

2017 Half-Yearly Examination

FORM V

MATHEMATICS EXTENSION 1

Tuesday 23rd May 2017

General Instructions

- Writing time - 1 hour 30 minutes
- Write using black pen.
- Board-approved calculators and templates may be used.

Total - 80 Marks

- All questions may be attempted.

Section I-8 Marks

- Questions 1-8 are of equal value.
- Record your answers to the multiple choice on the sheet provided.

Section II-72 Marks

- Questions 9-14 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Collection

- Write your name, class and Master on each answer booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Write your name, class and Master on this question paper and hand it in with your answers.
- Place everything inside the answer booklet for Question Nine.
5A: RCF
5B: SO
5E: LYL
5F: LJF

5C: BR
5G: SDP

5D: REJ
5H: CMDB

Checklist

- SGS booklets - 6 per boy
- Multiple choice answer sheet

Examiner

LYL

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

Given $\alpha=\frac{-1+\sqrt{7}}{2}$ and $\beta=\frac{-1-\sqrt{7}}{2}$, what is the value of $\alpha^{2}-\beta^{2}$?
(A) 1
(B) 0
(C) $-\sqrt{7}$
(D) -1

QUESTION TWO

Which of the following is a geometric sequence?
(A) $2,5,11,20, \ldots$
(B) $8,-2, \frac{1}{2},-\frac{1}{8}, \ldots$
(C) $\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \frac{1}{8}, \ldots$
(D) $22,19,16,13, \ldots$

QUESTION THREE

Given that $g(x)=x^{2}$, what does $g(5-a)$ equal?
(A) $5-a$
(B) $25-a^{2}$
(C) $25+10 a+a^{2}$
(D) $25-10 a+a^{2}$

QUESTION FOUR

What is the largest possible domain for the function $f(x)=\frac{x}{\sqrt{9-x^{2}}}$?
(A) $0 \leq x<3$
(B) $-3<x<3$
(C) $0 \leq x<9$
(D) $-9<x<9$

SGS Half-Yearly 2017 Form V Mathematics Extension 1. ... Page 3

QUESTION FIVE

The point P divides the interval from $A(-10,8)$ to $B(4,1)$ internally in the ratio $3: 1$. What are the coordinates of P ?
(A) $\left(\frac{1}{2}, \frac{11}{4}\right)$
(B) $\left(-\frac{13}{2}, \frac{25}{4}\right)$
(C) $\left(\frac{11}{4}, \frac{1}{2}\right)$
(D) $\left(\frac{25}{4},-\frac{13}{2}\right)$

QUESTION SIX

The derivative of $f(x)=\frac{4}{x^{3}}$ is:
(A) $\frac{4}{3 x^{2}}$
(B) $-\frac{12}{x^{4}}$
(C) $-\frac{12}{x^{2}}$
(D) $-\frac{4}{x^{4}}$

SGS Half-Yearly 2017

QUESTION SEVEN

What is the value of $\frac{x}{y}$ in the diagram above?
(A) $\frac{1}{\sqrt{3}}$
(B) $\sqrt{3}$
(C) $\frac{\sqrt{3}}{2}$
(D) $\frac{2}{\sqrt{3}}$

QUESTION EIGHT

Consider the equation $\tan (2 x-45)=-1$, for $0^{\circ} \leq x \leq 360^{\circ}$. How many solutions does this equation have in this domain?
(A) 2
(B) 3
(C) 4
(D) 5

SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.
Show all necessary working.
Start a new booklet for each question.

QUESTION NINE (12 marks) Use a separate writing booklet.
(a) Simplify $(4 \sqrt{5}-1)^{2}$.
(b) Differentiate:
(i) $y=2 x^{3}-3 x$
(ii) $y=x(x+3)$
(iii) $y=\frac{x^{3}+x}{x}$
(c) Solve $|2 x-7|>3$.
(d) Consider the sequence $40,38,36, \ldots$.
(i) State the common difference.
(ii) Find the thirteenth term.
(e) Factorise $27-x^{3}$.
(f) Evaluate $\sum_{n=1}^{5}\left(n^{3}-1\right)$.
(g)

The diagram above shows the gable of a roof. The gable forms an isosceles triangle with two rafters of 4 metres and an angle of 135° at the apex.
(i) Find the value of x. Give your answer correct to two decimal places.
(ii) Find the exact area of the gable.
(a) Find the perpendicular distance between the parallel lines $3 x+2 y-1=0$
and $3 x+2 y+4=0$.
(b) Solve $4 \cos ^{2} \theta=3$, for $0^{\circ} \leq \theta \leq 360^{\circ}$.
(c) Sketch $y=\frac{1}{x+4}$. Show all asymptotes and any intercepts with the axes.
(d) Find the equation of the tangent to the curve $y=3 x^{2}+x-6$ at the point $(-1,-4)$.

Give your answer in gradient-intercept form.
(e) Solve the inequation $\frac{4}{x-1} \leq 2$.
(a) Differentiate:
(i) $y=(4 x-1)^{6}$
(ii) $y=x(3 x+2)^{4}$
(b) Given $f(x)=\sqrt{4-x^{2}}$, sketch $y=f\left(\frac{1}{2} x\right)$ and clearly mark any significant features.
(c) Prove $\frac{\sin \theta+\cos \theta}{\cot \theta+1}=\sin \theta$.
(d) Consider the graphs of $y=6 x-x^{2}$ and $y=2 x$.
(i) Find any points of intersection.
(ii) Shade the intersection of the regions $y \leq 6 x-x^{2}$ and $y>2 x$. Indicate the nature of the boundaries and corners clearly.
(a) If $\cos \theta=-\frac{4}{7}$ and $\tan \theta>0$, find the exact value of $\sin \theta$.
(b) The third term of a geometric sequence is 54 and the sixth term is 2 . Find the common ratio.
(c) Determine whether $f(x)=\frac{x^{2}-3}{x}$ is even, odd or neither. Show your working clearly.
(d) Find the angle of inclination of the line $2 x+3 y-1=0$. Give your answer correct to the nearest minute.
(e) Given $\log _{b} z=\log _{b}(x+2)-2 \log _{b} y$, write an expression for z without logarithms.
(f) Consider the function $f(x)=x^{2}-5 x$.
(i) Simplify the expression $f(x+h)-f(x)$.
(ii) Hence use the formula

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

to differentiate $f(x)=x^{2}-5 x$ from first principles.

QUESTION THIRTEEN (12 marks) Use a separate writing booklet. Marks
(a) Without finding the point of intersection, find the equation of the line that passes through $2 x-y+1=0$ and $x+3 y-5=0$ and is parallel to the line $y=-2 x+3$. Give your answer in general form.
(b) Solve $\tan ^{2} x-2 \sec ^{2} x+3=0$, for $0^{\circ} \leq x \leq 180^{\circ}$.
(c) Consider the graph $y=\frac{x-1}{x^{2}-2 x-3}$.
(i) Find any intercepts with the coordinate axes.
(ii) Write down the equation(s) of any vertical asymptote(s).
(iii) Find the equation of the horizontal asymptote.
(iv) Copy and complete the following table.

x	-2	0	2	4
y				

(v) Draw a neat sketch of the graph. Show all the features from parts (i) to (iv).
(a) Factorise fully $x^{4}-3 x^{2} y^{2}-4 y^{4}$.
(b) A function is defined by the rule:

$$
f(x)= \begin{cases}(x-1)^{3} & \text { for } x \geq 0 \\ (1-x)^{3} & \text { for } x<0\end{cases}
$$

Find a simplified expression for $f\left(\frac{a^{2}}{2}\right)+f\left(\frac{-a^{2}}{2}\right)$.
(c) (i) Differentiate $y=\frac{2 x+1}{\sqrt{2 x-1}}$.
(ii) Find the x-coordinate of any point(s) where the tangent is horizontal.
(d) It is known that x, y, z are the first three terms of a geometric progression and x, z, y are the first three terms of an arithmetic progression.
(i) Show that $2\left(\frac{y}{x}\right)^{2}-\left(\frac{y}{x}\right)-1=0$.
(ii) Given the geometric sequence has a limiting sum, find S_{∞} in terms of x.
(e) Consider the function $f(x)=||x+3|-1|$. For what values of the constant k does the equation $f(x)=k$ have exactly four distinct solutions?
\qquad

Sydney Grammar School

2017
Half-Yearly Examination
FORM V
MATHEMATICS EXTENSION 1
Tuesday 23rd May 2017

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

Question One

A
B \qquad
C
D

Question Two

ABD \bigcirc

Question Three

AB \bigcircD \bigcirc

Question Four

$\mathrm{A} \bigcirc$
B \bigcirc
C
D \bigcirc

Question Five

AB
C
D \bigcirc

Question Six

A \bigcirc
BD \bigcirc

Question Seven

AB
D

Question Eight

$\mathrm{A} \bigcirc$
B \qquad
C
O
D

Form I Extension 1 Half Yearly
Ext 1 Half Yearly 2019
Multiple choice
$\theta 1$ (c)

$$
\begin{array}{rlrl}
\alpha & =\frac{-1+\sqrt{7}}{2} & \beta & =\frac{-1-\sqrt{7}}{2} \\
& =\frac{\sqrt{7-1}}{2} & & =\frac{-(\sqrt{7}+1)}{2} \\
\alpha^{2} & =\frac{(\sqrt{7}-1)^{2}}{4} & \beta^{2} & =(\sqrt{7}+1)^{2} \\
& =\frac{7-2 \sqrt{7}-1}{4} & & =\frac{7+2 \sqrt{7}+1}{4} \\
& =\frac{8-2 \sqrt{7}}{4} & & =\frac{2(4+\sqrt{7})}{42} \\
& =\frac{2(4-\sqrt{7})}{42} & & =\frac{4+\sqrt{7}}{2} \\
& =\frac{4-\sqrt{7}}{2} \\
\alpha^{2}-\beta^{2} & =\frac{4-\sqrt{7}-(4+\sqrt{7})}{2} \\
& =-\frac{2 \sqrt{7}}{2} \\
& =-\sqrt{7}
\end{array}
$$

Q2 (B) if $\left.\begin{array}{rl}\frac{T_{2}}{T_{1}} & =\frac{T_{3}}{T_{2}} \\ \text { or } T_{2}^{2} & =T_{1} \times T_{3}\end{array}\right\}$ then $G P$
Sequence $\frac{\delta_{1}}{T_{1}}, \frac{2}{T_{2}}, \frac{1}{T_{3}},-\frac{1}{8}, \cdots$

$$
\begin{array}{rlrl}
T_{1} \times T_{3} & =8 \times \frac{1}{2} & T_{2}^{2} & =(-2)^{2} \\
& =4 \\
\therefore & =8,-2, \frac{1}{2},-\frac{1}{8}, \ldots \text { is a GP. }
\end{array}
$$

03

$$
\begin{align*}
& g(x)=x^{2} \\
& g(5-a)=(5-a)^{2} \tag{D}\\
&=25-10 a+a^{2}
\end{align*}
$$

$04 f(x)=\frac{x}{\sqrt{9-x^{2}}}$
Domar $\sqrt{9-x^{2}}>0$

$$
\begin{gathered}
9-x^{2}>0 \\
(3-x)(3+x)>0 \\
-3<x<3
\end{gathered}
$$

Q 5

$$
\begin{align*}
& A(-10,8) \\
& x_{1} y_{1} \\
& x=\frac{k x_{2}+l x}{k+l} \\
&=\frac{3 \times 4+1 \times-10}{4} \\
&=\frac{12-10}{4} \tag{A}\\
&=\frac{1}{2} \\
& M\left(\frac{1}{2}, \frac{11}{4}\right)
\end{align*}
$$

$$
B(4,1)
$$

$$
3: 1
$$

$$
k: l
$$

06

$$
\begin{align*}
f(x) & =4 x^{-3} \\
f^{\prime}(x) & =-12 x^{-4} \tag{B}\\
& =-\frac{12}{x^{4}}
\end{align*}
$$

$$
\begin{array}{cc}
\text { Q7 } \tan (2 x-45)=-1 & 0^{\circ}<x \leqslant 360^{\circ} \\
\text { let } \theta=2 x-45 & 0^{\circ} \leqslant 2 x \leqslant 720 \\
\tan \theta=-1 & -45 \leqslant-45
\end{array}
$$

$$
\text { related angle }=45^{\circ}
$$

$$
\theta=-45^{\circ}, 135^{\circ}, 315^{\circ}, 495^{\circ}, 675^{\circ}
$$

Since

$$
\begin{aligned}
& \theta=2 x-45 \\
& x=\frac{\theta+45}{2}
\end{aligned}
$$

$$
x=0^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ}, 360^{\circ}
$$

\therefore There are 5 solutions.
Q 8 in $\triangle A D B$
In $\triangle A D C$

$$
\begin{array}{rlr}
\frac{x}{\sin 30^{\circ}} & =\frac{A D}{\sin 45^{\circ}} \times \frac{y}{\sin 45^{\circ}}=\frac{A D}{\sin 60^{\circ}} \\
x & =\frac{A D \sin 30^{\circ}}{\sin 45^{\circ}} \quad y=\frac{A D \sin 45^{\circ}}{\sin 60^{\circ}} \\
\frac{x}{y} & =\frac{A D \sin 30^{\circ}}{\sin 450} \div \frac{A D \sin 45^{\circ}}{\sin 60^{\circ}} \\
& =\frac{A D \sin 30^{\circ}}{\sin 45^{\circ}} \times \frac{\sin 60^{\circ}}{2} \\
& =\frac{1}{2} \div \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} \div \frac{1}{\sqrt{2}} \\
& =\frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{1} \\
& =\frac{\sqrt{3}}{2} \tag{c}
\end{array}
$$

09
a)

$$
\begin{aligned}
& (4 \sqrt{5}-1)^{2} \\
= & (4 \sqrt{5})^{2}-2 \cdot 4 \sqrt{5}+1 \\
= & 16 \times 5-8 \sqrt{5}+1 \\
= & 81-8 \sqrt{5}
\end{aligned}
$$

b) i)

$$
\begin{aligned}
& y=2 x^{3}-3 x \\
& y^{\prime}=6 x^{2}-3
\end{aligned}
$$

ii)

$$
\begin{aligned}
y & =x(x+3) \\
& =x^{2}+3 x \\
y^{\prime} & =2 x+3
\end{aligned}
$$

iii)

$$
\begin{aligned}
y & =\frac{x^{3}+x}{x} \\
& =x^{2}+1 \\
y^{\prime} & =2 x
\end{aligned}
$$

c)

$$
\begin{gathered}
\left\lvert\, \begin{array}{c}
2 x-7 \mid
\end{array}>3\right. \\
2 x-7>3 \\
2 x>10 \\
x>5
\end{gathered}
$$

$$
\begin{array}{r}
2 x-7<-3 \\
2 x<4 \\
x<2
\end{array}
$$

d) i)

$$
\begin{aligned}
& d=-2 \\
& a=40
\end{aligned}
$$

ii)

$$
\begin{aligned}
T_{n} & =a+(n-1) d \\
T_{13} & =40+12 \times-2 \\
& =40-24
\end{aligned}
$$

$$
I_{13}=16
$$

e)

$$
\begin{aligned}
27-x^{3} & =3^{3}-x^{3} \\
& =(3-x)\left(9+3 x+x^{2}\right)
\end{aligned}
$$

Q9 continued
f)

$$
\begin{aligned}
\sum_{n=1}^{5}\left(n^{3}-1\right) & =0+\left(2^{3}-1\right)+\left(3^{3}-1\right)+\left(4^{3}-1\right)+\left(5^{3}-1\right) \\
& =8+27+64+125-4 \\
& =224-4 \\
& =220
\end{aligned}
$$

g) i)

$$
\begin{aligned}
x^{2} & =4^{2}+4^{2}-2.4 .4 \cdot \cos 135^{\circ} \\
& =32-2.4 .4 \times \frac{1}{\sqrt{x}} \\
& =32-22.4 .4 \times \frac{\sqrt{2}}{2} \\
& =32-16 \sqrt{2} \\
x & =\sqrt{32-16 \sqrt{2}} \\
x & \div 7.39 \mathrm{~m}(2 \mathrm{ap})
\end{aligned}
$$

$$
\text { ii) } \begin{aligned}
\text { Area } & =\frac{1}{2} a b \sin 135^{\circ} \\
& =\frac{1}{2} \times 16 \times \frac{1}{\sqrt{2}} \\
& =\frac{8}{\sqrt{2}} \times \sqrt{2} \\
& =4 \sqrt{2} 4^{2}
\end{aligned}
$$

Q10 a) $3 x+2 y-1=0$
sub

$$
\begin{aligned}
x=1 \quad 3+2 y-1 & =0 \\
2 y+2 & =0
\end{aligned}
$$

$$
y=-1 \quad(1,-1)
$$

accept any point on either line
Perpendicular distance

$$
\begin{gathered}
(1,-1) \text { to } 3 x+2 y+4=0 \\
a=3 \\
b=2 \\
c=4 \\
P=\frac{|3 \times 1+2 x-1+4|}{\sqrt{3^{2}+2^{2}}} \\
=\frac{5}{\sqrt{13}} \\
=\frac{5 \sqrt{13}}{13} \text { units }
\end{gathered}
$$

b)

$$
\begin{aligned}
4 \cos ^{2} \theta & =3 \\
\cos ^{2} \theta & =\frac{3}{4} \\
\cos \theta & = \pm \frac{\sqrt{3}}{2} \quad, ~ \\
\cos \theta & =\frac{\sqrt{3}}{2} \\
\theta & =30^{\circ}, 330^{\circ}
\end{aligned} \quad \cos \theta=-\frac{\sqrt{3}}{2} \quad 150^{\circ}, 210^{\circ}
$$

Q10 continued
c) $y=\frac{1}{x+4}$
$y=\frac{1}{x}$ shifted left 4 units.

$$
\begin{array}{l|l|l|c|c}
x & -6 & -5 & 0 & 1 \\
y & -\frac{1}{2} & -1 & \frac{1}{4} & \frac{1}{5}
\end{array}
$$

\checkmark shape
d)

$$
\left.\begin{array}{c}
y=3 x^{2}+x-6 \\
y^{\prime}=6 x+1 \\
\text { At }(-1,-4) \quad y^{\prime}=-6+1 \\
y-y_{1}=m\left(x-x_{1}\right) \\
y+4=-5(x+1) \\
y=-5 x-9
\end{array}\right\}
$$

e)

$$
\begin{gathered}
\frac{4}{x-1} \leqslant 2 \\
(x-1)^{2} \times \frac{4}{x-1} \leqslant 2(x-1)^{2} \\
4(x-1) \leqslant 2(x-1)^{2} \\
0 \leqslant 2(x-1)^{2}-4(x-1) \\
0 \leqslant 2(x-1)[(x-1)-2] \\
2(x-1)(x-3) \geqslant 0 \\
x<1
\end{gathered}
$$

Q11 a) i) $y_{1}=(4 x-1)^{6}$

$$
\begin{aligned}
y^{\prime} & =6(4 x-1)^{5} \\
& =24(4 x-1)^{5}
\end{aligned}
$$

Chain rule
ii)

$$
\begin{aligned}
& y=x(3 x+2)^{5} \\
& y=4 \nu
\end{aligned}
$$

$$
\begin{aligned}
u=x \quad v^{\prime} & =(3 x+2)^{4} \\
u^{\prime}=1 \quad v^{\prime} & =4(3 x+2)^{3} \cdot 3 \\
& =12(3 x+2)^{3}
\end{aligned}
$$

$$
\begin{aligned}
y^{\prime} & =2 u^{\prime}+4 \nu^{\prime} \\
& =(3 x+2)^{4}+12 x(3 x+2)^{3} \\
& =(3 x+2)^{3}[(3 x+2)+12 x] \\
& =(3 x+2)^{2}(15 x+2)
\end{aligned}
$$

b) $f(x)=\sqrt{4-x^{2}}$
positive semi-circle radive 2
$f\left(\frac{1}{2} x\right)$ stretched horizontally by a factor of 2
correct
y-intercept

let $y=f(x)$

$$
\text { let } y=f(x)=\sqrt{4-x^{2}}
$$

correct x interests
c)

$$
\begin{aligned}
\text { LHS } & =\frac{\sin \theta+\cos \theta}{\cot \theta+1} \\
& =\frac{\sin \theta+\cos \theta}{\frac{\cos \theta}{\sin \theta}+1} \\
& =\frac{(\sin \theta+\cos \theta)}{1} \times \frac{\cos \theta+\sin \theta}{\sin \theta} \\
& =\frac{\sin \theta+\cos \theta}{1} \times \frac{\sin \theta}{\cos \theta} \sin \theta \\
& =\sin \theta \text { as required. } \\
& =\text { RUS }
\end{aligned}
$$

d)

$$
\text { i) } \begin{aligned}
y= & 6 x-x^{2} \quad y=2 x \\
& 6 x-x^{2}=2 x \\
& 4 x-x^{2}=0 \\
& x(4-x)=0 \\
x=0 & \text { or } x=4
\end{aligned}
$$

Points of intersection $(0,0)$ and $(4,8)$
i)

$$
\begin{aligned}
& y \leqslant 6 x-x^{2} \\
& \text { and }
\end{aligned}
$$

$$
y>2 x
$$

cures boundaries \} \rightarrow corners $\}$ region

Q12 a) $\cos \theta=-\frac{4}{7} \quad \tan \theta>0$

$$
\begin{aligned}
x^{2}+4^{2} & =7^{2} \\
x^{2} & =49-16 \\
& =33 \\
x & =\sqrt{33} \quad(x>0) \\
\sin \theta & =-\frac{\sqrt{33}}{7}
\end{aligned}
$$

b)

$$
\begin{array}{ll}
G P & T_{n}=a r^{n-1} \\
T_{3}=54 & T_{b}=2 \\
a r^{2}=54 & \text { (1) }
\end{array} a r^{5}=2
$$

(2) \div (1)

$$
\begin{aligned}
\frac{a r^{5}}{a r^{2}} & =\frac{2}{54} \\
r^{3} & =\frac{1}{27} \\
r & =\frac{1}{3}
\end{aligned}
$$

c)

$$
\begin{aligned}
& f(x)=\frac{x^{2}-3}{x} \\
& f(-x)=\frac{(-x)^{2}-3}{-x} \\
&=\frac{x^{2}-3}{-x} \\
&=-f(x) \\
& \therefore f(x) \text { is odd }
\end{aligned}
$$

Q 12 continued
d)

$$
\begin{aligned}
2 x+3 y-1 & =0 \\
3 y & =-2 x+1 \\
y & =\frac{-2}{3} x+\frac{1}{3}
\end{aligned}
$$

$$
m=-\frac{2}{3}
$$

$$
\tan \theta=-\frac{2}{3}
$$

$$
\tan \alpha=\frac{2}{3}
$$

$$
\theta \equiv 180-33^{\circ} 41^{\prime}
$$

$$
\doteq 146^{\circ} 19^{\prime} \text { (nearest minute) }
$$

e)

$$
\begin{aligned}
\log _{b} z & =\log _{b}\left(\frac{x+z}{y^{2}}\right) \\
z & =\frac{x+z}{y^{2}}
\end{aligned}
$$

f)

$$
\begin{aligned}
& f(x)=x^{2}-5 x \\
& f(x+h)=(x+h)^{2}-5(x+h) \\
&=x^{2}+2 h x+h^{2}-5 x-5 h
\end{aligned}
$$

$$
\left.\begin{array}{rl}
f(x+h)-f(x) & =x^{2}+2 h x+h^{2}-5 x-5 h \\
& -x^{2}+5 x \\
& =2 h x+h^{2}-5 h \\
& =\frac{h(2 x+h-5)}{f^{\prime}(x)}
\end{array}=\lim _{h \rightarrow 0} \frac{(2 x+h-5)}{\not x}\right)
$$

Q13
a)

$$
\begin{aligned}
& 2 x-y+1+k(x+3 y-5)=0 \\
&(2 x+k x)(-y+3 k y)+(1-5 k)=0 \\
&(2+k) x+(3 k-1) y+(1-5 k)=0 \\
&(3 k-1) y=-(2+k) x-(1-5 k) \\
& y=\frac{-(2+k)}{(3 k-1)} x-\frac{(1-5 k)}{(3 k-1)} \\
& \frac{2+k}{1-3 k}=-2 \\
& 2+k=-2(1-3 k) \\
& 2+k=-2+6 k \\
& 4=5 k \\
& k=\frac{4}{5}
\end{aligned}
$$

Sub $k=\frac{4}{5}$ into *

$$
\begin{array}{r}
2 x-y+1+\frac{4}{5}(x+3 y-5)=0 \\
5(2 x-y+1)+4 x+12 y-20=0 \\
10 x-5 y+5+4 x+12 y-20=0 \\
14 x+7 y-15=0
\end{array}
$$ form

Q13 continued
b)

$$
\begin{array}{rl}
\tan ^{2} x-2 \sec ^{2} x+3=0 & 0 \leqslant x \leqslant 180^{\circ} \\
\tan ^{2} x-2\left(1+\tan ^{2} x\right)+3 & =0 \\
\tan ^{2} x-2-2 \tan ^{2} x+3 & =0 \\
-\tan ^{2} x+1 & =0 \\
\tan ^{2} x-1 & =0 \\
(\tan x-1)(\tan x+1) & =0
\end{array}
$$

$\tan x-1=0 \quad \tan x+1=0$

$$
\begin{array}{lr}
\tan x=1 & \tan x=-1 \\
x=45^{\circ}, 225^{\circ} & x=135,315^{\circ}
\end{array}
$$

but domain

$$
\begin{aligned}
0^{\circ} \angle x & =180^{\circ} \\
\therefore x & =45^{\circ} \text { ar } 135^{\circ}
\end{aligned}
$$

Q13 continved
c) $y=\frac{x-1}{x^{2}-2 x-3}$
i) $x=0 \quad y=\frac{1}{3}$
$\left(0, \frac{\left.\frac{1}{3}\right) y+\text { nterept }}{\text { accept } y=\frac{1}{3}}\right.$
$\begin{aligned} y=0 \quad x-1 & =0 \\ x & =1\end{aligned}$
$x=1 \quad(1,0) x$-interept
ii) vertical a symptotes

$$
x=-1 \text { or } x=3
$$

ur)

$$
\begin{aligned}
& y=\frac{\frac{x}{x^{2}}-\frac{1}{x}}{\frac{x^{2}}{x^{2}}-\frac{2 x}{x^{2}}-\frac{3}{x^{2}}} \\
& =\frac{0}{1-\frac{2}{x}-\frac{3}{x^{2}}} \\
& \begin{array}{ll}
x \rightarrow \infty & y \rightarrow 0 \\
x \rightarrow-\infty & y \rightarrow 0
\end{array} \\
& y=0
\end{aligned}
$$

harizontal asyuptote
iv)

x	-2	0	2	4
y	$-\frac{3}{5}$	$\frac{1}{3}$	$-\frac{1}{3}$	$\frac{3}{5}$

v)

014 a)

$$
\begin{aligned}
x^{4}-3 x^{2} y^{2}-4 y^{4} & =\left(x^{2}-4 y^{2}\right)\left(x^{2}+y^{2}\right) \\
& =(x-2 y)(x+2 y)\left(x^{2}+y^{2}\right)
\end{aligned}
$$

b) $f(x)=\left\{\begin{array}{l}(x-1)^{3} \text { for } x \geqslant 0 \\ (1-x)^{3} \text { for } x<0\end{array}\right.$

$$
\begin{aligned}
f\left(\frac{a^{2}}{2}\right) & =\left(\frac{a^{2}}{2}-1\right)^{3} \\
f\left(\frac{-a^{2}}{2}\right) & =\left(1-\left(\frac{-a^{2}}{2}\right)\right)^{3} \\
& =\left(\frac{a^{2}}{2}+1\right)^{3}
\end{aligned}
$$

$$
f\left(\frac{a^{2}}{2}\right)+f\left(-\frac{a^{2}}{2}\right)
$$

$$
=\left(\frac{a^{2}}{2}-1\right)^{3}+\left(\frac{a^{2}}{2}+1\right)^{3}
$$

$$
=\left(\frac{a^{2}}{2}-1+\frac{a^{2}}{2}+1\right)\left[\left(\frac{a^{2}}{2}-1\right)^{2}-\left(\frac{a^{2}}{2}-1\right)\left(\frac{a^{2}}{2}+1\right)+\left(\frac{a^{2}}{2}+1\right)^{2}\right]
$$

$$
=a^{2}\left[\left(\frac{a^{4}}{4}-\frac{2 a^{2}}{2}+1\right)-\left(\frac{a^{4}}{4}-1\right)+\left(\frac{a^{4}}{4}+\frac{2 a^{2}}{2}+1\right)\right]
$$

$$
=a^{2}\left(3+\frac{a^{4}}{4}\right)
$$

Accept expansion of $f\left(\frac{a^{2}}{2}\right)$ and $f\left(\frac{-a^{2}}{2}\right)$

$$
\begin{aligned}
f\left(\frac{a^{2}}{2}\right) & =\left(\frac{a^{2}}{2}-1\right)^{3} \\
& =\frac{a^{6}}{8}-3 \frac{a^{4}}{4}+\frac{3 a^{2}}{2}+1 \\
f\left(-\frac{a^{2}}{2}\right) & =\left(\frac{a^{2}}{2}+1\right)^{3} \\
& =\frac{a^{6}}{8}+\frac{3 a^{4}}{4}+\frac{3 a^{2}}{2}+1
\end{aligned}
$$

* Alterative method 1 mark for correct expanses

Q14 continued
i) $y=\frac{2 x+1}{\sqrt{2 x-1}}$

Let $y=\frac{u}{v^{2}}$

$$
\begin{array}{ll}
u=2 x+1 & v=(2 x-1)^{\frac{1}{2}} \\
u^{\prime}=2 & v^{\prime}=\frac{1}{2}(2 x-1)^{-\frac{1}{2}} \cdot 2
\end{array}
$$

$$
y^{\prime}=\frac{v u^{\prime}-u v^{\prime}}{v^{2}}
$$

$$
=\frac{2 \sqrt{2 x-1}-\frac{(2 x+1)}{\sqrt{2 x-1}}}{2 x-1}
$$

$$
=\frac{2(2 x-1)-(2 x+1)}{\sqrt{2 x-1}} \times \frac{1}{2 x-1}
$$

$$
=\frac{4 x-2-2 x-1}{(2 x-1)^{\frac{3}{2}}}
$$

$$
=\frac{2 x-3}{(2 x-1)^{\frac{3}{2}}}
$$

ii) when $y^{\prime}=0$

$$
\begin{aligned}
2 x-3 & =0 \\
2 x & =3 \\
x & =\frac{3}{2}
\end{aligned}
$$

Q14d) GP x, y, z
so $\frac{y}{x}=\frac{z}{y}$

$$
r=\frac{y}{x}
$$

$$
\begin{equation*}
z=\frac{y^{2}}{x} \tag{1}
\end{equation*}
$$

AP x, z, y

$$
\begin{align*}
z-x & =y-z \\
2 z & =x+y \tag{2}
\end{align*}
$$

two equatios

Sub (1) into (2)

$$
\left.\begin{array}{c}
2 \frac{y^{2}}{x}=x+y \\
2 y^{2}=x^{2}+x y \\
-x^{2} 2 y^{2}-x y-x^{2}=0 \\
2 \frac{y^{2}}{x^{2}}-\frac{x y}{x^{2}}-\frac{x^{2}}{x^{2}}=0 \\
2\left(\frac{y}{x}\right)^{2}-\left(\frac{y}{x}\right)-1=0 \quad \text { as requived }
\end{array}\right\}
$$

Gp has a limiting sum

$$
\therefore|r|<1 \quad\left|\frac{y}{x}\right|<\sigma_{1}
$$

let $r=\frac{y}{x}$

$$
\begin{array}{rr}
2 r^{2}-r-1=0 \\
(2 r+1)(r-1)=0 & r-1=0 \\
2 r+1=0 & r=1 \quad \vee \\
2 r=-1 & r=-\frac{1}{2} \quad r=-\frac{1}{2} \\
|r|<1 \quad S_{\infty}=\frac{a}{1-r}=\frac{x}{\frac{3}{2}}=\frac{2 x}{3}
\end{array}
$$

Q14e) $\quad f(x)=||x+3|-1$
Let $y=f(x)$
Standard curve $y=|x|$ is shifted left 3 units
then $y=|x+3|$ is shifted down I unit and then curve below x-axis is reflected in $x-a x i s$.

$||x+3|-1|=k$ exactly fou solutions.

$$
0<k<1
$$

