Student Number	
Mark / 47	

Chemistry

The Chemical Earth and Metals Modules Test • 2003

General Instructions

- Reading time - 5 minutes
- Working time - 55 minutes
- Write using black or blue pen
- Draw diagrams using pencil
- Board-approved calculators may be used
- A data sheet and a Periodic Table are provided at the back of this paper
- Write your Student Number at the top of this page

Total Marks - 47

Part A - 12 marks

- Attempt Questions 1-12
- Allow about 10 minutes for this part

Part B - 35 marks

- Attempt Questions 13-23
- Allow about 45 minutes for this part

Part A - 12 marks

Attempt Questions 1-12
Allow about 10 minutes for this part

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.
Sample: $\quad 2+4=$
(A) $2 \quad$ (B) 6
(C) 8
(D) 9
A \bigcirc
B
C
D \bigcirc

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
A

- B
B
R
c

D \bigcirc

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word correct and drawing an arrow as follows.

correct
Correct
D

Answer Box for Questions 1-12

1	A	0	B	O	C	O		0
2	A	0	B	O	C	O		O
3	A	O	B	O	C	O		0
4	A	O	B	O	C	O		O
5	A	O	B	O	C	O		O
6	A	\bigcirc	B	O	C	\bigcirc		0
7	A	O	B	O	C	\bigcirc		0
8	A	0	B	O	C	O		0
9	A	O	B	O	C	O		0
10	A	O	B	O	C	O		O
11	A	\bigcirc	B	O	C	O		0
12	A	O	B	O	C	O		0

Mark your answers for Questions 1 - 12 in the Answer Box on page 2.

1 Which of the following describes the atomic number of an element?
(A) the number of protons plus neutrons in a neutral atom of the element
(B) the number of neutrons in a neutral atom of the element
(C) the number of protons in a neutral atom of the element
(D) the weighted mean of the isotopic masses of the element

2 Which of the following was the first alloy to be used by man?
(A) brass
(B) bronze
(C) solder
(D) steel

3 Which of the following describes the periodic trend in the first ionisation energy of the elements?
(A) decreases across a period
(B) increases as elements become more metallic
(C) decreases down a group
(D) increases with an increase in atomic number

4 Which of the following sets is composed exclusively of covalently bonded compounds?
(A) $\mathrm{Na}_{2} \mathrm{O}, \mathrm{N}_{2} \mathrm{O}_{5}, \mathrm{NO}$
(B) $\mathrm{Li}_{2} \mathrm{O}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{P}_{4} \mathrm{O}_{10}$
(C) $\mathrm{NO}_{2}, \mathrm{~N}_{2} \mathrm{O}_{5}, \mathrm{MgO}$
(D) $\quad \mathrm{NO}_{2}, \mathrm{SiO}_{2}, \mathrm{P}_{4} \mathrm{O}_{10}$

5 The forces holding together atoms in solid xenon would be most similar to which of these?
(A) the forces between the ions in NaCl
(B) the forces between the atoms in Cl_{2}
(C) the forces between the atoms in graphite
(D) the forces between the molecules of Br_{2}

6 The table shows the physical properties of three elements designated as ' X ', ' Y ' and ' Z '. Note that these are not the periodic table symbols of the elements.

PHYSICAL PROPERTY	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
melting point $\left({ }^{\circ} \mathrm{C}\right)$	114	660	2370
electrical conductivity	nil	excellent	poor
ductile and malleable	nil	excellent	nil
metallic lustre	nil	yes	nil
density $\left(\mathbf{g ~ c m}^{\mathbf{3}}\right.$)	4.90	2.69	2.30

Which classification of these elements given below is correct?
(A)
(B)
(C)
(D)

X	Y	Z
non-metal	semi-metal	metal
non-metal	metal	semi-metal
semi-metal	metal	semi-metal
semi-metal	semi-metal	metal

7 The diagram represents the periodic table. The numbers represent certain elements and are not the atomic numbers for any of the elements.

Which numbers represent an element that is a semi-metal and an element that is a gas at $25^{\circ} \mathrm{C}$ and normal atmosphere pressure?
(A)
(B)
(C)
(D)

Semi-metal	Gas at $25^{\circ} \mathrm{C}$ and normal atmosphere pressure
2	1
2	4
3	4
3	1

8 Which of the following is the best description of the structure and bonding in solid iodine at room temperature?
(A) a network of iodine molecules with covalent bonding between the atoms, and weak intermolecular forces
(B) a network of iodide ions held together by a 'sea' of delocalised electrons
(C) a network of iodine atoms held together by covalent bonds in three dimensions
(D) a network of iodide ions held together by ionic bonds in a 3-dimensional lattice

Which of the following elements would have an atomic radius greater than Sr ?
(A) La, Y
(B) Cs, Rb
(C) Ba, Y
(D) Ca, Sc

10 The table shows the current cost of four metals which are mined and extracted in Australia.

METAL	PRICE
aluminium	$\$ 2300$ per tonne
gold	$\$ 570$ per 30 g
lead	$\$ 750$ per tonne
iron	$\$ 1300$ per tonne

Which of the following statements correctly identifies the cost factors of producing the metal?
(A) Aluminium ore is abundant but requires much energy to extract.
(B) Gold ore is abundant but difficult to find and extract.
(C) Lead ore is rare but cheap to extract.
(D) Iron ore is scarce and expensive to extract.

11 Which of the choices give a correct matching of the mixture and the sphere of the Earth where the mixture can be found?

sphere	A	B	C	D
hydrosphere	seawater and fish	beach sand and gravel	seawater and fish	seawater and fish
biosphere	bacterial spores in air	seawater and fish	bacterial spores in air	seawater and fish
lithosphere	beach sand and gravel	beach sand and gravel	dusty air	dusty air
atmosphere	dusty air	bacterial spores in air	beach sand and gravel	bacterial spores in air

(A) A
(B) B
(C) C
(D) D

12 Study the following symbolic structures...

(i)

(ii)

(iii)

(iv)

Which of the following best describes the substances in i , ii, iii and iv?

Substance	A	B	C	D
i	compound	element	element	element
ii	compound	element	element	element
iii	compound	compound	element	compound
iv	compound	compound	compound	mixture

(A) A
(B) B
(C) C
(D) D

Part B - 35 marks
 Attempt Questions 13-23

Allow about $\mathbf{4 5}$ minutes for this part

Question 13 (6 marks)

Write balanced formulae equations for the following reactions.
(a) calcium + water
(b) magnesium + dilute hydrochloric acid
(c) sodium + oxygen

Write a pair of half-equations for the following reactions.
(d) aluminium + dilute nitric acid
\qquad
\qquad
(e) potassium + dilute sulfuric acid
\qquad
\qquad
(f) barium + dilute hydrochloric acid

Question 14 (7 marks)

(a) Using the information in the table, classify the substances (A, B, C, D) as either metallic, ionic, covalent network or covalent molecular structures. (2 marks)

	SUBSTANCE			
PROPERTY	A	B	C	D
melting point (${ }^{\circ}$ C)	3350	-114	961	801
soluble in water	no	yes	no	yes
solid conducts electricity	no	no	yes	no
molten (liquid) state conducts electricity	no	no	yes	yes
hardness	very hard	solid is soft	hard	hard
other properties	crystalline solid	aqueous solution conducts	shiny solid	-

Substance A \qquad
Substance B \qquad
Substance C \qquad
Substance D \qquad
(b) Distinguish between structures C and D by drawing a diagram showing the arrangement and type of particles in each structure. (2 marks)

Structure C	Structure D

Question 14 continues on page 9

Question 14 (continued)

(c) Explain the difference in electrical conductivity between substances C and D. (2 marks)
\qquad
\qquad
\qquad
(d) State the type of particles found in substance A and the type of bonding between these particles. (1 mark)

Question 15 (3 marks)

Name the compounds listed below.
(a) NaHCO_{3}
(b) $\quad \mathrm{SF}_{6}$
(c) $\quad \mathrm{Ba}(\mathrm{OH})_{2}$

Give the formulae for the compounds listed below.
(d) ammonium nitrate
(e) dinitrogen pentoxide
(f) aluminium sulfate

Question 16 (3 marks)

(a) Draw the Lewis electron dot structure for the oxide ion. (1 mark)
(b) Give the electronic configuration for the oxide ion. (1 mark)
(c) Write the name of another species with the same electronic configuration as the oxide ion. (1 mark)
\qquad

Question 17 (2 marks)
(a) Write a balanced formulae equation for the thermal decomposition of copper(II) carbonate. (1 mark)
\qquad
(b) Describe a chemical test that can be used to prove that copper(II) carbonate can be decomposed by heat.
(1 mark)
\qquad
\qquad
\qquad

Question 18 (1 mark)

Identify an example that demonstrates that light can be absorbed during the decomposition of a compound.
\qquad
\qquad
\qquad

Question 19 (2 marks)

The diagram shows the set-up for a laboratory apparatus in which two inert (non-reactive) platinum electrodes are placed in a beaker of water that has a small amount of acid added to it.

Describe what would be observed at the electrodes when electricity flows into the the electrodes.
Give a reason why this happens.
\qquad
\qquad
\qquad
\qquad
\qquad

Question 20 (1 mark)

Why is the amount of energy needed to break the chemical bond in a hydrogen molecule greater than the energy needed to break the chemical bond in a hydrogen iodide molecule?
\qquad
\qquad
\qquad
\qquad

Question 21 (4 marks)

An analytical chemist used fractional distillation to analyse a crude oil mixture from a newly discovered oil well. A 60 g sample of the crude oil was weighed accurately and then fractionally distilled.
Five fractions: A, B, C, D and E were isolated and weighed. The weights obtained in grams were: $2,18,9,12,16$ for components A, B, C, D and E respectively.
(a) Construct a table of results for the data given. (1 mark)
(b) To be an economically productive source, component B must be at least 35% by mass of the crude oil. Assess the potential economic productivity of this sample of crude oil. Justify your answer by including working. (2 marks)
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Describe another situation in which gravimetric analysis supplies useful data for scientists. (1 mark)
\qquad
\qquad
\qquad
\qquad
\qquad

Question 22 (1 mark)

The recycling of aluminium cans is a great success in Australia with over 50\% of cans being collected and recycled! Study the equations showing the extraction and recycling of aluminium...

$$
\begin{array}{cl}
\mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{C} & \xrightarrow{+50 \mathrm{MJ} / \mathrm{kg} \mathrm{Al}}
\end{array} 4 \mathrm{Al}+3 \mathrm{CO}_{2}
$$

Account for the huge difference in the energy requirement based on the nature of the processes involved.
\qquad
\qquad
\qquad

Question 23 (5 marks)

(a) Identify the original data which Mendeleev used to formulate the Periodic Table.
(i) Physical data (1 mark)
(ii) Chemical data (1 mark)
(b) Historically, Mendeleev made accurate predictions about element 32 (germanium) before it was discovered. According to the HSC Periodic Table, element 117 has not yet been synthesised; however, we also can make predictions about its properties in relation to its neighbouring elements based on periodic law principles.
(i) Compare the relative electronegativity of element 117 with that of ununoctium (element 118).

(1 mark)

(ii) Compare the valency of element 117 with that of astatine.
(1 mark)
(iii) Compare the relative reactivity of element 117 with that of astatine.

(1 mark)

Chemistry

DATA SHEET

Some useful formulae

$$
\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right] \quad \Delta H=-m C \Delta T
$$

Some standard potentials

$\mathrm{K}^{+}+\mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{K}(s)$	-2.94 V
$\mathrm{Ba}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Ba}(\mathrm{s})$	-2.91 V
$\mathrm{Ca}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Ca}(\mathrm{s})$	$-2.87 \mathrm{~V}$
$\mathrm{Na}^{+}+\mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Na}(\mathrm{s})$	-2.71 V
$\mathrm{Mg}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Mg}(\mathrm{s})$	$-2.36 \mathrm{~V}$
$\mathrm{Al}^{3+}+3 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Al}(\mathrm{s})$	$-1.68 \mathrm{~V}$
$\mathrm{Mn}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Mn}(\mathrm{s})$	$-1.18 \mathrm{~V}$
$\mathrm{H}_{2} \mathrm{O}+\mathrm{e}^{-}$	\rightleftharpoons	$\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{OH}^{-}$	$-0.83 \mathrm{~V}$
$\mathrm{Zn}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Zn}(\mathrm{s})$	$-0.76 \mathrm{~V}$
$\mathrm{Fe}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Fe}(s)$	$-0.44 \mathrm{~V}$
$\mathrm{Ni}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Ni}(\mathrm{s})$	$-0.24 \mathrm{~V}$
$\mathrm{Sn}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Sn}(\mathrm{s})$	$-0.14 \mathrm{~V}$
$\mathrm{Pb}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Pb}(\mathrm{s})$	-0.13 V
$\mathrm{H}^{+}+\mathrm{e}^{-}$	\rightleftharpoons	$\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})$	0.00 V
$\mathrm{SO}_{4}{ }^{2-}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{SO}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}$	0.16 V
$\mathrm{Cu}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Cu}(\mathrm{s})$	0.34 V
$\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}$	\rightleftharpoons	$2 \mathrm{OH}^{-}$	0.40 V
$\mathrm{Cu}^{+}+\mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Cu}(\mathrm{s})$	0.52 V
$\frac{1}{2} \mathrm{I}_{2}(s)+\mathrm{e}^{-}$	\rightleftharpoons	I^{-}	0.54 V
$\frac{1}{2} \mathrm{I}_{2}(a q)+\mathrm{e}^{-}$	\rightleftharpoons	I^{-}	0.62 V
$\mathrm{Fe}^{3+}+\mathrm{e}^{-}$	\rightleftharpoons	Fe^{2+}	0.77 V
$\mathrm{Ag}^{+}+\mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Ag}(\mathrm{s})$	0.80 V
$\frac{1}{2} \mathrm{Br}_{2}(l)+\mathrm{e}^{-}$	$\stackrel{\rightharpoonup}{*}$	Br^{-}	1.08 V
$\frac{1}{2} \mathrm{Br}_{2}(a q)+\mathrm{e}^{-}$	\rightleftharpoons	Br^{-}	1.10 V
$\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{H}_{2} \mathrm{O}$	1.23 V
$\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{e}^{-}$	\rightleftharpoons	Cl^{-}	1.36 V
$\frac{1}{2} \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+7 \mathrm{H}^{+}+3 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Cr}^{3+}+\frac{7}{2} \mathrm{H}_{2} \mathrm{O}$	1.36 V
$\frac{1}{2} \mathrm{Cl}_{2}(a q)+\mathrm{e}^{-}$	\rightleftharpoons	Cl^{-}	1.40 V
$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$	1.51 V
$\frac{1}{2} \mathrm{~F}_{2}(g)+\mathrm{e}^{-}$	\rightleftharpoons	F^{-}	2.89 V

[^0] this examination paper. Some data may have been modified for examination purposes.

［ 1 ＇29z］ IT ع 01	$\begin{gathered} \hline \text { unupqN } \\ {[1.6 \mathrm{cz}]} \\ 0 \mathrm{~N} \\ 20 \mathrm{I} \\ \hline \end{gathered}$	［1．8cz］ PN IOI	$\begin{gathered} \text { unnurad } \\ {\left[\mathrm{un}_{\mathrm{*}} \mathrm{LSZ}\right]} \\ \mathrm{u}_{\mathrm{H}} \\ 00 \mathrm{l} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { unnuupurg } \\ {[i z S z]} \\ \text { SG } \\ 66 \\ \hline \end{gathered}$	［1 Zç］ 86	 ［ $1.6+z]$ Y $\angle 6$		［1• $\llcorner\downarrow z]$ uv ૬6		$\begin{gathered} \hline \text { unnundo } \\ {[0 \angle \angle \varepsilon]} \\ d_{N} \\ \varepsilon 6 \\ \hline \end{gathered}$	$\begin{gathered} \text { unuwer } \\ 0.8 \varepsilon z \\ \cap \\ Z 6 \\ \hline \end{gathered}$	0 IEZ ${ }^{\mathbf{e}} \mathbf{d}$ I6		［0 $\circ\llcorner Z Z]$ 2 V 68 6
səp！ụlov														
wụpan	un！quan\	un！！nul	un！̣a	шпп피아	un！sods χ°	un！qaL	unumpopes	unndonn	unueurs	иппйэшод	uņufporn	wnuurpossud	unyap	
0 S LI	$0 \cdot \varepsilon L I$	6891	$\varepsilon ์ L 91$	6＇t91	¢＇291	68SI	$\varepsilon ' L S I$	0 ZSI	ャ0SI	［69tI］	でセtI	$60 t 1$	［0tI	6881
nT	q 01 1	ul 69	197 89	OH $\mathrm{L9}$	$K_{\text {K }}$ 9	$\stackrel{\text { qı }}{ } \mathrm{C}$	PO	${ }_{\text {ng }}^{\text {¢ } 9}$	$\mathrm{u}_{\text {u9 }}$	${ }_{19}^{\mathrm{w}_{\mathrm{d}}}$	pN 09	${ }_{6}{ }_{6 S}^{\text {Id }}$	$\stackrel{\text { O3 }}{ }$	${ }_{\text {RT }}^{\text {LS }}$

Marking Scheme and Outcomes

Chemistry

The Chemical Earth and Metals Modules Test • 2003

General Instructions

- Reading time - 5 minutes
- Working time - 55 minutes
- Write using black or blue pen
- Draw diagrams using pencil
- Board-approved calculators may be used
- A data sheet and a Periodic Table are provided at the back of this paper
- Write your Student Number at the top of this page

Total Marks - 47

Part A - 12 marks

- Attempt Questions 1 - 12
- Allow about 10 minutes for this part

Part B - 35 marks

- Attempt Questions 13-23
- Allow about 45 minutes for this part

Part A - $\mathbf{1 2}$ marks

Attempt Questions 1-12
Allow about 10 minutes for this part

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.
Sample: $\quad 2+4=$
(A) $2 \quad$ (B) 6
(C) 8
(D) 9
A \bigcirc
B
C
D \bigcirc

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
A
-
B
C

D \bigcirc

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word correct and drawing an arrow as follows.
A
W
correct
B
c
D

Answer Box for Questions 1-12

OUTCOMES					
1	P 6	A O	B \bigcirc	C ©	D \bigcirc
2	P 1, 4	A O	B ©	C O	D O
3	P 6	A O	B \bigcirc	C ©	D \bigcirc
4	P 6	A 0	B \bigcirc	C O	D ©
5	P 6	A O	B \bigcirc	C O	D ©
6	P 6	A O	B ©	C O	D \bigcirc
7	P 6	A O	B \bigcirc	C ©	D \bigcirc
8	P 6	A ©	B \bigcirc	C O	D 0
9	P 6	A O	B ©	C O	D O
10	P 3	A ©	B \bigcirc	C O	D O
11	P 4	A ©	B \bigcirc	C O	D \bigcirc
12	P 6	A O	B 0	C O	D ©

Mark your answers for Questions 1 - 12 in the Answer Box on page 2.

1 Which of the following describes the atomic number of an element?
(A) the number of protons plus neutrons in a neutral atom of the element
(B) the number of neutrons in a neutral atom of the element
(C) the number of protons in a neutral atom of the element
(D) the weighted mean of the isotopic masses of the element

2 Which of the following was the first alloy to be used by man?
(A) brass
(B) bronze
(C) solder
(D) steel

3 Which of the following describes the periodic trend in the first ionisation energy of the elements?
(A) decreases across a period
(B) increases as elements become more metallic
(C) decreases down a group
(D) increases with an increase in atomic number

4 Which of the following sets is composed exclusively of covalently bonded compounds?
(A) $\mathrm{Na}_{2} \mathrm{O}, \mathrm{N}_{2} \mathrm{O}_{5}, \mathrm{NO}$
(B) $\mathrm{Li}_{2} \mathrm{O}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{P}_{4} \mathrm{O}_{10}$
(C) $\mathrm{NO}_{2}, \mathrm{~N}_{2} \mathrm{O}_{5}, \mathrm{MgO}$
(D) $\quad \mathrm{NO}_{2}, \mathrm{SiO}_{2}, \mathrm{P}_{4} \mathrm{O}_{10}$

5 The forces holding together atoms in solid xenon would be most similar to which of these?
(A) the forces between the ions in NaCl
(B) the forces between the atoms in Cl_{2}
(C) the forces between the atoms in graphite
(D) the forces between the molecules of Br_{2}

6 The table shows the physical properties of three elements designated as ' X ', ' Y ' and ' Z '. Note that these are not the periodic table symbols of the elements.

PHYSICAL PROPERTY	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
melting point $\left({ }^{\circ} \mathrm{C}\right)$	114	660	2370
electrical conductivity	nil	excellent	poor
ductile and malleable	nil	excellent	nil
metallic lustre	nil	yes	nil
density $\left(\mathbf{g ~ c m}^{\mathbf{3}}\right.$)	4.90	2.69	2.30

Which classification of these elements given below is correct?
(A)
(B)
(C)
(D)

X	Y	Z
non-metal	semi-metal	metal
non-metal	metal	semi-metal
semi-metal	metal	semi-metal
semi-metal	semi-metal	metal

7 The diagram represents the periodic table. The numbers represent certain elements and are not the atomic numbers for any of the elements.

Which numbers represent an element that is a semi-metal and an element that is a gas at $25^{\circ} \mathrm{C}$ and normal atmosphere pressure?
(A)
(B)
(C)
(D)

Semi-metal	Gas at $25^{\circ} \mathrm{C}$ and normal atmosphere pressure
2	1
2	4
3	4
3	1

8 Which of the following is the best description of the structure and bonding in solid iodine at room temperature?
(A) a network of iodine molecules with covalent bonding between the atoms, and weak intermolecular forces
(B) a network of iodide ions held together by a 'sea' of delocalised electrons
(C) a network of iodine atoms held together by covalent bonds in three dimensions
(D) a network of iodide ions held together by ionic bonds in a 3-dimensional lattice

Which of the following elements would have an atomic radius greater than Sr ?
(A) La, Y
(B) Cs, Rb
(C) Ba, Y
(D) Ca, Sc

10 The table shows the current cost of four metals which are mined and extracted in Australia.

METAL	PRICE
aluminium	$\$ 2300$ per tonne
gold	$\$ 570$ per 30 g
lead	$\$ 750$ per tonne
iron	$\$ 1300$ per tonne

Which of the following statements correctly identifies the cost factors of producing the metal?
(A) Aluminium ore is abundant but requires much energy to extract.
(B) Gold ore is abundant but difficult to find and extract.
(C) Lead ore is rare but cheap to extract.
(D) Iron ore is scarce and expensive to extract.

11 Which of the choices give a correct matching of the mixture and the sphere of the Earth where the mixture can be found?

sphere	A	B	C	D
hydrosphere	seawater and fish	beach sand and gravel	seawater and fish	seawater and fish
biosphere	bacterial spores in air	seawater and fish	bacterial spores in air	seawater and fish
lithosphere	beach sand and gravel	beach sand and gravel	dusty air	dusty air
atmosphere	dusty air	bacterial spores in air	beach sand and gravel	bacterial spores in air

(A) A
(B) B
(C) C
(D) D

12 Study the following symbolic structures...

(i)

(ii)

(iii)

(iv)

Which of the following best describes the substances in i , ii, iii and iv?

Substance	A	B	C	D
i	compound	element	element	element
ii	compound	element	element	element
iii	compound	compound	element	compound
iv	compound	compound	compound	mixture

(A) A
(B) B
(C) C
(D) D

Part B - 35 marks

Attempt Questions 13-23
Allow about 45 minutes for this part

Question 13 (6 marks)

Write balanced formulae equations for the following reactions. OUTCOME - P 13 (1 mark each; lack of subscripts - minus 1 mark max.)
(a) calcium + water

$$
\mathrm{Ca}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}
$$

(b) magnesium + dilute hydrochloric acid

$$
\mathbf{M g}(\mathrm{s})+2 \mathbf{H C l}_{(\mathrm{aq})} \rightarrow \mathbf{M g C l}_{(\mathrm{aq})}+\mathbf{H}_{2(\mathrm{~g})}
$$

(c) sodium + oxygen
$4 \mathrm{Na}_{(\mathrm{s})} \mathrm{O}_{\mathbf{2}}^{(\mathrm{g})} \boldsymbol{\rightarrow} \quad \mathbf{2 N a} \mathbf{2 O}_{(\mathrm{s})}$

Write a pair of half-equations for the following reactions. OUTCOME - P 13
(1 mark per pair; maximum of 1 mark lost for reduction half-equation)
(d) aluminium + dilute nitric acid

$$
\begin{aligned}
& \mathbf{A l}_{(\mathrm{s})} \rightarrow \mathbf{A \mathbf { l } ^ { 3 + }}+\mathbf{3 \mathrm { e } ^ { - }} \\
& \mathbf{2 \mathbf { H } ^ { + }}+\mathbf{2 \mathbf { e } ^ { - }} \rightarrow \mathbf{H}_{\mathbf{2}}(\mathrm{g})
\end{aligned}
$$

(e) potassium + dilute sulfuric acid

$$
\begin{aligned}
& \mathbf{K}_{(\mathrm{s})} \rightarrow \mathbf{K}^{+}+\mathrm{e}^{-} \\
& \mathbf{2} \mathbf{H}^{+}+\mathbf{2} \mathrm{e}^{-} \rightarrow \mathbf{H}_{\mathbf{2}}(\mathrm{g})
\end{aligned}
$$

(f) barium + dilute hydrochloric acid

$$
\mathbf{B a}_{(\mathrm{s})} \rightarrow \mathbf{B a}^{2+}
$$

$$
2 \mathrm{H}^{+}+\mathbf{2 \mathrm { e } ^ { - }} \quad \rightarrow \quad \mathbf{H}_{\mathbf{2}}(\mathrm{g})
$$

Question 14 (7 marks)

(a) Using the information in the table, classify the substances (A, B, C, D) as either metallic, ionic, covalent network or covalent molecular structures. OUTCOME - P 14 (2 marks)

	SUBSTANCE			
PROPERTY	A	B	C	D
melting point (${ }^{\circ} \mathrm{C}$)	3350	- 114	961	801
soluble in water	no	yes	no	yes
solid conducts electricity	no	no	yes	no
molten (liquid) state conducts electricity	no	no	yes	yes
hardness	very hard	solid is soft	hard	hard
other properties	crystalline solid	aqueous solution conducts	shiny solid	-

Substance A	covalent network
Substance B	covalent molecular
Substance C	metallic lattice
Substance D	ionic lattice

(b) Distinguish between structures C and D by drawing a diagram showing the arrangement and type of particles in each structure. OUTCOME - P 13 (2 marks)

Structure C (1 mark)
(Showing \oplus nuclei \& delocalised e^{-})
$\oplus \oplus \oplus$

$\oplus \oplus \oplus$

$\oplus \oplus \oplus$

Question 14 continues on page 9

Question 14 (continued)

(c) Explain the difference in electrical conductivity between substances C and D. (2 marks) OUTCOME - P 14

Substance \mathbf{C} conducts electricity in solid and molten states due to free (delocalised) electrons which can move freely through the lattice.

Substance D does not conduct electricity in the solid state because ions are fixed. However, when molten, the ions are mobile, free to move and conduct electricity.
(d) State the type of particles found in substance A and the type of bonding between these particles. OUTCOME - P 14 (1 mark)

Atoms; covalent bonding. (N.B. Must state both)

Question 15 OUTCOME - P 6 (3 marks)

Name the compounds listed below. ($3 @ 1 / 2$ mark)
(a) NaHCO_{3} sodium hydrogen carbonate or sodium bicarbonate
(b) $\quad \mathrm{SF}_{6} \quad$ sulfur hexafluoride
(c) $\quad \mathrm{Ba}(\mathrm{OH})_{2} \quad$ barium hydroxide

Give the formulae for the compounds listed below. ($\mathbf{3}$ @ $1 / 2$ mark)
(d) ammonium nitrate $\quad \mathbf{N H}_{\mathbf{4}} \mathbf{N O}_{\mathbf{3}}$
(e) dinitrogen pentoxide $\mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{5}}$
(f) aluminium sulfate $\quad \mathbf{A l}_{\mathbf{2}}\left(\mathbf{S O}_{4}\right)_{3}$

Question 16 OUTCOME - P 6 (3 marks)
(a) Draw the Lewis electron dot structure for the oxide ion. (1 mark)

2 -

(b) Give the electronic configuration for the oxide ion. (1 mark)
$2-8$ or 2,8
(c) Write the name of another species with the same electronic configuration as the oxide ion. (1 mark) neon, fluoride ion, sodium ion, etc.

Question 17 OUTCOME - P 8 (2 marks)
(a) Write a balanced formulae equation for the thermal decomposition of copper(II) carbonate. (1 mark)

$$
\mathrm{CuCO}_{3(\mathrm{~s})} \xrightarrow[\Delta]{ } \mathrm{CuO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}
$$

(b) Describe a chemical test that can be used to prove that copper(II) carbonate can be decomposed by heat. (1 mark)
CO_{2} is a product of the decomposition of CuCO_{3} and this can react with limewater forming a white precipitate.

- OR -

CuO is a product which reacts with dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ forming a blue solution $\left(\mathrm{CuSO}_{4}\right)$.

Question 18 OUTCOME - P 7 (1 mark)

Identify an example that demonstrates that light can be absorbed during the decomposition of a compound.
Silver salts ($\left.\mathrm{AgNO}_{3}, \mathbf{A g C l}, \mathrm{AgBr}, \mathrm{AgI}\right)$ can be decomposed using light energy.
e.g. $\quad \mathbf{A g N O}_{3}$ forms a black colour as a result of the $\mathbf{A g}^{+}$forming $\mathbf{A g}_{(s)}$ and thus decomposing the $\mathbf{A g N O}_{3}$.

Question 19 OUTCOME - P 7 (2 marks)

The diagram shows the set-up for a laboratory apparatus in which two inert (non-reactive) platinum electrodes are placed in a beaker of water that has a small amount of acid added to it.

Describe what would be observed at the electrodes when electricity flows into the the electrodes.
Give a reason why this happens.
Gas bubbles will be observed at both electrodes. (1 mark)
The gases are hydrogen and oxygen and these are a result of the electrolysis of water. (1 mark)

Question 20 (1 mark)

Why is the amount of energy needed to break the chemical bond in a hydrogen molecule greater than the energy needed to break the chemical bond in a hydrogen iodide molecule?

The H - H bond is stronger than the H - I bond.

Question 21 OUTCOMES - P 2, 10, 14 (4 marks)

An analytical chemist used fractional distillation to analyse a crude oil mixture from a newly discovered oil well. A 60 g sample of the crude oil was weighed accurately and then fractionally distilled.
Five fractions: A, B, C, D and E were isolated and weighed. The weights obtained in grams were: $2,18,9,12,16$ for components $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E respectively.
(a) Construct a table of results for the data given. (1 mark for whole table)

Component	Weight (g)
A	2
B	18
C	9
D	12
E	16

(b) To be an economically productive source, component B must be at least 35% by mass of the crude oil. Assess the potential economic productivity of this sample of crude oil.
Justify your answer by including working. (2 marks)
According to the criterion set, the oil well will not be economically productive. (1 mark)

$$
\begin{aligned}
& \text { Percentage of } B=\frac{\text { mass } B}{\text { mass sample }} \times 100 \% \\
& \text { Percentage of } B=\frac{18 \mathrm{~g}}{60 \mathrm{~g}} \times 100 \%=30 \% \text { by mass }
\end{aligned}
$$

(c) Describe another situation in which gravimetric analysis supplies useful data for scientists. (1 mark)

- To determine the composition of soil in a particular location to see if it is suitable for growing certain crops.
- To determine the amounts of particular substances present in water or air to decide how polluted the samples are.
- To decide whether a particular commercial mixture being sold has the same percentage composition as a similar mixture marketed by a rival company.
- Other possible situations.

Question 22 OUTCOME - P 4 (1 mark)

The recycling of aluminium cans is a great success in Australia with over 50% of cans being collected and recycled! Study the equations showing the extraction and recycling of aluminium...

$$
\begin{array}{cl}
\mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{C} \xrightarrow{+50 \mathrm{MJkg} \mathrm{Al}} 4 \mathrm{Al}+3 \mathrm{CO}_{2} \\
\mathrm{Al}_{\text {(scrap can) }} \xrightarrow{+800 \mathrm{~kJ} / \mathrm{kg} \mathrm{Al}} \mathrm{Al}_{\text {(recycled metal) }}
\end{array}
$$

Account for the huge difference in the energy requirement based on the nature of the processes involved.
The extraction of aluminium from $\mathrm{Al}_{2} \mathrm{O}_{3}$ involves a chemical reaction... the breaking of the strong bond with oxygen.
The recycling of aluminium involves melting which is a physical change requiring much less energy. - OR -

The recycling of aluminium involves the breaking of the metallic bonding in the scrap Al. This bond is weaker than the bond existent within $\mathrm{Al}_{2} \mathrm{O}_{3}, \therefore$ less energy is required.

Question 23 OUTCOME - P 6 (5 marks)

(a) Identify the original data which Mendeleev used to formulate the Periodic Table.
(i) Physical data (1 mark) Atomic weight, density, atomic volume (any one)
(ii) Chemical data (1 mark) Formulae of elemental oxides, chlorides, hydrides; valency; reaction with acid/alkali (any one)
(b) Historically, Mendeleev made accurate predictions about element 32 (germanium) before it was discovered. According to the HSC Periodic Table, element 117 has not yet been synthesised; however, we also can make predictions about its properties in relation to its neighbouring elements based on periodic law principles.
(i) Compare the relative electronegativity of element 117 with that of ununoctium (element 118).
(1 mark) 117 > 118
(ii) Compare the valency of element 117 with that of astatine.
(1 mark) $\quad 117=$ astatine
(iii) Compare the relative reactivity of element 117 with that of astatine.
(1 mark) 117 < astatine

Chemistry

DATA SHEET

Some useful formulae

$$
\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right] \quad \Delta H=-m C \Delta T
$$

Some standard potentials

$\mathrm{K}^{+}+\mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{K}(s)$	-2.94 V
$\mathrm{Ba}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Ba}(\mathrm{s})$	-2.91 V
$\mathrm{Ca}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Ca}(\mathrm{s})$	$-2.87 \mathrm{~V}$
$\mathrm{Na}^{+}+\mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Na}(\mathrm{s})$	-2.71 V
$\mathrm{Mg}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Mg}(\mathrm{s})$	$-2.36 \mathrm{~V}$
$\mathrm{Al}^{3+}+3 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Al}(\mathrm{s})$	$-1.68 \mathrm{~V}$
$\mathrm{Mn}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Mn}(\mathrm{s})$	$-1.18 \mathrm{~V}$
$\mathrm{H}_{2} \mathrm{O}+\mathrm{e}^{-}$	\rightleftharpoons	$\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{OH}^{-}$	$-0.83 \mathrm{~V}$
$\mathrm{Zn}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Zn}(\mathrm{s})$	$-0.76 \mathrm{~V}$
$\mathrm{Fe}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Fe}(s)$	$-0.44 \mathrm{~V}$
$\mathrm{Ni}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Ni}(\mathrm{s})$	$-0.24 \mathrm{~V}$
$\mathrm{Sn}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Sn}(\mathrm{s})$	$-0.14 \mathrm{~V}$
$\mathrm{Pb}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Pb}(\mathrm{s})$	-0.13 V
$\mathrm{H}^{+}+\mathrm{e}^{-}$	\rightleftharpoons	$\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})$	0.00 V
$\mathrm{SO}_{4}{ }^{2-}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{SO}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}$	0.16 V
$\mathrm{Cu}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Cu}(\mathrm{s})$	0.34 V
$\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}$	\rightleftharpoons	$2 \mathrm{OH}^{-}$	0.40 V
$\mathrm{Cu}^{+}+\mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Cu}(\mathrm{s})$	0.52 V
$\frac{1}{2} \mathrm{I}_{2}(s)+\mathrm{e}^{-}$	\rightleftharpoons	I^{-}	0.54 V
$\frac{1}{2} \mathrm{I}_{2}(a q)+\mathrm{e}^{-}$	\rightleftharpoons	I^{-}	0.62 V
$\mathrm{Fe}^{3+}+\mathrm{e}^{-}$	\rightleftharpoons	Fe^{2+}	0.77 V
$\mathrm{Ag}^{+}+\mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Ag}(\mathrm{s})$	0.80 V
$\frac{1}{2} \mathrm{Br}_{2}(l)+\mathrm{e}^{-}$	$\stackrel{\rightharpoonup}{*}$	Br^{-}	1.08 V
$\frac{1}{2} \mathrm{Br}_{2}(a q)+\mathrm{e}^{-}$	\rightleftharpoons	Br^{-}	1.10 V
$\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{H}_{2} \mathrm{O}$	1.23 V
$\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{e}^{-}$	\rightleftharpoons	Cl^{-}	1.36 V
$\frac{1}{2} \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+7 \mathrm{H}^{+}+3 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Cr}^{3+}+\frac{7}{2} \mathrm{H}_{2} \mathrm{O}$	1.36 V
$\frac{1}{2} \mathrm{Cl}_{2}(a q)+\mathrm{e}^{-}$	\rightleftharpoons	Cl^{-}	1.40 V
$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$	1.51 V
$\frac{1}{2} \mathrm{~F}_{2}(g)+\mathrm{e}^{-}$	\rightleftharpoons	F^{-}	2.89 V

[^1] this examination paper. Some data may have been modified for examination purposes.

［ 1 ＇29z］ IT ع 01	$\begin{gathered} \hline \text { unupqN } \\ {[1.6 \mathrm{cz}]} \\ 0 \mathrm{~N} \\ 20 \mathrm{I} \\ \hline \end{gathered}$	［1．8cz］ PN IOI	$\begin{gathered} \text { unnurad } \\ {\left[\mathrm{un}_{\mathrm{*}} \mathrm{LSZ}\right]} \\ \mathrm{u}_{\mathrm{H}} \\ 00 \mathrm{l} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { unnuupurg } \\ {[i z S z]} \\ \text { SG } \\ 66 \\ \hline \end{gathered}$	［1 Zç］ 86	 ［ $1.6+z]$ Y $\angle 6$		［1• $\llcorner\downarrow z]$ uv ૬6		$\begin{gathered} \hline \text { unnundo } \\ {[0 \angle \angle \varepsilon]} \\ d_{N} \\ \varepsilon 6 \\ \hline \end{gathered}$	$\begin{gathered} \text { unuwer } \\ 0.8 \varepsilon z \\ \cap \\ Z 6 \\ \hline \end{gathered}$	0 IEZ ${ }^{\mathbf{e}} \mathbf{d}$ I6		［0 $\circ\llcorner Z Z]$ 2 V 68 6
səp！ụlov														
wụpan	un！quan\	un！！nul	un！̣a	шпп피아	un！sods χ°	un！qaL	unumpopes	unndonn	unueurs	иппйэшод	uņufporn	wnuurpossud	unyap	
0 S LI	$0 \cdot \varepsilon L I$	6891	$\varepsilon ์ L 91$	6＇t91	¢＇291	68SI	$\varepsilon ' L S I$	0 ZSI	ャ0SI	［69tI］	でセtI	$60 t 1$	［0tI	6881
nT	q 01 1	ul 69	197 89	OH $\mathrm{L9}$	$K_{\text {K }}$ 9	$\stackrel{\text { qı }}{ } \mathrm{C}$	PO	${ }_{\text {ng }}^{\text {¢ } 9}$	$\mathrm{u}_{\text {u9 }}$	${ }_{19}^{\mathrm{w}_{\mathrm{d}}}$	pN 09	${ }_{6}{ }_{6 S}^{\text {Id }}$	$\stackrel{\text { O3 }}{ }$	${ }_{\text {RT }}^{\text {LS }}$

[^0]: Aylward and Findlay, SI Chemical Data (4th Edition) is the principal source of data for

[^1]: Aylward and Findlay, SI Chemical Data (4th Edition) is the principal source of data for

