QUESTION FIVE

Which statement is TRUE?
(A) $\sin \left(360^{\circ}-A\right)=-\sin A$
(B) $\cos \left(90^{\circ}-A\right)=\operatorname{cosec} A$
(C) $\cot A=\frac{\sin A}{\cos A}$
(D) $\operatorname{cosec}\left(180^{\circ}+A\right)=\frac{1}{\sin A}$

QUESTION SIX

Solve the inequation $\frac{4}{x}<x$ using the graph above:
(A) $x<-2$ or $0<x<2$
(B) $-2<x<0$ or $x>2$
(C) $-2<x<2$
(D) $x<-2$ or $x>2$

QUESTION SEVEN

The expression $\frac{\frac{1}{x^{2}}-\frac{1}{y^{2}}}{x+y}$ simplifies to:
(A) $\frac{x-y}{x^{2} y^{2}}$
(B) $\frac{y-x}{x^{2} y^{2}}$
(C) $\frac{x-y}{x y}$
(D) $\frac{-y-x}{x y}$

SGS Half-Yearly 2015 Form V Mathematics Extension 1 Page 5

QUESTION EIGHT

The interval $A B$ has endpoints $A(-1,4)$ and $B(x, y)$. The point $P(14,-6)$ divides the interval $A B$ externally in the ratio $5: 3$. Find the value of x.
(A) 5
(B) $\frac{31}{5}$
(C) 23
(D) $\frac{109}{5}$
\qquad

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.
Show all necessary working.
Start a new booklet for each question.

QUESTION NINE (12 marks) Use a separate writing booklet. Marks
(a) Solve $\frac{1}{m}+6=1-\frac{4}{m}$.
(b) Evaluate $\sum_{k=2}^{4} 3^{k}$.
(c) Find the limiting sum of the series $1+\frac{1}{3}+\frac{1}{9}+\cdots$
(d) Differentiate:
(i) $2 x^{3}+5$
(ii) $\frac{3}{x}$
(iii) $(x+1)(x-2)$
(e) A line has angle of inclination 120°. Find its gradient.
(f) The line $x-y-17=0$ is a tangent to a circle with centre $(2,-3)$.
(i) Find the perpendicular distance from the centre of the circle to the tangent.
(ii) Hence write down the equation of the circle.
(g) Find the equation of the tangent to the curve $y=x^{2}-8 x$ at the point $P(-1,9)$.
\qquad Form V Mathematics Extension 1
(a) An arithmetic sequence has second term 11 and eighth term -40 . Find the common difference and the first term.
(b) Solve the inequation $|2 x+3|>1$.
(c) Solve the following equations for $0^{\circ} \leq \theta \leq 360^{\circ}$:
(i) $\sqrt{3} \sin \theta=\cos \theta$
(ii) $\sec ^{2} \theta+\tan \theta=1$
(d) In triangle $X Y Z, \angle X Y Z=30^{\circ}, X Z=a \sqrt{2}$ and $Y Z=2 a$. Find the two possible values of $\angle Z X Y$.

QUESTION ELEVEN (12 marks) Use a separate writing booklet.
(a) Differentiate:
(i) $\frac{2 x+x^{3}}{x}$
(ii) $(8+5 x)^{3}$
(iii) $\frac{x^{2}+3}{1-x}$
(b) Consider the sequence for which $T_{n}=3 n+3^{n}$.
(i) Find the first three terms of this sequence.
(ii) Find the sum of the first eight terms.
(c) Prove the identity $\cot \theta \cos \theta+\sin \theta=\operatorname{cosec} \theta$.
(a) Sketch the graph of $y=-|x|$.
(b) Consider the function $f(x)=3 x^{2}-4 x$.
(i) Simplify the expression $f(x+h)-f(x)$.
(ii) Hence use the formula

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

to differentiate $f(x)=3 x^{2}-4 x$ from first principles.
(c) Consider the graphs of $(x-4)^{2}+y^{2}=9$ and $y=x-7$.
(i) Determine the points of intersection.
(ii) Shade the region where both $(x-4)^{2}+y^{2} \leq 9$ and $y>x-7$ are satisfied.
(d) The lines $\ell_{1}: 4 x-y-5=0$ and $\ell_{2}: 3 x+4 y+1=0$ intersect at the point M.
(i) Write down the general equation of a line through M, and show that it can be written in the form

$$
(3 k+4) x+(4 k-1) y+(k-5)=0
$$

for some constant k.
(ii) Hence find the line through M and the point $P(6,0)$.

QUESTION THIRTEEN (12 marks) Use a separate writing booklet. Marks
(a) Solve the inequation $\frac{x-1}{x+2} \geq 2$.
(b) Suppose that $\tan \alpha=\frac{a^{2}-b^{2}}{2 a b}$, where α is acute, and both a and b are positive.

Find an expression for $\cos \alpha$.
(c) Consider the curve $y=\frac{x^{2}-1}{(x-3)(x+2)}$.
(i) Write down the equation(s) of any vertical asymptote(s).
(ii) Find the equation of the horizontal asymptote.
(iii) Find any intercepts with the x and y axes.
(iv) Copy and complete the following table:

x	-4	$-\frac{3}{2}$	2	4
y				

(v) Hence draw a neat sketch of the curve.

QUESTION FOURTEEN (12 marks) Use a separate writing booklet.
(a) Show that for any non-zero polynomial $Q(x)$, the curve $y=(x-a)^{2} Q(x)$ has a horizontal tangent at $x=a$.
(b) Consider the function $y=2|x+1|+|x-5|$.
(i) Sketch the graph of the function by considering separately
$x \geq 5, x<-1$ and $-1 \leq x<5$.
(ii) Hence, or otherwise, solve the inequation $2|x+1|+|x-5|<15$.
(c) Consider the function $f(x)=\frac{2}{x^{2}+4 x+8}$.
(i) Find the domain.
(ii) Find the range.
(d) If the sum of the first p terms of an arithmetic series is equal to zero, show that the sum of the next q terms is $\frac{a q(p+q)}{1-p}$, where a is the first term.

SGS Half-Yearly 2015 Form V Mathematics Extension 1 Page 10

BLANK PAGE
\qquad

2015
Half-Yearly Examination
FORM V
MATHEMATICS EXTENSION 1
Monday 18th May 2015

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

Question One

$\mathrm{A} \bigcirc$
B \qquad
C
D

Question Two

ABD \bigcirc

Question Three

AB \bigcircD \bigcirc

Question Four

A \bigcirc
B \bigcirc
C
D \bigcirc

Question Five

AB
C
D \bigcirc

Question Six

A \bigcirc
BD \bigcirc

Question Seven

AB
D

Question Eight

$\mathrm{A} \bigcirc$
B \qquad
C
O
D

2015 FIf木斤IFORM 3UNTT HALF-YEARLY
SOLUTIONS

1. C
2. D
3. C
4. D
5. A
6. B
7. $\quad B$
8. A

QuESTITN 9
(a)

$$
\begin{aligned}
& \frac{1}{m}+6=1-\frac{4}{m} \\
& \frac{5}{m}=-5 \\
& m=-1
\end{aligned}
$$

(b)

$$
\begin{aligned}
\sum_{k=2}^{4} 3^{k} & =3^{2}+3^{3}+3^{4} \\
& =9+27+81 \\
& =117
\end{aligned}
$$

(c)

$$
\begin{aligned}
S_{\infty} & =\frac{1}{1-\frac{1}{3}} \\
& =\frac{3}{2}
\end{aligned}
$$

(d) (i) $\frac{d}{d x}\left(2 x^{3}+5\right)=6 x^{2}$
(ii) $\frac{d}{d x}\left(\frac{3}{x}\right)=-\frac{3}{x^{2}}$
(iii) $\frac{d}{d x}((x+1)(x-2))=\frac{d}{d x}\left(x^{2}-x-2\right)$

$$
=2 x-1
$$

(e)

$$
\begin{aligned}
m & =\tan 120^{\circ} \\
& =-\sqrt{3}
\end{aligned}
$$

\therefore the gradient is $-\sqrt{3}$
(f) (i)

$$
\begin{aligned}
\text { perpendicular distance } & =\frac{|1(2)-1(-3)-17|}{\sqrt{1^{2}+(-1)^{2}}} \\
& =\frac{|2+3-17|}{\sqrt{2}} \\
& =\frac{12}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \\
& =6 \sqrt{2} \text { units }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& (x-2)^{2}+(y+3)^{2}=(6 \sqrt{2})^{2} \\
& (x-2)^{2}+(y+3)^{2}=72
\end{aligned}
$$

(g)

$$
\begin{aligned}
& y=x^{2}-8 x \\
& \frac{d y}{d x}=2 x-8
\end{aligned}
$$

at $x=-1, \frac{d y}{d x}=2(-1)-8$

$$
=-10
$$

equation of tragent $B \quad \begin{aligned} & y-9=-10(x+1) \\ & y-9=-10 x-10\end{aligned}$

$$
\begin{aligned}
& y-9=-10 x-10 \\
& 10 x+y+1=0
\end{aligned}
$$

(or $y=-10 x 1$)

QuESTION 10
(a) $\quad a+d=4$

$$
\begin{equation*}
a+7 d=-40 \tag{1}
\end{equation*}
$$

(2) -(1)

$$
\begin{align*}
6 d & =-51 \tag{2}\\
d & =-8 \frac{1}{2}
\end{align*}
$$

sub back into (1): $a=11+8 \frac{1}{2}$

$$
=10 \frac{1}{2}
$$

$$
\begin{aligned}
\therefore \quad a & =19 \frac{1}{2} \\
d & =-8 \frac{1}{2}
\end{aligned}
$$

(b)

$$
\begin{aligned}
&|2 x+3|>1 \\
& 2 x+3>1 \\
& 2 x>-2
\end{aligned} \quad \text { or } \quad \begin{array}{rl}
2 x+3<-1 \\
x & 2 x<-1
\end{array} \quad x<-4
$$

so $x<-2$ or $x>-1$.
(c) (i)

$$
\begin{aligned}
\sqrt{3} \sin \theta & =\cos \theta \\
\frac{\sin \theta}{\cos \theta} & =\frac{1}{\sqrt{3}} \\
\tan \theta & =\frac{1}{\sqrt{3}} \\
\theta & =\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right) \\
& =30^{\circ}, 210^{\circ}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& 1+\tan ^{2} \theta+\tan \theta=1 \\
& \tan 2 \theta+\tan \theta=0 \\
& \tan \theta(\tan \theta+1)=0 \\
& \tan \theta=0 \\
& \theta=0^{\circ}, 180^{\circ}, 360^{\circ} \theta=-1 \\
& \operatorname{acate} \theta=45^{\circ} \\
& \therefore \theta=0^{\circ}, 135^{\circ}, 180^{\circ}, 315^{\circ}, 360^{\circ}
\end{aligned}
$$

(d)

$$
\begin{aligned}
& \frac{\sin \theta}{2 a}=\frac{\sin 30^{\circ}}{a \sqrt{2}} \\
& \begin{aligned}
\sin \theta & =\frac{2 a}{2 a \sqrt{2}} \\
\sin \theta & =\frac{1}{\sqrt{2}} \\
\theta & =\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right) \\
& =45^{\circ}
\end{aligned}
\end{aligned}
$$

θ could also $=135^{\circ}(135+30=165<180)$

$$
\therefore \theta=45^{\circ}, 135^{\circ}
$$

QuesTION 11
(a) (i) $\frac{d}{d x}\left(\frac{2 x+x^{3}}{x}\right)=2 x$
(ii)

$$
\begin{aligned}
\frac{d}{d x}\left((8+5 x)^{3}\right) & =3(8+5 x)^{2} \times 5 \\
& =15(8+5 x)^{2}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{x^{2}+3}{1-x}\right) & =\frac{2 x(1-x)+x^{2}+3}{(1-x)^{2}} \\
& =\frac{2 x-2 x^{2}+x^{2}+3}{(1-x)^{2}} \\
& =\frac{-x^{2}+2 x+3}{(1-x)^{2}}
\end{aligned}
$$

(b) (i)

$$
\left.\begin{array}{rl}
T_{n} & =3 n+3^{n} \\
T_{1} & =3+3 \\
& =6 \\
T_{2} & =6+3^{2} \\
& =15 \\
T_{3} & =9+3^{3} \\
& =36
\end{array}\right\}
$$

(ii)
$3 n$ is an AP with $a=3$ and $l=24, n=8$ so let its Sum be Sa_{a}.

$$
\begin{aligned}
S_{a} & =\frac{8}{2}(3+24) \\
& =108
\end{aligned}
$$

3^{n} is a GP with $a=3, r=3, n=8$; let itssum be S_{G}.

$$
S_{G}=\frac{3\left(3^{8}-1\right)}{3-1}
$$

$$
=9840 .
$$

So

$$
\begin{aligned}
S_{8} & =S_{a}+S_{G} \\
& =108+9840 \\
& =9948
\end{aligned}
$$

(c) Prove $\cot \theta \cos \theta+\sin \theta=\operatorname{cosec} \theta$

$$
\begin{aligned}
\text { LHS } & =\cot \theta \cos \theta+\sin \theta \\
& =\frac{\cos \theta}{\sin \theta} \cdot \cos \theta+\sin \theta \\
& =\frac{\cos ^{2} \theta}{\sin \theta}+\sin \theta \\
& =\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\sin \theta} \\
& =\frac{1}{\sin \theta} \\
& =\operatorname{cosec} \theta \\
& =\text { RHS }
\end{aligned}
$$

QUESTION 12
a)

b) $f(x)=3 x^{2}-4 x$
(i)

$$
\begin{aligned}
& f(x)=3 x^{2}-4 x \\
& f(x+h)-f(x)=3(x+h)^{2}-4(x+h)-\left[3 x^{2}-4 x\right] \\
&=3 x^{2}+6 x h+3 h^{2}-4 x-4 h-3 x^{2}+4 x \\
&=h(6 x-4-3 h)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0}(6 x-4+3 h) \\
& =6 x-4
\end{aligned}
$$

C) $(x-4)^{2}+y^{2}=9$
$y=x-7$
(i) \therefore

$$
\begin{aligned}
& (x-4)^{a}+(x-7)^{2}=9 \\
& x^{2}-8 x+16+x^{2}-14 x+49=9 \\
& 2 x^{2}-22 x+56=0 \\
& x^{2}-11 x+28=0 \\
& (x-7)(x-4)=0 \\
& \therefore x=7 \text { or } 4 \\
& y=0 \text { or }-3
\end{aligned}
$$

so $(7,0)$ and $(4,-3)$

$d(i)$

$$
\begin{aligned}
& 4 x-y-5+k(3 x+4 y+1)=0 \\
& 4 x-y-5+3 k x+4 k y+k=0 \\
& (3 k+4) x+(4 k-1) y+(k-5)=0
\end{aligned}
$$

(ii) P is a line to

$$
\begin{gathered}
(3 k+4) \cdot 6+(4 k-1) \cdot 0+k-5=0 \\
18 k+24+k-5=0 \\
19 k+19=0 \\
k=-1
\end{gathered}
$$

So the equation of the line is

$$
\begin{gathered}
(3(-1)+4) x+(4(-1)-1) y+(-1-5)=0 \\
x-5 y-6=0
\end{gathered}
$$

QUESTION 13
(a)

$$
\begin{aligned}
& \frac{x-1}{x+2} \geqslant 2 \quad(x \neq-2) \\
& (x-1)(x+2) \geqslant 2(x+2)^{2} \\
& 2(x+2)^{2}-(x+2)(x-1) \leq 0 \\
& (x+2)[2 x+4-x+1] \leq 0 \\
& (x+2)(x+5) \leq 0 \\
& -5 \leq x<-2
\end{aligned}
$$

(b) $a, b>0$

$$
\tan \alpha=\frac{a^{2}-b^{2}}{2 a b}
$$

By Pythagoras' theorem:

$$
\begin{aligned}
& \left(a^{2}-b^{2}\right)^{2}+(2 a b)^{2} \\
= & a^{4}-2 a^{2} b^{2}+b^{4}+4 a^{2} b^{2} \\
= & a^{4}+2 a^{2} b^{2}+b^{4} \\
= & \left(a^{2}+b^{2}\right)^{2}
\end{aligned}
$$

hypotenuse $=a^{2}+b^{2}$

$$
\cos \alpha=\frac{2 a b}{a^{2}+b^{2}}
$$

(c) $y=\frac{x^{2}-1}{(x-3)(x+2)}$
(i) $x=3$ and $x=-2$
(ii) $y=\frac{\frac{x^{2}}{x^{2}}-\frac{1}{x^{2}}}{\frac{x^{2}}{x^{2}}-\frac{x}{x^{2}}-\frac{6}{x^{2}}}$

$$
=\frac{1-\frac{1}{x^{2}}}{1-\frac{1}{x}-\frac{6}{x^{2}}}
$$

Horizontal asymptote $y=1$
(iii) y-intercept: When $x=0, y=\frac{-1}{-3 \times 2} \quad\left(0, \frac{1}{6}\right)$

$$
=-\frac{1}{6}
$$

x-intercept: when $y=0, \begin{array}{r}x^{2}-1=0 \\ x=1 \text { or }\end{array}$
$x=1$ or $-1 \quad(1,0)$ and $(-1,0)$

(iv) | x | -4 | $-\frac{3}{2}$ | 2 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| y | $\frac{15}{4}$ | $-\frac{5}{4}$ | $-\frac{3}{4}$ | $\frac{15}{6}$ |

(NB: Le f hand branch actually cross howzontal asymptote at $(-5,1)$ and apploachep from below - No penalty for students not veloginaing this)

QUESTION 14
(a)

$$
\begin{aligned}
& f(x)=(x-a)^{2} \cdot Q(x) \\
& f^{\prime}(x)=2(x-a) \cdot Q(x)+Q^{\prime}(x)(x-a)^{2}
\end{aligned}
$$

sat $x=a, f^{\prime}(a)=2(a-a) Q(x)+Q^{\prime}(x)(a-a)^{2}$

$$
=2 \times 0+0
$$

$$
=0
$$

So the polynomial has a horizontal tangent at $x=9$]
(b) (i)

$$
\begin{aligned}
& \text { when } \left.x \geqslant 5, \quad \begin{array}{rl}
y & =2 x+2+x-5 \\
& =3 x-3 \\
\text { when }-1 \leqslant x<5, & y=2 x+2-x+5 \\
& =x+7 \\
\text { when } x<-1, y & =-2 x-2-x+5 \\
& =-3 x+3
\end{array}\right\} \quad \text { (branches) } \\
& \text { w }
\end{aligned}
$$

Points of Intersection

$$
\begin{gathered}
3 x-3=x+7 \\
2 x=10
\end{gathered}
$$

$$
-3 x+3=x+7
$$

$$
-4=4 x
$$

$$
(0,7)
$$

$$
x=-1
$$

$$
\begin{gathered}
\text { when } x=5, y=12 \\
(5,12)
\end{gathered}
$$

when $x=1, y=6$

$$
y,(-1,6)
$$

(ii) $-4<x<6$
(c)

$$
\begin{aligned}
f(x) & =\frac{2}{\left(x^{2}+4 x+4\right)+4} \\
& =\frac{2}{(x+2)^{2}+4}
\end{aligned}
$$

(i) Domain : all real x
(ii) when $x=0, y=\frac{1}{2}$

Range : $0<y \leq \frac{1}{2}$
(d)

$$
a+a+d+a+2 d+\ldots a+(p-1) d
$$

p terms

$$
\begin{aligned}
S_{p}=\frac{p}{2}(2 a+(p-1) d) & =0 * \\
p \neq 0, \text { so } 2 a+(p-1) d & =0 \\
d & =\frac{-2 a}{1-1} \\
& =\frac{2 a}{1-p}
\end{aligned}
$$

$$
\begin{aligned}
S_{p+q} & =\frac{p+q}{2}[2 a+(p+q-1) d] \\
& =\frac{p+q}{2}[2 a+(p-1) d+q d] \\
& =\frac{p+q}{2}: q d \quad(\text { using }(*))
\end{aligned}
$$

Also from $* d=\frac{2 a}{1-p}$.

$$
\text { So } \begin{aligned}
S_{p+q} & =\frac{p+q}{2} \cdot q \cdot \frac{2 a}{1-} \\
& =\frac{2 a q(p+q)}{2(1-p)} \\
& =\frac{a q(p+q)}{1-p}
\end{aligned}
$$

Since $S_{p}=0, s_{p+q}$ is the sum of the next q terms.

