MASTER

SYDNEY GRAMMAR SCHOOL

2015 Half-Yearly Examination

FORM V

MATHEMATICS EXTENSION 1

Monday 18th May 2015

General Instructions

- Writing time 1 hour 30 minutes
- Write using black pen.
- Board-approved calculators and templates may be used.

Total - 80 Marks

• All questions may be attempted.

Section I – 8 Marks

- Questions 1–8 are of equal value.
- Record your answers to the multiple choice on the sheet provided.

Section II – 72 Marks

- Questions 9–14 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

5A: DS 5B: RCF 5E: SJE 5F: REJ

Checklist

- SGS booklets 6 per boy
- Multiple choice answer sheet
- Candidature 125 boys

Collection

- Write your name, class and Master on each answer booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Write your name, class and Master on this question paper and hand it in with your answers.
- Place everything inside the answer booklet for Question Nine.

5C: SO	5D: DNW
5G: DWH	5H: KWM

Examiner SO

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

If
$$f(x) = \frac{3^x + 3^{-x}}{2}$$
, then $f(0)$ is:
(A) 0
(B) $\frac{1}{2}$
(C) 1
(D) 3

QUESTION TWO

Given $f(x) = \frac{1}{\sqrt[3]{x}}$, the correct expression for f'(x) is:

(A)
$$\frac{1}{\sqrt[3]{x^4}}$$

(B) $-\frac{1}{\sqrt[3]{x^4}}$
(C) $\frac{4}{3\sqrt[3]{x^4}}$
(D) $-\frac{1}{3\sqrt[3]{x^4}}$

QUESTION THREE

Consider the curve $f(x) = x^3 - ax$. The x-coordinates of the points where the tangent to the curve is horizontal are:

(A) 0 and a (B) ± 1 (C) $\pm \sqrt{\frac{a}{3}}$ (D) 3 - a and 3 + a

Examination continues next page ...

QUESTION FOUR

Which of the following is NOT an odd function?

(A)
$$f(x) = x^3$$

(B) $f(x) = \frac{1}{x}$
(C) $f(x) = \sin x$
(D) $f(x) = \cos x$

QUESTION FIVE

Which statement is TRUE?

(A)
$$\sin(360^\circ - A) = -\sin A$$

(B) $\cos(90^\circ - A) = \operatorname{cosec} A$
(C) $\cot A = \frac{\sin A}{\cos A}$
(D) $\operatorname{cosec}(180^\circ + A) = \frac{1}{\sin A}$

Examination continues overleaf

QUESTION SIX

Solve the inequation $\frac{4}{x} < x$ using the graph above:

(A) x < -2 or 0 < x < 2(B) -2 < x < 0 or x > 2(C) -2 < x < 2(D) x < -2 or x > 2

QUESTION SEVEN

The expression $\frac{\frac{1}{x^2} - \frac{1}{y^2}}{x+y}$ simplifies to: (A) $\frac{x-y}{x^2y^2}$ (B) $\frac{y-x}{x^2y^2}$ (C) $\frac{x-y}{xy}$ (D) $\frac{-y-x}{xy}$

QUESTION EIGHT

The interval AB has endpoints A(-1,4) and B(x,y). The point P(14,-6) divides the interval AB externally in the ratio 5:3. Find the value of x.

(A)	5	(B)	$\frac{31}{5}$
(C)	23	(D)	$\frac{109}{5}$

— End of Section I

Examination continues overleaf ...

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.

Show all necessary working.

Start a new booklet for each question.

QUESTION NINE (12 marks) Use a separate writing booklet.

(a) Solve $\frac{1}{m} + 6 = 1 - \frac{4}{m}$. 1

(b) Evaluate
$$\sum_{k=2}^{4} 3^k$$
. 1

(c) Find the limiting sum of the series $1 + \frac{1}{3} + \frac{1}{9} + \cdots$

(d) Differentiate:

(i)
$$2x^3 + 5$$

(ii) $\frac{3}{x}$
(iii) $(x+1)(x-2)$

- (e) A line has angle of inclination 120° . Find its gradient.
- (f) The line x y 17 = 0 is a tangent to a circle with centre (2, -3).

(i) Find the perpendicular distance from the centre of the circle to the tangent.

- (ii) Hence write down the equation of the circle.
- (g) Find the equation of the tangent to the curve $y = x^2 8x$ at the point P(-1,9).

Marks

1

1

1

1

1

 $\mathbf{2}$

1

 $\mathbf{2}$

QUESTION TEN (12 marks) Use a separate writing booklet.

- 3 (a) An arithmetic sequence has second term 11 and eighth term -40. Find the common difference and the first term.
- (b) Solve the inequation |2x+3| > 1.
- (c) Solve the following equations for $0^{\circ} \le \theta \le 360^{\circ}$:
 - (i) $\sqrt{3}\sin\theta = \cos\theta$
 - (ii) $\sec^2 \theta + \tan \theta = 1$
- (d) In triangle XYZ, $\angle XYZ = 30^{\circ}$, $XZ = a\sqrt{2}$ and YZ = 2a. Find the two possible values of $\angle ZXY$.

QUESTION ELEVEN (12 marks) Use a separate writing booklet.

(a) Differentiate:

(i)	i) $\frac{2x+x^3}{x}$	2
(ii)	a) $(8+5x)^3$	2

(iii)
$$\frac{x^2 + 3}{1 - x}$$
 2

- (b) Consider the sequence for which $T_n = 3n + 3^n$.
 - (i) Find the first three terms of this sequence.
 - (ii) Find the sum of the first eight terms.
- (c) Prove the identity $\cot \theta \cos \theta + \sin \theta = \csc \theta$.

Marks

3

2

2

Marks

1

3

 $\mathbf{2}$

 $\mathbf{2}$

QUESTION TWELVE (12 marks) Use a separate writing booklet.

- (a) Sketch the graph of y = -|x|.
- (b) Consider the function $f(x) = 3x^2 4x$.
 - (i) Simplify the expression f(x+h) f(x).
 - (ii) Hence use the formula

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

to differentiate $f(x) = 3x^2 - 4x$ from first principles.

- (c) Consider the graphs of $(x-4)^2 + y^2 = 9$ and y = x 7.
 - (i) Determine the points of intersection.
 - (ii) Shade the region where both $(x-4)^2 + y^2 \le 9$ and y > x-7 are satisfied.
- (d) The lines $\ell_1: 4x y 5 = 0$ and $\ell_2: 3x + 4y + 1 = 0$ intersect at the point M.
 - (i) Write down the general equation of a line through M, and show that it can be written in the form

$$(3k+4)x + (4k-1)y + (k-5) = 0$$

for some constant k.

(ii) Hence find the line through M and the point P(6,0).

Marks

1

1

 $\mathbf{2}$

3

1

 $\mathbf{2}$

 $\mathbf{2}$

QUESTION THIRTEEN (12 marks) Use a separate writing booklet.

- (a) Solve the inequation $\frac{x-1}{x+2} \ge 2$.
- (b) Suppose that $\tan \alpha = \frac{a^2 b^2}{2ab}$, where α is acute, and both a and b are positive. Find an expression for $\cos \alpha$.

(c) Consider the curve
$$y = \frac{x^2 - 1}{(x - 3)(x + 2)}$$

- (i) Write down the equation(s) of any vertical asymptote(s).
- (ii) Find the equation of the horizontal asymptote.
- (iii) Find any intercepts with the x and y axes.
- (iv) Copy and complete the following table:

x	-4	$-\frac{3}{2}$	2	4
y				

(v) Hence draw a neat sketch of the curve.

QUESTION FOURTEEN (12 marks) Use a separate writing booklet.

- (a) Show that for any non-zero polynomial Q(x), the curve $y = (x a)^2 Q(x)$ has a horizontal tangent at x = a.
- (b) Consider the function y = 2|x+1| + |x-5|.
 - (i) Sketch the graph of the function by considering separately $x \ge 5$, x < -1 and $-1 \le x < 5$.
 - (ii) Hence, or otherwise, solve the inequation 2|x+1| + |x-5| < 15.
- (c) Consider the function $f(x) = \frac{2}{x^2 + 4x + 8}$.
 - (i) Find the domain.
 - (ii) Find the range.
- (d) If the sum of the first p terms of an arithmetic series is equal to zero, show that the sum of the next q terms is $\frac{aq(p+q)}{1-p}$, where a is the first term.

End of Section II

END OF EXAMINATION

Marks

3

 $\mathbf{2}$

1

1

 $\mathbf{2}$

1

 $\mathbf{2}$

Marks

 $\mathbf{2}$

3

1

1

 $\mathbf{2}$

3

BLANK PAGE

NAME:

SYDNEY GRAMMAR SCHOOL

2015 Half-Yearly Examination FORM V MATHEMATICS EXTENSION 1 Monday 18th May 2015

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

Question (One		
A 🔿	В ()	С ()	D ()
Question 7	Гwo		
A 🔾	В ()	С ()	D ()
Question 7	Гhree		
А 🔾	В ()	С ()	D ()
Question I	Four		
А 🔾	В ()	С ()	D ()
Question I	Five		
A 🔿	В ()	С ()	D ()
Question S	Six		
А ()	В ()	С ()	D ()
Question S	Seven		
А 🔾	В ()	С ()	D ()
Question I	Eight		
А ()	В ()	С ()	D ()

2015 FIFTH FORM 3 UNT HALF-YEARLY

SOLUTIONS

C D C D A B B A		
D C D A B B A		С
C D A B B A		D
D A B B A		C C
A B B A		*
A B B A	•	D
B B A	<u>,</u>	A
B A		B
A		B
	2	A

QUESTION 9

(a) $\frac{1}{m} + 6 = 1 - \frac{4}{m}$ $\frac{5}{M} = -5$ $\begin{array}{rcl} & 4 \\ (b) & \sum_{i}^{k} 3^{k} = 3^{2} + 3^{3} + 3^{4} \\ & k = 2 & = 9 + 27 + 81 \\ & = 117 & \sqrt{2} \end{array}$

 $(c) S_{a0} = \frac{1}{1-\frac{1}{2}}$ $=\frac{3}{2}$ V $(d)(i) dx(2x^3+5) = 6x^2 v$ (ii) $\frac{d}{dx}\left(\frac{3}{x}\right) = -\frac{3}{x^2}$

(11) dx ((x+1)(x-2))= dx (x-x-2) 2x-1

(c)

$$m = \frac{1}{240} > x$$

$$m = \frac{1}{200} > x$$

$$m = \frac{1}{200} > x$$

$$m = \frac{1}{200} > x$$

$$\frac{1}{200} > x$$

$$m = \frac{1}{200} > x$$

$$\frac{1}{200} > x$$

$$\frac{1$$

Z (d) altz Za 0 30 sin0 = sin 30° avz 201 $sin\theta = \frac{2a}{2a\sqrt{2}}$ SI'ND= V2 $0 = \sin^{-1}(\sqrt{v_2})$ = 45° O could also = 135° (135 +30 = 165 < 180) $: 0 = 45^{\circ}, 135^{\circ}$

QUESTION 11 $(a) (i) d_2 \left(\frac{2x+x^3}{2}\right) = 2x \sqrt{2}$ $\frac{(1)}{dx} \left((8+5x)^3 \right) = 3(8+5x)^2 \times 5 \sqrt{3}$ $= 15(8+5x)^2 \sqrt{3}$ $(11) \frac{d}{dx} \left(\frac{x^2 + 3}{1 - x} \right) = \frac{2x(1 - x) + x^2 + 3}{(1 - x)^2}$ $= \frac{2x - 2x^{2} + x^{2} + 3}{(1 - x)^{2}}$ = $-\frac{x^{2} + 2x + 3}{(1 - x)^{2}}$ $(b(i) T_n = 3n + 3^n$ $T_{1} = 3 + 3$ = 6 $T_{2} = 6 + 3^{2}$ = 15 $T_{3} = 9 + 3$ = 36(ii) 3n is an AP with a = 3 and l=24, n=8 so let its Sum be Sa. $S_{a} = \frac{8}{2}(3+24)$ = 108 3 is a GP with a= 3, r=3, n=8; let itsum be SG. $S_{G} = \frac{3(3^{2}-1)}{3-1}$

= 9840 . So Sg= Sa + SG $= 108 \pm 9840$ = 9948(a) Prove cotocoso + sino = wseco LHS = wtocaso + sino = caso caso + sino SIND $= \frac{\cos^2 \theta}{\sin \theta} + \sin \theta$ V ws20t sin20-SIND = coseco = RHS

QUESTION a) (1,-1) b) $f(x) = 3x^2 - 4x$ (i) $f(x+h) - f(x) = 3(x+h)^2 - 4(x+h) - [3x^2 - 4x]$ = 3x+6x+3h-4x-4h = h(6x-4-8h) (ii) $f'(\alpha) = \lim_{h \to 0} (6x - 4i)$ = 6x-4 c) (x-4) + y= 9 y= x-7 (i) : $(x-4)^{2} + (x-7)^{2} = 9$ $x^2 - 8x + 16 + x^2 - 14x + 49 = 9$ $2x^{a} - 22x + 56 = 0$ $x^2 - 1|x+28 = 0$ (x-7)(x-4)=0:- X= 7 or 4 Y=0 or -3 50 (7,0) and (4,-3

111 (1 mark for shading -7 4x - y - 5 + k(3x + 4y + 1) = 0 4x - y - 5 + 3kx + 4ky + k = 0 (3k + 4)x + (4k - 1)y + (k - 5) = 0d (i) (ii) P is a line to $(3k+4)\cdot6 + (4k-1)\cdot0 + k-s = 0$ 18k+24 + k-s = 0 19k+19 = 0 k = -1So the equation of the line is $(3(-1)+4)\chi + (4(-1)-1)\chi + (-1-5) = 0$ $\chi - 5\chi - 6 = 0$

QUESTION 13 $\frac{n-1}{x+2} \neq 2 \quad (x \neq -2)$ (n) $\begin{array}{c} (x-1)(x+2) > 2(x+2)^2 \\ 2(x+2)^2 - (x+2)(x-1) \leq 0 \\ (x+2) \sum 2x+4 - x+1 \end{bmatrix} \leq 0 \\ (x+2) (x+5) \leq 0 \\ \end{array}$ -56x<-2 V (b) a, b > 0 $\tan d = \frac{a^2 - b^2}{2ab}$ a2fb2 $a^2 - b^2$ Zalo By Pythagoras' theorem: $(a^{2}-b^{2})^{2} + (2ab)^{2}$ $= a^{4}-2a^{2}b^{2}+b^{4}+4a^{2}b^{2}$ $= a^4 + 2a^2b^2 + b^4$ $= (a^2 + b^2)^2$ hypotenuse = $a^2 + b^2 v$ $\cos \alpha = \frac{2ab}{a^2 + b^2} b$

(c)
$$y = \frac{x^2 - 1}{(x - 3)(x + 2)}$$

(i) $x = 3$ and $x = -2$
(ii) $y = \frac{x^2}{x^2} - \frac{1}{x^2}$
 $= \frac{1 - \frac{1}{x^2}}{1 - \frac{1}{x} - \frac{1}{y^2}}$
(iii) y interept: When $x = 0$, $y = -\frac{1}{-3x^2}$
 $z = \frac{1 - \frac{1}{x} - \frac{1}{y^2}}{1 - \frac{1}{x} - \frac{1}{y^2}}$
(iv) y interept: When $x = 0$, $y = -\frac{1}{-3x^2}$
 $z = \frac{1 - \frac{1}{x} - \frac{1}{y^2}}{1 - \frac{1}{x} - \frac{1}{y^2}}$
 $x = \frac{1 - \frac{1}{x} - \frac{1}{y^2}}{1 - \frac{1}{x} - \frac{1}{y^2}}$
(iv) y interept: When $y = 0$, $x^2 - 1 = 0$
 $x = 1 \text{ or } -1$ (1,0) and (-1,0) V
(iv) $\frac{1}{y} - \frac{1}{y} - \frac{1}{x} - \frac{1}{x} + \frac{1}{x} = \frac{1}{x}$
(-51) $\frac{1}{1 - \frac{1}{x}} - \frac{1}{x} - \frac{1}{x} + \frac{1}{x} = \frac{1}{x}$
(NB: Lefthand blanch actuall crosses horeostal
asymptote at (-5,1) and approaches from
below - No penalty for students not recognize two)

(c)
$$f(x) = \frac{2}{(x^{2}+x+4)+4}$$

 $= \frac{2}{(x+2)^{2}+4}$
(i) Domain: all real $x \sqrt{}$
(ii) When $x = 0$, $y = \frac{1}{2}$
Range: $0 \le y \le \frac{1}{2} \sqrt{}$
(d) $a + a+d + a+2d + ... a+ (p-1)d$
 $p + terms$
 $Sp = \frac{p}{2}(2a + (p-1)d) = 0$ (*)
 $p \neq 0$, so $2a + (p-1)d = 0$
 $a = -2a$
 $1 \ge -1$
 $= 2a$
 $1 \ge -1$
 $= p+q/2(2a + (p+q-1)d)]$
 $= p+q/2(2a + (p-1)d + qd)]$
 $= p+q/2(qd. (using (*)) \sqrt{}$
Also from (*) $d = -\frac{2a}{1 \ge p}$.

So $Sptg = \frac{p+q}{2}, q, \frac{2a}{1-p}$ = $\frac{pag}{x(1-p)}$ = aq(p+q)Since Sp=0, Sptg is the sum of the next of terms.