SYDNEY TECHNICAL HIGH SCHOOL

MATHEMATICS EXTENSION 1

YEAR 11 COMMON TEST

MAY 2008

Time	e allowed: 70 minutes
Instr	ructions:
•	Show necessary working in every question.
•	Start each question on a new page.
•	Attempt all questions.
•	Marks shown are approximate and may be changed .
•	Full marks may not be awarded for careless or badly arranged work.
•	Your sketches must be neat. Use a ruler to draw axes. Label the axes.
•	Approved calculators may be used .
ا • ا	These questions are to handed in with your answers.
	Name:
	Class:

	Question 1	Question 2	Question 3	Question 4	Question 5	Question 6	Total
ĺ	•						_
	/8	/8	/8	/9	/9	/9	/51

QUESTION 1

a) Expand
$$(2x-1)^3$$

b) Solve
$$8^{x+1} = \frac{1}{4\sqrt{2}}$$

c) Fully factorise

i)
$$8x^3 + 1$$

1

ii)
$$x^2 - xy - 2y^2$$

iii)
$$y^2 - x^2 + 2x - 1$$

d) Simplify
$$2^{n+3} - 2^{n+2}$$

QUESTION 2

a) Simplify
$$\frac{\sqrt{3}-1}{\sqrt{3}+1} - \frac{\sqrt{3}+1}{\sqrt{3}-1}$$

b) State the natural domain of
$$y = \frac{1}{\sqrt{4-x^2}}$$

(c) i) Sketch
$$y = x^2 - 3x - 4$$
 for $0 \le x \le 5$

d) Express
$$\frac{3^n + 3^n + 3^n}{9^n}$$
 in simplest index form.

QUESTION 3

a) True or false: |a + b| = |a| + |b| for all values a and b.

Give an example to illustrate your response,

2

1

b) Solve $\frac{x}{x^2-4} < 0$

1

c) i) Simplify $\frac{x+3}{x^2-9}$

ii) Hence sketch $y = \frac{x+3}{x^2-9}$

Clearly label the axes, any asymptotes, intercepts and critical points.

2

d) Given that $\cos \theta = -\frac{2}{3}$ and $\tan \theta > 0$, find the exact value of $\sin \theta$.

2

QUESTION 4

a) Solve $\frac{2}{|2x-1|} > \frac{1}{2}$

3

b) On the same axes, neatly sketch $y = 4 - x^2$ and $y = \frac{1}{4 - x^2}$

Label axes, asymptotes and intercepts.

3

ii) Find the x values of the points of intersection of the two curves above.

3

QUESTION 5

a) Simplify
$$\frac{\cos(90^{\circ} - \theta)}{\sin(90^{\circ} + \theta)}$$

b) Sketch
$$y = \frac{x+1}{|x+1|}$$

c) i) Sketch
$$y = 2 - |x|$$

ii) Hence or otherwise, solve
$$|1-x|+|x|>2$$

d) Prove that
$$\cot \alpha + \tan \alpha = \sec \alpha \ cosec \ \alpha$$

QUESTION 6

b)

Solve for $0^{\circ} \le \theta \le 360^{\circ}$. Give answers correct to the nearest minute where applicable.

i)
$$\frac{3}{\sin^2\theta} = 4$$

ii)
$$3 \sec^2 \theta = 3 + 5 \tan \theta$$

From a lighthouse L a ship S bears 053°T and is at a distance of 8 nautical miles.

From L a boat B bears 293° T at a distance of 6 nautical miles.

- i) Draw the diagram above, marking the information supplied.
- ii) Find the distance of ship S from boat B. Give your answer as a surd.

2

2

iii) Find the bearing of ship S from boat B. Give your answer to the nearest degree.

EXTENSION SOLUTIONS Corrected Version

(a)
$$8x^3 - 12x^2 + 6x - 1$$

$$(2^3)^{xH} = \frac{1}{2^2 \cdot 2^{k_2}}$$

$$2^{3x+3} = 2^{-\frac{5}{2}}$$

$$3x+3 = -2\frac{1}{4}$$

$$3x = -5\%$$

$$(1) 2 \cdot 2^{n+2} - 2^{n+2} = 2^{n+2}$$

$$(2^{11}a)(\sqrt{3}-()^{2}-(\sqrt{3}+()^{2})^{2}$$

$$= -253$$

$$\frac{3 \times 3^{n}}{(3^{2})^{n}} = \frac{3^{n+1}}{3^{2n}}$$

$$= 3^{n+1-2n}$$

$$= 3^{(-n)}$$

$$(x^{2}-4)^{2}$$
 $(x^{2}-4)^{2}$ $(x^{2}-4)^{2}$

(2) (1)
$$\frac{x+3}{(x+3)(x-3)} = \frac{1}{x-3}$$

$$\int_{0}^{\infty} \sin \theta = -\int_{0}^{\infty} \frac{1}{3}$$

(4) a)
$$|2x-1|$$
 is positive and $x \neq \frac{1}{2}$
 $|2x-1| \leq \frac{1}{2}|2x-1|$
 $|2x-1| \leq 4$

$$(4 - x^{2})^{2} = \frac{1}{4 - x^{2}}$$

$$(4 - x^{2})^{2} = 1$$

$$(6 - 8x^{2} + x^{4}) = 1$$

$$x^{4} - 8x^{2} + (5) = 0$$

$$(x^{2} - 5)(x^{2} - 3) = 0$$

$$\frac{5}{\sin(90-0)} = \frac{\sin 0}{\cos 0}$$

$$= \frac{\sin 0}{\cos 0}$$

(x+1)
$$|x+1|$$

$$= |x+1| \text{ for } |x+1| > o(x>-1)$$

$$= |x+1| = |x+1| > o(x>-1)$$

$$\frac{1}{y} = -1 \quad \text{for } x < -1$$

$$\frac{1}{y} = 1$$

$$\frac{1}{y} = 1$$

$$\frac{1}{y} = 1$$

$$\frac{1}{y} = 1$$

d) LHS =
$$\frac{\cos x}{\sin x} + \frac{\sin x}{\cos x}$$

= $\frac{\cos^2 x + \sin^2 x}{\sin x \cos x}$
= $\frac{1}{\sin x \cos x}$
= $\frac{1}{\sin x \cos x}$

(a) (1)
$$3 = 4 \sin^2 \theta$$

 $\sin^2 \theta = \frac{3}{4}$

(ii)
$$65^2 = 6^2 + 8^2 - 2 \times 6 \times 8 \times \cos 120$$

= $100 - 96(-\frac{1}{4})$

$$\frac{111}{\sin \theta} = \frac{\sqrt{148}}{\sin 120}$$

· Learning of S from B