MASTER

SYDNEY GRAMMAR SCHOOL

2017 Half-Yearly Examination

FORM V

MATHEMATICS EXTENSION 1

Tuesday 23rd May 2017

General Instructions

- Writing time 1 hour 30 minutes
- Write using black pen.
- Board-approved calculators and templates may be used.

Total - 80 Marks

• All questions may be attempted.

Section I – 8 Marks

- Questions 1–8 are of equal value.
- Record your answers to the multiple choice on the sheet provided.

Section II – 72 Marks

- Questions 9–14 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

5A: RCF 5B: SO 5E: LYL 5F: LJF

Checklist

- SGS booklets 6 per boy
- Multiple choice answer sheet
- Candidature 152 boys

Collection

- Write your name, class and Master on each answer booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Write your name, class and Master on this question paper and hand it in with your answers.
- Place everything inside the answer booklet for Question Nine.

SO	5C: BR	5D: REJ
LJF	5G: SDP	5H: CMDB

Examiner LYL

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

Given $\alpha = \frac{-1 + \sqrt{7}}{2}$ and $\beta = \frac{-1 - \sqrt{7}}{2}$, what is the value of $\alpha^2 - \beta^2$? (A) 1 (B) 0 (C) $-\sqrt{7}$ (D) -1

QUESTION TWO

Which of the following is a geometric sequence?

(A) 2, 5, 11, 20, ... (B) 8, $-2, \frac{1}{2}, -\frac{1}{8}, ...$ (C) $\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \frac{1}{8}, ...$ (D) 22, 19, 16, 13, ...

QUESTION THREE

Given that $g(x) = x^2$, what does g(5-a) equal?

(A) 5-a(B) $25-a^2$ (C) $25+10a+a^2$ (D) $25-10a+a^2$

QUESTION FOUR

What is the largest possible domain for the function $f(x) = \frac{x}{\sqrt{9-x^2}}$?

(A) $0 \le x < 3$ (B) -3 < x < 3(C) $0 \le x < 9$ (D) -9 < x < 9

Examination continues next page ...

SGS Half-Yearly 2017 Form V Mathematics Extension 1 Page 3

QUESTION FIVE

The point P divides the interval from A(-10,8) to B(4,1) internally in the ratio 3 : 1. What are the coordinates of P?

(A) $\left(\frac{1}{2}, \frac{11}{4}\right)$ (B) $\left(-\frac{13}{2}, \frac{25}{4}\right)$ (C) $\left(\frac{11}{4}, \frac{1}{2}\right)$ (D) $\left(\frac{25}{4}, -\frac{13}{2}\right)$

QUESTION SIX

The derivative of $f(x) = \frac{4}{x^3}$ is:

(A)
$$\frac{4}{3x^2}$$

(B) $-\frac{12}{x^4}$
(C) $-\frac{12}{x^2}$
(D) $-\frac{4}{x^4}$

Multiple choice continues on the next page

Examination continues overleaf

QUESTION SEVEN

What is the value of $\frac{x}{y}$ in the diagram above?

QUESTION EIGHT

Consider the equation $\tan(2x - 45) = -1$, for $0^{\circ} \le x \le 360^{\circ}$. How many solutions does this equation have in this domain?

- (A) 2
- (B) 3
- (C) 4
- (D) 5

End of Section I

Examination continues next page ...

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.

Show all necessary working.

Start a new booklet for each question.

QUESTION NINE (12 marks) Use a separate writing booklet.

- (a) Simplify $\left(4\sqrt{5}-1\right)^2$. 1 (b) Differentiate:
- (b) Differentiate:

(i) $y = 2x^3 - 3x$		
(ii) $y = x(x+3)$		

(iii)
$$y = \frac{x^3 + x}{x}$$

(c) Solve
$$|2x - 7| > 3$$
.

- (d) Consider the sequence $40, 38, 36, \ldots$.
 - (i) State the common difference.
 - (ii) Find the thirteenth term.
- (e) Factorise $27 x^3$.
- (f) Evaluate $\sum_{n=1}^{5} (n^3 1)$.
- (g)

The diagram above shows the gable of a roof. The gable forms an isosceles triangle with two rafters of 4 metres and an angle of 135° at the apex.

- (i) Find the value of x. Give your answer correct to two decimal places.
- (ii) Find the exact area of the gable.

Examination continues overleaf ...

	1	
I	1	

Marks

1 1

1

 $\mathbf{2}$

1 1

1

1

SGS Half-Yearly 2017 Form V Mathematics Extension 1 Page 6

QUESTION TEN (12 marks) Use a separate writing booklet.

- (a) Find the perpendicular distance between the parallel lines 3x + 2y 1 = 0and 3x + 2y + 4 = 0.
- (b) Solve $4\cos^2\theta = 3$, for $0^\circ \le \theta \le 360^\circ$.
- (c) Sketch $y = \frac{1}{x+4}$. Show all asymptotes and any intercepts with the axes.
- (d) Find the equation of the tangent to the curve $y = 3x^2 + x 6$ at the point (-1, -4). 2 Give your answer in gradient-intercept form.

(e) Solve the inequation
$$\frac{4}{x-1} \le 2$$
. 4

QUESTION ELEVEN (12 marks) Use a separate writing booklet.

- (a) Differentiate:
 - (i) $y = (4x 1)^6$

(ii)
$$y = x(3x+2)^4$$

(b) Given $f(x) = \sqrt{4 - x^2}$, sketch $y = f\left(\frac{1}{2}x\right)$ and clearly mark any significant features.

- (c) Prove $\frac{\sin \theta + \cos \theta}{\cot \theta + 1} = \sin \theta$.
- (d) Consider the graphs of $y = 6x x^2$ and y = 2x.
 - (i) Find any points of intersection.
 - (ii) Shade the intersection of the regions $y \le 6x x^2$ and y > 2x. Indicate the nature of the boundaries and corners clearly.

3

 $\mathbf{2}$

 $\mathbf{2}$

Marks

Marks

2

 $\mathbf{2}$

SGS Half-Yearly 2017 Form V Mathematics Extension 1 Page 7

QUESTION TWELVE (12 marks) Use a separate writing booklet.

- (a) If $\cos \theta = -\frac{4}{7}$ and $\tan \theta > 0$, find the exact value of $\sin \theta$.
- 1 (b) The third term of a geometric sequence is 54 and the sixth term is 2. Find the common ratio.
- (c) Determine whether $f(x) = \frac{x^2 3}{x}$ is even, odd or neither. Show your working clearly. $\mathbf{2}$
- (d) Find the angle of inclination of the line 2x + 3y 1 = 0. Give your answer correct to the nearest minute.
- (e) Given $\log_b z = \log_b (x+2) 2 \log_b y$, write an expression for z without logarithms.
- (f) Consider the function $f(x) = x^2 5x$.
 - (i) Simplify the expression f(x+h) f(x).
 - (ii) Hence use the formula

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

to differentiate $f(x) = x^2 - 5x$ from first principles.

QUESTION THIRTEEN (12 marks) Use a separate writing booklet.

- (a) Without finding the point of intersection, find the equation of the line that passes 3 through 2x - y + 1 = 0 and x + 3y - 5 = 0 and is parallel to the line y = -2x + 3. Give your answer in general form.
- (b) Solve $\tan^2 x 2\sec^2 x + 3 = 0$, for $0^\circ \le x \le 180^\circ$.
- (c) Consider the graph $y = \frac{x-1}{x^2 2x 3}$.
 - (i) Find any intercepts with the coordinate axes.
 - (ii) Write down the equation(s) of any vertical asymptote(s).
 - (iii) Find the equation of the horizontal asymptote.
 - (iv) Copy and complete the following table.

x	-2	0	2	4
y				

(v) Draw a neat sketch of the graph. Show all the features from parts (i) to (iv).

 $\mathbf{2}$

1

Examination continues overleaf ...

Marks

Marks

 $\mathbf{2}$

 $\mathbf{2}$

 $\mathbf{2}$

1

3

SGS Half-Yearly 2017 Form V Mathematics Extension 1 Page 8

QUESTION FOURTEEN (12 marks) Use a separate writing booklet.

- (a) Factorise fully $x^4 3x^2y^2 4y^4$. 1
- (b) A function is defined by the rule:

$$f(x) = \begin{cases} (x-1)^3 & \text{for } x \ge 0\\ (1-x)^3 & \text{for } x < 0 \end{cases}$$

Find a simplified expression for $f\left(\frac{a^2}{2}\right) + f\left(\frac{-a^2}{2}\right)$.

- (c) (i) Differentiate $y = \frac{2x+1}{\sqrt{2x-1}}$. 2
 - (ii) Find the x-coordinate of any point(s) where the tangent is horizontal.
- (d) It is known that x, y, z are the first three terms of a geometric progression and x, z, y are the first three terms of an arithmetic progression.
 - (i) Show that $2\left(\frac{y}{x}\right)^2 \left(\frac{y}{x}\right) 1 = 0.$
 - (ii) Given the geometric sequence has a limiting sum, find S_{∞} in terms of x.
- (e) Consider the function f(x) = ||x+3|-1|. For what values of the constant k does the equation f(x) = k have exactly four distinct solutions?

End of Section II

END OF EXAMINATION

Marks

 $\mathbf{2}$

1

 $\mathbf{2}$

 $\mathbf{2}$

 $\mathbf{2}$

NAME:

SYDNEY GRAMMAR SCHOOL

2017 Half-Yearly Examination FORM V MATHEMATICS EXTENSION 1 Tuesday 23rd May 2017

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

Question One			
A 🔿	В ()	С ()	D ()
Question 7	Гwo		
A 🔿	В ()	С ()	D ()
Question 7	Three		
A 🔿	В ()	С ()	D ()
Question Four			
A 🔿	В ()	С ()	D ()
Question Five			
A 🔿	В ()	С ()	D ()
Question Six			
A 🔿	В ()	С ()	D ()
Question Seven			
A 🔿	В ()	$C \bigcirc$	D ()
Question Eight			
A 🔿	В ()	С ()	D ()

Form I Extension 1 Half fearly Solutions Ext 2 Half yearly 2017 Multiple choice x = -1+17. 2 B=-1-57 2 01 (C) $= \sqrt{7} - 1$ $\frac{2}{2}$ $\propto^{2} = (\sqrt{7} - 1)^{2}$ H $= -(\sqrt{7}+1)$ $\beta^2 = (\sqrt{3} + 1)^2$ $= 7 + 2\sqrt{7} + 1$ = 7 -257+1 $= \frac{2(4+\sqrt{3})}{42}$ = 8-2/7 H = 4 + 17 2 = 2(4-57) H2 = 4 - 17 x2-B2 = 4-J7 - (4+J7) - 2 = -2/7 = - /7 02 (3) Sequence S, -2, 2, -2, ... $T_1 \times T_3 = 8 \times \frac{1}{2}$ $T_2 = (-2)^2$ = 4 = 4 :. 8, -2, 12, -1, is a GP

03
$$g(x) = x^{2}$$

 $g(5-a) = (5-a)^{2}$
 $= 25 - 10a + a^{2}$
Domain $\sqrt{9-x^{2}}$
Domain $\sqrt{9-x^{2}} > 0$
 $(3-x)(3+x) > 0$
 $-3 < x < 3$
 0.5 $\Lambda(-10,8)$ $B(4,1)$ $3-1$
 $x_{1} y_{1}$ $x_{2} y_{2}$ $y_{2} + ly_{1}$
 $2l = kx_{2} + lx_{1}$ $y = ky_{2} + ly_{1}$
 $k+l$
 $= 3x + 1 + 1x - 10$ $= 3x + 1 + 1x g$
 4
 $= 12 - 10$ $= 4\frac{1}{4}$
 $M(\frac{1}{2} + \frac{1}{4})$
 0.6 $f(x_{1}) = 4x^{-3}$
 $f^{1}(x_{1}) = -12 x^{-4}$
 $= -\frac{12}{2x^{4}}$

.

$$\frac{X}{y} = \frac{AD \sin 30^{\circ}}{\sin 45^{\circ}} - \frac{AD \sin 45^{\circ}}{\sin 60^{\circ}}$$

$$= \frac{AB \sin 30^{\circ}}{\sin 45^{\circ}} \times \frac{\sin 60^{\circ}}{AD \sin 45^{\circ}}$$

$$= \frac{1}{2} + \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}}$$

$$= \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{\sqrt{2}}$$

$$= \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{\sqrt{2}}$$

$$= \sqrt{3}$$

$$\begin{array}{l} 69 \quad a) \left(4\sqrt{5} - 1 \right)^{2} \\ = \left(4\sqrt{5} \right)^{2} - 2 \cdot 4\sqrt{5} + 1 \\ = 16 \times 5 - 8\sqrt{5} + 1 \\ = 81 - 8\sqrt{5} \\ \end{array}$$

$$\begin{array}{l} b) \quad \dot{x} \right) \quad y = 2\chi^{3} - 3\chi \\ y' = 6\chi^{2} - 3 \\ \hline \chi' = 2\chi + 3\chi \\ y' = 2\chi + 3\chi \\ y' = 2\chi + 3\chi \\ y' = 2\chi + 1 \\ y' = 2\chi \\ \end{array}$$

$$\begin{array}{l} \dot{y} = \chi^{3} + \chi \\ y' = 2\chi + 1 \\ y' = 2\chi \\ \end{array}$$

$$\begin{array}{l} c) \quad \left[2\chi - 7 \right] > 3 \\ 2\chi - 7 > 4 \\ \chi' = 2\chi \\ \end{array}$$

$$\begin{array}{l} c) \quad \left[2\chi - 7 \right] > 3 \\ 2\chi - 7 < -3 \\ \chi - 7 < -3$$

$$\begin{array}{c} & 0 \ 9 \ \text{continued} \\ f \) \ & \sum_{k=1}^{5} (n^{3}-1) = 0 + (2^{3}-1) + (3^{3}-1) + (4^{3}-1) + (5^{3}-1) \\ & n = 1 \ & = 8 + 27 + 64 + 125 - 4 \\ & = 8 + 27 + 64 + 125 - 4 \\ & = 824 - 4 \\ & = 220 \ \end{array}$$

$$\begin{array}{c} & & \\$$

(a) (a)
$$3x + 2y - 1 = 0$$

Sub $xL = 1$ $3 + 2y - 1 = 0$
 $2y + 2 = 0$
 $y = -1$ $(1, -1)$
accept
any point on
either line
(1, -1) to $3x + 2y + 4 = 0$
 $a = 3$
 $b = 2$
 $C = 4$
 $P = 13 \times 1 + 2 \times -1 + 41$
 $\sqrt{3^2 + 2^2}$
 $= 5 \sqrt{13}$ units
b) $4\cos^2 \theta = 3$
 $\cos \theta = \pm \sqrt{3}$
 $\cos \theta = -\sqrt{3}$
 $\theta = 30^{\circ}, 330^{\circ}$ $\theta = 150^{\circ}, 210^{\circ}$

Q10 contraved c) $y = \frac{1}{5c+4}$ y= is shifted left 4 units. y-intercept 20=0 y=4 asymptotes y=0 t vertical x=-4 (-5,-1) hor i zontal 4=0 >1=4 1 shape X d) $y = 3x^2 + x - 6$ y' = 6x + 1A+(-1,-4) y'=-6+1=-5 = - 5 $y - y_1 = m(x - x_1)$ y + 4 = -5(x + 1) y = -5x - 9* 271 $e) \frac{4}{2(-1)} < 2$ $(x-1)^{2} \times \frac{4}{x-1} \leq 2(x-1)^{2} \sqrt{x-1}$ $4(2L-1) \leq 2(2L-1)^2$ $0 \leq 2(2\ell-1)^{2} - 4(2\ell-1)$ $0 \leq 2(2\ell-1)[(2\ell-1)-2] / 2(2\ell-1)(2\ell-3) \geq 0$ x < 1 jor x >3

$$\begin{array}{l} (0.11 \ a) \ i) \ y = (4x-1)^{b} \\ y' = 6(4x-1)^{5} \\ i) \ y = 24(4x-1)^{5} \\ ii) \ y = x(3x+2)^{5} \\ y = ur \\ u = x \\ u' = 1 \\ v' = 4(3x+2)^{4} \\ = (3x+2)^{4} \\ = (3x+2)^{4} + 12x(3x+2)^{3} \\ = (3x+2)^{3} \left[(3x+2) + 12x \right] \\ = (3x+2)^{2} (15x+2) \\ t = (3x+2)^{2} (15x+2) \\ \end{array}$$

$$\begin{array}{l} b) \ f(x) = \sqrt{4 \cdot x^{2}} \\ positive \ semi \ -curcle \ radivs \ 2 \\ f(\frac{1}{2}x) \ stretched \ horizondally \\ by \ a \ factor \ of \ 2 \\ y \ -intercept \\ \end{array}$$

c) LHS =
$$sin\theta + cos\theta$$

 $col \theta + 1$
= $sin \theta + cos\theta$
 $ros\theta + 1$
= $(sin \theta + ros \theta) = cos\theta + sin\theta$
= $sin \theta$
= $sin \theta + ros \theta$ × $sin \theta$
= $sin \theta$

0.12 continued
d)
$$2x + 3y - (=0)$$

 $y = -\frac{2}{3}x + \frac{1}{3}$
 $\frac{1}{3}x + \frac{2}{3}x + \frac{1}{3}x + \frac{1}{3}$

$$g_{13}$$
a) $2x - y + (1 + k(x + 3y - 5) = 0$

(2) $(x + kx)(-y + 3ky) + (1 - 5k) = 0$

(2 + k) $x + (3k - 1)y + (1 - 5k) = 0$

(3 k - 1) $y = -(2 + k)x - (1 - 5k)$

 $y = -(2 + k)x - (1 - 5k)$

 $y = -(2 + k)x - (1 - 5k)$

 $y = -(2 + k)x - (1 - 5k)$

 $2 + k = -2$

 $1 - 3k$

 $2 + k = -2$

 $1 - 3k$

 $2 + k = -2 + 6k$

 $4 = 5k$

 $k = 4$

Sub $k = 4$

 $5(2x - y + 1) + 4x + (12y - 20 = 0)$

 $10x (-5y) + 4x + (12y - 20 = 0)$

 $14x + 7y - 15 = 0$

asked for general form

Q13 continued b) tar x - 2 sec x -13=0 0≤x ≤ 180° $\frac{4an^{2}x(-2(1+tan^{2}x)+3=0)}{4an^{2}x(-2-2tan^{2}x+3=0)}$ $\frac{-tan^{2}x(-1)=0}{4an^{2}x(-1)=0}$ (tanse - 1) (tanse + 1) = 0 tan X-1=0 tan X-11=0 / 45 tanx=1 tanx=-1 $x = 45^{\circ}, 225^{\circ}$ $x = 135^{\circ}, 315^{\circ}$ but domain 0°<×× ≤ 180° × = 45° or 135° V

(0)3 conditioned
c)
$$y = \frac{x-1}{x^2-2x-3}$$

i) $x=0$ $y=3$ (0, 3) y intercept
 $x=0$ $x=1$ (1,0) x -intercept
 $y=0$ $x-1=0$
 $x=1$ (1,0) x -intercept
ii) vertical a symptotes
 $x=-1$ or $x=3$
iii) $y = \frac{x^2-1}{x^2} - \frac{1}{x^2}$
 $\frac{x^2-2x-3}{x^2} - \frac{1}{x^2}$
 $\frac{x}{x^2} - \frac{2x}{x^3} - \frac{3}{x^2}$
 $x \to -\infty$ $y \to 0$ horizontal
 y
 $y = \frac{1}{3} - \frac{1}{3} - \frac{1}{3} - \frac{3}{5} - \frac{1}{5}$
 y
 $y \to 0$ $\frac{1}{1-\frac{1}{3}} - \frac{1}{3} - \frac{1}{5} - \frac{1$

 $014 a) x'' - 3x^2y^2 - 4y'' = (x^2 - 4y^2)(x^2 - 4y^2)$ = $(x - 2y)(x + 2y)(x^2 - 4y^2)$ b) $f(x) = \int (x-1)^3 f(x) = \int (1-x)^3 f(x) = \int (1-x)^3 f(x) = \int (1-x)^3 f(x) = 0$ $f\left(\frac{a^2}{2}\right) = \left(\frac{a^2}{2} - 1\right)^3$ (Special cose) f (2) =-1 $f\left(-\frac{a^2}{2}\right) = \left(1 - \left(-\frac{a^2}{2}\right)\right)^2$ $f\left(-\frac{a^2}{2}\right) = -1$ $= \left(\frac{Q_{1}^{2}}{2} + 1\right)^{3}$: f(s')+((-s')=-2 $f\left(\frac{a^2}{2}\right) + f\left(-\frac{a^2}{2}\right)$ $= \left(\frac{a^2}{2} - 1\right)^3 + \left(\frac{a^2}{2} + 1\right)^3$ $= \left(\frac{a^{2}}{2} - 1 + \frac{a^{2}}{2} + 1\right) \left[\left(\frac{a^{2}}{2} - 1\right)^{2} - \left(\frac{a^{2}}{2} - 1\right) \left(\frac{a^{2}}{2} + 1\right) + \left(\frac{a^{2}}{2} + 1\right)^{2} \right]$ $= a^{2} \left[\left(\frac{a^{4}}{4} \left(-\frac{2a^{2}}{2} + 1 \right) - \left(\frac{a^{4}}{4} - 1 \right) + \left(\frac{a^{4}}{4} + \frac{2a^{2}}{2} + 1 \right) \right]$ $= a^{2}(3 + \frac{a^{4}}{4})$ Accept expansion of $f(\frac{g^2}{2})$ and $f(\frac{-g^2}{2})$ $f\left(\frac{a^2}{2}\right) = \left(\frac{a^2}{2} - 1\right)^3$ * Alternatie $= \frac{ab}{8} - \frac{3a^{4}}{4} + \frac{3a^{2}}{2} + 1$ method 1-mark $f\left(-\frac{a^2}{2}\right) = \left(\frac{a^2}{2} + 1\right)^3$ for = ab + 3a4 + 3a2 + 1 expansis.

$$\begin{array}{l} \partial I^{4} \quad (and nved) \\ i) \quad y = \frac{25c+1}{\sqrt{2x-1}} \\ (af \quad y = \frac{u}{\sqrt{2x-1}} & u = \frac{2}{2x+1} & \sqrt{2} = (2x-1)^{\frac{1}{2}} \\ u' = \frac{u' = 2}{\sqrt{2x-1}} & u' = \frac{1}{2(2x-1)^{\frac{1}{2}}} \\ y' = \frac{yu' - uy'}{\sqrt{2x-1}} & (2x-1)^{\frac{1}{2}} \\ = \frac{2\sqrt{2x-1} - (2x+1)}{\sqrt{2x-1}} & \sqrt{2x-1} \\ \hline & & \sqrt{2x-1} \\ = \frac{2(2x-1) - (2x+1)}{\sqrt{2x-1}} & x \quad \frac{1}{\sqrt{2x-1}} \\ = \frac{4x-2}{\sqrt{2x-1}} & x \quad \frac{1}{2x-1} \\ = \frac{2x-3}{(2x-1)^{\frac{3}{2}}} & (2x-1)^{\frac{3}{2}} \\ (2x-1)^{\frac{3}{2}} \\ i) \quad when \quad y' = 0 \\ 2x-3 = 0 \\ 2x-3 = 0 \\ x = \frac{3}{2} \end{array}$$

Q14d) GP X, y, Z r= y J 50 子=子 $z = y^2$ AP X, Z, Y 2-x = y-z 22 = x+y @ equadrus sub () into () 242 = x+y $2y^2 = x^2 + xy$ 242 - 24 - 262 =0 $+ \chi^{2}$ $2 y^{2} - \chi y - \chi^{2} = 0$ $\chi^{2} - \chi^{2} - \chi^{2} = 0$ as required 2 (2) - (2) -1=0 GP has a limiting sum $let r = \frac{y}{2r^2 - r - 1} = 0$ (2r+1)(r-1)=0r-1=0 21+1=0 r=1 21=-1 |r| < 1 ... $r = -\frac{1}{2}$ $S_{00} = \frac{q}{1-r} = \frac{2}{3} = \frac{2x}{3}$

