

Student Number	
Mark / 48	

Chemistry

The Chemical Earth and Metals Modules Test • 2004

General Instructions

- Reading time 5 minutes
- Working time 55 minutes
- Write using black or blue pen
- Draw diagrams using pencil
- Board-approved calculators may be used
- A data sheet and a Periodic Table are provided at the back of this paper and may be removed for convenience
- Write your Student Number at the top of this page

Total Marks - 48

Part A – 12 marks

- Attempt Questions 1 12
- Allow about 10 minutes for this part

Part B – 36 marks

- Attempt Questions 13 28
- Allow about 45 minutes for this part

This page is intentionally blank.

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample:	2 + 4 =	(A) 2	(B) 6	(C) 8	(D) 9
		A ()	в 🔴	СО	D ()

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word **correct** and drawing an arrow as follows.

Ans	wer Bo	x for Q	uestions	5 1 _ 12
1	ΑΟ	BO	СO	DO
2	ΑΟ	BO	со	DО
3	ΑΟ	BO	СO	DO
4	ΑΟ	BO	со	DО
5	ΑΟ	BO	со	DО
6	ΑΟ	BO	СО	DO
7	ΑΟ	BO	СО	DO
8	ΑΟ	BO	СO	DO
9	ΑΟ	BO	СO	DO
10	ΑΟ	BO	со	DО
11	ΑΟ	BO	со	DО
12	A O	BO	со	DO

1 Which element is found uncombined in the biosphere?

- (A) Carbon
- (B) Hydrogen
- (C) Oxygen
- (D) Neon

2 Which of the following elements has the smallest first ionisation energy?

- (A) Lithium
- (B) Sodium
- (C) Fluorine
- (D) Chlorine

3 The properties of elements X, M, Z and T were investigated and the results tabled...

Element	Malleability	Hardness	Electrical Conductivity (liquid state)
Х	malleable	hard	high
М	brittle	soft	nil
Z	brittle	soft	high
Т	brittle	hard	low

Choose the correct classification of elements X, M, Z and T based on the data.

	Х	М	Z	Т
(A)	metal	non-metal	carbon	semi-metal
(B)	non-metal	non-metal	carbon	metal
(C)	semi-metal	metal	carbon	semi-metal
(D)	metal	semi-metal	carbon	metal

4 Which of these substances does not exist as a molecule?

- (A) $C_6H_{12}O_6$
- (B) H₂
- (C) He
- (D) NaCl

- 5 Which of these compounds has the highest melting point?
 - (A) LiH
 - (B) SiH_4
 - (C) NH_3
 - (D) HCl
- 6 Which of the following is an application of gravimetric analysis?
 - (A) Determining the melting point of a metal alloy.
 - (B) Determining the salinity of the Murray River by testing its electrical conductivity.
 - (C) Testing the flesh of tuna for the presence of mercury.
 - (D) Determining the mass percentage of iron in molasses.
- 7 Which statement is correct for element X located in period 4 and group 7?
 - (A) X is a solid that sublimes to a purple vapour.
 - (B) X covalently bonds with sodium to form NaX.
 - (C) X is a liquid at room temperature.
 - (D) X has a higher electronegativity than oxygen.
- 8 Which statement is correct for the recycling process for aluminium?
 - (A) The process involves a physical change.
 - (B) The process involves electrolysis.
 - (C) The process involves alloying.
 - (D) The process involves extraction.
- 9 Lithium and sodium have similar physical and chemical properties. This is best explained by which of the following statements?
 - (A) They are both metals.
 - (B) They have the same outer shell electronic configuration.
 - (C) They have low relative atomic mass.
 - (D) They are in period 1 of the Periodic Table.

Ionic salt	Melting point (℃)
Sodium iodide	660
Silver nitrate	209
Rubidium bromide	692
Potassium sulfate	1072

Which list gives the correct order of the strength of bonds between the indicated ions?

(A)
$$Ag^{+} - NO_{3}^{-} > Rb^{+} - Br^{-} > Na^{+} - I^{-} > K^{+} - SO_{4}^{2-}$$

- (B)
- $\begin{array}{l} K^{+}-SO_{4}{}^{2-}>Rb^{+}-Br^{-}>Na^{+}-I^{-}>Ag^{+}-NO_{3}{}^{-}\\ Ag^{+}-NO_{3}{}^{-}>Na^{+}-I^{-}>Rb^{+}-Br^{-}>K^{+}-SO_{4}{}^{2-}\\ K^{+}-SO_{4}{}^{2-}>Na^{+}-I^{-}>Rb^{+}-Br^{-}>Ag^{+}-NO_{3}{}^{-} \end{array}$ (C)
- (D)

Which of these processes is used in the purification stage of producing pure, 99.96–99.99% copper? 11

- (A) alloying
- electrolysis (B)
- roasting (C)
- (D) smelting
- 12 The table shows the properties and uses of four metal alloys...

Alloy	Properties	Uses
w	malleable	car bodies, pipes, nuts and bolts, roofing
х	hard and shock resistant	security safes, files, ball bearings
Y	resists corrosion, easily cast	ships' propellers, casting statues
z	low melting point, adheres firmly to other metals when molten	joining metals together, applications in plumbing and electronics

Which alloy best describes the properties and uses of solder?

- (A) W
- (B) Х
- (C) Y
- Ζ (D)

► Show all relevant working in questions involving calculations.

Question 13 (3 marks)

(a) Complete the table showing the existence of compounds on the Earth... (2 marks)

	Example of a compound found in the 'sphere
atmosphere	
biosphere	
hydrosphere	
lithosphere	

(b) Explain why uncombined elements are rare. (1 mark)

Question 14 (2 marks)

Name these compounds...

Fe ₂ S ₃	
Fe(OH) ₂	
NO ₂	
N ₂ O ₄	

Question 15 (2 marks)

Chalcocite, a copper sulfide ore is converted into crude copper by a two-step process...

Balance each of the chemical equations. (2 marks)

Question 16 (4 marks)

Calcium reacts vigorously with sulfur producing calcium sulfide via an electron transfer reaction.

Complete the table detailing the process...

	Calcium atom	+	Sulfur atom	\rightarrow	Calcium ion	+	Sulfide ion
Electronic configuration	2882	+		\rightarrow		+	
Lewis electron dot structure		+		\rightarrow		+	

Question 17 (2 marks)

To separate the components of a mixture, differences in physical properties are used as the basis of the separation. Complete the table to illustrate this principle...

Separation Process	Physical property which enables the separation to occur
distillation	
evaporation	
filtration	
sieving	

Question 18 (2 marks)

For a Prac test, a student is given the task of separating a sample of water collected at Bondi Beach into its three components (water, salt and sand) and determining the mass percentage of each.

A student records this data after filtration and evaporation...

Mass of original sample	226.73 g
Mass of filter paper	1.33 g
Mass of filter paper + dry sand	28.08 g
Mass of salt recovered after evaporation	9.66 g

Calculate the percentage mass of water in the original sample.

Question 19 (3 marks)

Active metal, M, forms M $^{2+}$ when it reacts. Write balanced formulae equations for the reactions of metal, M, with...

(i) (ii) (iii)	oxygen water hydrochloric acid
(i)	
(ii)	
(iii)	

Question 20 (2 marks)

Explain why the formula for an ionic compound is an empirical formula.

Question 21 (2 marks)

The reactions of metals with acids requires the transfer of electrons.

Write two half-equations to show the reaction between aluminium and sulfuric acid.

Question 22 (1 mark)

Identify <u>one</u> common element that exists as a covalent molecular structure and <u>one</u> common element that exists as a covalent network structure.

covalent molecule

covalent network

Question 23 (2 marks)

Identify and explain the trend in the atomic radius from left to right across the Periodic Table.

Question 24 (3 marks)

The table shows the melting points of the chlorides of seven consecutive elements A - F in a period of the Periodic Table...

Element	Α	В	С	D	Е	F
Melting point of the element's chloride (${}^{\circ}$)	801	712	193	- 68	- 91	- 80

(a) Identify an element (A – F) which could be a metal.

- (b) Identify the type of bonding which exists in the chlorides of elements A and B.
- (c) Compare the electrical conductivity of the chlorides, A F in the liquid state.

Question 25 (2 marks)

Mendeleev's model of the Periodic Table in 1869 was a landmark in the history of Chemistry.

Periodic Table. (1 mark)
Identify one chemical property of iodine which confirms that it is a halogen and should be placed if
Identify one chemical property of iodine which confirms that it is a halogen and should be placed group 7. (1 mark)

Question 26 (2 marks)

In the lab this semester, you decomposed copper(II) carbonate by strongly heating it. Write a (a) word equation and (b) a balanced formulae equation for the decomposition reaction.

► Assume the reactant is pure copper(II) carbonate.

(a)	 	
(b)	 	

Question 27 (2 marks)

The diagrams on the left show eight water molecules in the liquid state.

Complete the diagram boxes on the right, showing the arrangement of particles after all the water molecules have undergone the processes of boiling and electrolysis.

Question 28 (2 marks)

Account for the use of <i>either</i> the metal <i>or</i> the non–metal you identified in terms of its <i>physical properties</i> . (1 mark)	metal		non-metal		
	Account for the use of <i>either</i> the metal <i>or</i> the non-metal you identified in terms of its <i>physical</i>				
	Account for <i>properties</i> .	the use of <i>either</i> the metal <i>a</i> (1 mark)	or the non-metal you identified in terms of its phy		

DATA SHEET

Avogadro constant, N _A		$1.6.022 \times 10^{23} \text{ mol}^{-1}$
Volume of 1 mole ideal gas: at 1	100 kPa and	
	at 0°C (273.15 K)	. 22.71 L
;	at 25°C (298.15 K)	. 24.79 L
Ionisation constant for water at	25°C (298.15 K), K _w	1.0×10^{-14}
Specific heat capacity of water		$.4.18 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1}$

Some useful formulae

 $pH = -\log_{10}[H^+] \qquad \Delta H = -m C \Delta T$

Some standard potentials

$K^+ + e^-$	←	K(<i>s</i>)	-2.94 V
$Ba^{2+} + 2e^{-}$	\rightleftharpoons	Ba(s)	-2.91 V
$Ca^{2+} + 2e^{-}$	~`	Ca(s)	–2.87 V
$Na^+ + e^-$	~``	Na(s)	–2.71 V
$Mg^{2+} + 2e^{-}$	\leftarrow	Mg(s)	–2.36 V
$Al^{3+} + 3e^{-}$	\rightarrow	Al(s)	-1.68 V
$Mn^{2+} + 2e^{-}$	~``	Mn(s)	-1.18 V
$H_2O + e^-$	\rightleftharpoons	$\frac{1}{2}H_2(g) + OH^-$	-0.83 V
$Zn^{2+} + 2e^{-}$	\rightleftharpoons	Zn(s)	–0.76 V
$Fe^{2+} + 2e^{-}$	~	Fe(s)	-0.44 V
$Ni^{2+} + 2e^{-}$	\rightleftharpoons	Ni(s)	–0.24 V
$Sn^{2+} + 2e^{-}$	⇔	Sn(s)	-0.14 V
$Pb^{2+} + 2e^{-}$	\rightleftharpoons	Pb(s)	-0.13 V
$H^+ + e^-$	\rightleftharpoons	$\frac{1}{2}H_2(g)$	0.00 V
$SO_4^{2-} + 4H^+ + 2e^-$	~``	$SO_2(aq) + 2H_2O$	0.16 V
$Cu^{2+} + 2e^{-}$	\rightleftharpoons	Cu(s)	0.34 V
$\frac{1}{2}O_2(g) + H_2O + 2e^-$	\rightleftharpoons	20H ⁻	0.40 V
$Cu^+ + e^-$	←	Cu(s)	0.52 V
$\frac{1}{2}I_2(s) + e^-$	\rightleftharpoons	I-	0.54 V
$\frac{1}{2}I_2(aq) + e^-$	₽	I_	0.62 V
$Fe^{3+} + e^{-}$	\rightleftharpoons	Fe ²⁺	0.77 V
$Ag^+ + e^-$	\rightleftharpoons	Ag(s)	0.80 V
$\frac{1}{2}\mathrm{Br}_2(l) + \mathrm{e}^-$	~`	Br ⁻	1.08 V
$\frac{1}{2}$ Br ₂ (aq) + e ⁻	$\stackrel{\longrightarrow}{\leftarrow}$	Br ⁻	1.10 V
$\frac{1}{2}O_2(g) + 2H^+ + 2e^-$	~``	H ₂ O	1.23 V
$\frac{1}{2}$ Cl ₂ (g) + e ⁻	\rightleftharpoons	Cl⁻	1.36 V
$\frac{1}{2}$ Cr ₂ O ₇ ²⁻ + 7H ⁺ + 3e ⁻	\rightleftharpoons	$Cr^{3+} + \frac{7}{2}H_2O$	1.36 V
$\frac{1}{2}$ Cl ₂ (aq) + e ⁻	\rightleftharpoons	Cl⁻	1.40 V
$MnO_{4}^{-} + 8H^{+} + 5e^{-}$	\rightleftharpoons	$Mn^{2+} + 4H_2O$	1.51 V
$\frac{1}{2}F_2(g) + e^-$	~``	F ⁻	2.89 V

Aylward and Findlay, *SI Chemical Data* (5th Edition) is the principal source of data for this examination paper. Some data may have been modified for examination purposes.

ı bracke

			r T		
	87 Fr [223.0] Francium	55 Cs 132.9 Caesium	K 39.10 Potassium 37 Rb 85.47 Rubidium	6.941 Lithium 11 Na 22.99 Sodium	1 H Hydrogen Li
	88 Ra [226.0] Radium	56 Ba 137.3 Barium	Ca 40.08 Calcium 38 Sr 87.62 Strontium	9.012 Beryllium 12 Mg 24.31 Magnesium 20	Be
Lanthanid 57 La 138.9 Lanthanum Actinides Actinides Actinides	89–103 Actinides	57–71 Lanthanides	Sc 44.96 Scandium 39 Y 88.91 Yttrium	21	
58 58 Ce 140.1 Cenium 90 7h 232.0 Thorium	104 Rf [261.1] Rutherfordium	72 Hf 178.5 Hafnium	Ti 47.87 Titanium 40 Zr 91.22 Zirconium	33	
59 Pr 140.9 Praseodymium 91 Pa 231.0 Protactinium	105 Db [262.1] Dubmium	73 Ta 180.9 Tantalum	V 50.94 Vanadium 41 Nb 92.91 Niobium	23	
60 Nd 144.2 Neodymium 92 U 238.0 Uranium	106 Sg [263.1] Seaborgium	74 W 183.8 ^{Tungsten}	Cr 52.00 Chromium 42 Mo 95.94 Molybdenum	24	
61 Pm [146.9] Promethium 93 Np [237.0] Neptunium	107 Bh [264.1] Bohrium	75 Re 186.2 Rhenium	Min 54.94 Manganese 43 Tc [98.91] Technetium	25	PERIO
62 Sm 150.4 Samarium Samarium 94 Pu [239.1] Plutonium	108 Hs [265.1] Hassium	76 Os 190.2 ^{Osmium}	Fe 55.85 Iron 44 Ru 101.1 Ruthenium	26	ODIC TA
63 Eu 152.0 Europium 95 Am [241.1] Americium	109 Mt [268] Meimerium	77 Ir 192.2 Iridium	Co 58.93 Cobalt 45 Rh 102.9 Rhodium	197.0 ^{Gold}	KEY Au
64 Gd 157.3 Gadolinium [244.1] Curium	110 Uun –	78 Pt 195.1 Platinum	Ni 58.69 Nickel 46 Pd 106.4 Palladium	Name of eleme	F THE Symbol of eler
65 Tb 158.9 Terbium Terbium 97 Bk [249.1] Berkelium	111 Uuu — Unununium	79 Au 197.0 _{Gold}	Cu 63.55 ^{Copper} 47 Ag 107.9 Silver	ent 29	ELEMI
66 Dy 162.5 Dyspresium Gf [252.1] Californium	112 Uub — Ununbium	80 Hg 200.6 Mercury	Zn 65.39 Zinc 48 Cd 112.4 Cadmium	30	ENTS
67 Ho 164.9 Holmium Holmium 99 Es [252.1] Einsteinium	113	81 TI 204.4 Thallium	Ga 69.72 Gallium 49 In 114.8 Indium	10.81 Boron 13 A1 26.98 Aluminium 31	αu
68 Er 167.3 Erbium Erbium [257.1] Fermium	114 Uuq — Ununquadium	82 Pb 207.2 Lead	Ge 72.61 Germanium 50 Sn 118.7 Tin	12.01 Carbon 14 Si 28.09 Silicon 32	ÛQ
69 Tm 168.9 Thulium Md [258.1] Mendelevium	115	83 Bi 209.0 Bismuth	As 74.92 Arsenic 51 Sb 121.8 Antimony	14.01 Nitrogen 15 P 30.97 Phosphorus 33	ΓN
70 Yb 173.0 Yuerbium No [259.1] Nobelium	116 Uuh — Ununhexium	84 Po [210.0] Polonium	Se 78.96 Selenium 52 Te 127.6 Tellurium	16.00 Oxygen 16 S 32.07 Sulfur 34	O∞
71 Lu 175.0 Lutetium 103 Lr [262.1] Lawrencium	117	85 At [210.0] Astatine	Br 79.90 Bromine 53 I 126.9 Iodine	19.00 Fluorine 17 C1 35.45 Chlorine 35	QH
	118 Uuo — Ununoctium	86 Rn [222.0] Radon	Kr 83.80 Krypton 54 Xe 131.3 Xenon	20.18 Neon 18 Ar 39.95 Argon 36	2 He 4.003 ^{Helium} Ne

JRAHS Year 11 Chemistry Half-Yearly Test - 2004

Answers and Marking Scheme

Chemistry

The Chemical Earth and Metals Modules Test • 2004

General Instructions

- Reading time 5 minutes
- Working time 55 minutes
- Write using black or blue pen
- Draw diagrams using pencil
- Board-approved calculators may be used
- A data sheet and a Periodic Table are provided at the back of this paper and may be removed for convenience
- Write your Student Number at the top of this page

Total Marks - 48

Part A – 12 marks

- Attempt Questions 1 12
- Allow about 10 minutes for this part

Part B – 36 marks

- Attempt Questions 13 28
- Allow about 45 minutes for this part

This page is intentionally blank.

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample:	2 + 4 =	(A) 2	(B) 6	(C) 8	(D) 9
		A ()	в 🔴	СО	D ()

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word **correct** and drawing an arrow as follows.

Ans	wer Box	t for Qu	estions	; 1 _ 12
1	ΑΟ	вО	C 🔘	DO
2	ΑO	B ©	со	DO
3	A ©	BO	со	DO
4	ΑΟ	BO	со	D 🔘
5	A ©	BO	со	DO
6	ΑO	BO	со	D 🔘
7	ΑO	BO	C 🔘	DO
8	A ©	BO	со	DO
9	ΑO	B ©	со	DO
10	ΑO	B ©	со	DO
11	ΑO	B ©	со	DO
12	ΑΟ	BO	со	D 🔘

1 Which element is found uncombined in the biosphere?

- (A) Carbon
- (B) Hydrogen
- (C) Oxygen
- (D) Neon

2 Which of the following elements has the smallest first ionisation energy?

- (A) Lithium
- (B) Sodium
- (C) Fluorine
- (D) Chlorine

3 The properties of elements X, M, Z and T were investigated and the results tabled...

Element	Malleability	Hardness	Electrical Conductivity (liquid state)
Х	malleable	hard	high
М	brittle	soft	nil
Z	brittle	soft	high
Т	brittle	hard	low

Choose the correct classification of elements X, M, Z and T based on the data.

	Х	М	Z	Т
(A)	metal	non-metal	carbon	semi-metal
(B)	non-metal	non-metal	carbon	metal
(C)	semi-metal	metal	carbon	semi-metal
(D)	metal	semi-metal	carbon	metal

4 Which of these substances does not exist as a molecule?

- (A) $C_6H_{12}O_6$
- (B) H₂
- (C) He
- (D) NaCl

- 5 Which of these compounds has the highest melting point?
 - (A) LiH
 - (B) SiH_4
 - (C) NH_3
 - (D) HCl
- 6 Which of the following is an application of gravimetric analysis?
 - (A) Determining the melting point of a metal alloy.
 - (B) Determining the salinity of the Murray River by testing its electrical conductivity.
 - (C) Testing the flesh of tuna for the presence of mercury.
 - (D) Determining the mass percentage of iron in molasses.
- 7 Which statement is correct for element X located in period 4 and group 7?
 - (A) X is a solid that sublimes to a purple vapour.
 - (B) X covalently bonds with sodium to form NaX.
 - (C) X is a liquid at room temperature.
 - (D) X has a higher electronegativity than oxygen.
- 8 Which statement is correct for the recycling process for aluminium?
 - (A) The process involves a physical change.
 - (B) The process involves electrolysis.
 - (C) The process involves alloying.
 - (D) The process involves extraction.
- 9 Lithium and sodium have similar physical and chemical properties. This is best explained by which of the following statements?
 - (A) They are both metals.
 - (B) They have the same outer shell electronic configuration.
 - (C) They have low relative atomic mass.
 - (D) They are in period 1 of the Periodic Table.

Ionic salt	Melting point (℃)
Sodium iodide	660
Silver nitrate	209
Rubidium bromide	692
Potassium sulfate	1072

Which list gives the correct order of the strength of bonds between the indicated ions?

(A)
$$Ag^{+} - NO_{3}^{-} > Rb^{+} - Br^{-} > Na^{+} - I^{-} > K^{+} - SO_{4}^{2-}$$

- (B)
- $\begin{array}{l} K^{+}-SO_{4}{}^{2-}>Rb^{+}-Br^{-}>Na^{+}-I^{-}>Ag^{+}-NO_{3}{}^{-}\\ Ag^{+}-NO_{3}{}^{-}>Na^{+}-I^{-}>Rb^{+}-Br^{-}>K^{+}-SO_{4}{}^{2-}\\ K^{+}-SO_{4}{}^{2-}>Na^{+}-I^{-}>Rb^{+}-Br^{-}>Ag^{+}-NO_{3}{}^{-} \end{array}$ (C)
- (D)

Which of these processes is used in the purification stage of producing pure, 99.96–99.99% copper? 11

- (A) alloying
- electrolysis (B)
- roasting (C)
- (D) smelting
- 12 The table shows the properties and uses of four metal alloys...

Alloy	Properties	Uses
w	malleable	car bodies, pipes, nuts and bolts, roofing
х	hard and shock resistant	security safes, files, ball bearings
Y	resists corrosion, easily cast	ships' propellers, casting statues
z	low melting point, adheres firmly to other metals when molten	joining metals together, applications in plumbing and electronics

Which alloy best describes the properties and uses of solder?

- (A) W
- (B) Х
- (C) Y
- Ζ (D)

► Show all relevant working in questions involving calculations.

Question 13 (3 marks)

(a) Complete the table showing the existence of compounds on the Earth... (2 marks)

	Example of a compound found in the 'sphere
atmosphere	carbon dioxide
biosphere	glucose
hydrosphere	water
lithosphere	silicon dioxide

(b) Explain why uncombined elements are rare. (1 mark)

The vast majority of elements are chemically reactive. They chemically react with other elements to form stable compounds achieving noble gas configurations with lower energy.

Question 14 (2 marks)

Name these compounds...

Fe ₂ S ₃	iron(III) sulfide
Fe(OH) ₂	iron(II) hydroxide
NO ₂	nitrogen dioxide
N ₂ O ₄	dinitrogen tetroxide

Question 15 (2 marks)

Chalcocite, a copper sulfide ore is converted into crude copper by a two-step process...

<u>STEP 1</u> – $2Cu_2S + 3O_2 \rightarrow 2Cu_2O + 2SO_2$

<u>STEP 2</u> – $2Cu_2O + C \rightarrow 4Cu + CO_2$

Balance each of the chemical equations. (2 marks)

Question 16 (4 marks)

Calcium reacts vigorously with sulfur producing calcium sulfide via an electron transfer reaction.

Complete the table detailing the process...

	Calcium atom	+	Sulfur atom	\rightarrow	Calcium ion	+	Sulfide ion
Electronic configuration	2882	+	2–8–6	\rightarrow	2–8–8	+	2–8–8
Lewis electron dot structure	Ca:	+	:\$:	\rightarrow	Ca ²⁺	+	[:S:] ²⁻

Question 17 (2 marks)

To separate the components of a mixture, differences in physical properties are used as the basis of the separation. Complete the table to illustrate this principle...

Separation Process	Physical property which enables the separation to occur
distillation	boiling point
evaporation	boiling point
filtration	particle size solubility
sieving	particle size

Question 18 (2 marks)

For a Prac test, a student is given the task of separating a sample of water collected at Bondi Beach into its three components (water, salt and sand) and determining the mass percentage of each.

A student records this data after filtration and evaporation...

Mass of original sample	226.73 g
Mass of filter paper	1.33 g
Mass of filter paper + dry sand	28.08 g
Mass of salt recovered after evaporation	9.66 g

Calculate the percentage mass of water in the original sample.

Mass of sand = 28.08 g - 1.33 g = 26.75 g (1 mark)

Mass of water = 226.73 g (sample) - 26.75 g (sand) - 9.66 g (salt) = 190.32 g

Percentage water = 190.32 g ÷ 226.73 g = 83.94%

Question 19 (3 marks)

oxygen

(i)

Active metal, M, forms M²⁺ when it reacts. Write balanced formulae equations for the reactions of metal, M, with...

(ii) water (iii) hydrochloric acid (i) $2M_{(s)} + O_{2(g)} \rightarrow 2MO_{(s)}$ (ii) $M_{(s)} + 2H_2O_{(l)} \rightarrow M(OH)_{2(aq)} + H_{2(g)}$ (iii) $M_{(s)} + 2HCI_{(aq)} \rightarrow MCI_{2(aq)} + H_{2(g)}$

Question 20 (2 marks)

Explain why the formula for an ionic compound is an empirical formula.

The empirical formula represents the simplest whole number ratio of atoms/ions of different elements in a compound. Ionic compounds are an infinite lattice/array of positive and negative ions and therefore the formula given to describe them is just the simplest ratio of ions in the array, i.e. the empirical formula.

Question 21 (2 marks)

The reactions of metals with acids requires the transfer of electrons.

Write two half-equations to show the reaction between aluminium and sulfuric acid.

 $AI_{(s)} \rightarrow AI^{3+} + 3e^{-}$ $2H^{+} + 2e^{-} \rightarrow H_{2(q)}$ Identify <u>one</u> common element that exists as a covalent molecular structure and <u>one</u> common element that exists as a covalent network structure.

covalent molecule	e.g. hydrogen or H_2
covalent network	e.g. carbon (diamond)

Question 23 (2 marks)

Identify and explain the trend in the atomic radius from left to right across the Periodic Table.

The atomic radii of elements decrease from left to right (1 mark) across the Periodic Table, as the nuclear charge increases. The greater the nuclear charge, the more the electron shells are attracted to the nucleus and the radius decreases. (1 mark)

Question 24 (3 marks)

The table shows the melting points of the chlorides of seven consecutive elements A - F in a period of the Periodic Table...

Element	Α	В	С	D	Е	F
Melting point of the element's chloride (\mathcal{C})	801	712	193	- 68	- 91	- 80

- (a) Identify an element (A F) which could be a metal. **A**, **B** or **C**
- (b) Identify the type of bonding which exists in the chlorides of elements A and B. *ionic*
- (c) Compare the electrical conductivity of the chlorides, A F in the liquid state.

Chlorides A – C would be electrolytes. Chlorides D – F would be non–electrolytes.

Question 25 (2 marks)

Mendeleev's model of the Periodic Table in 1869 was a landmark in the history of Chemistry.

(a) Describe how Mendeleev used the properties of the known elements to develop his model for the Periodic Table. (1 mark)

Mendeleev studied the patterns in the elemental data and organised chemically similar elements in columns (groups).

OR

Mendeleev realised that the properties of elements were a periodic function of their atomic weights.

(b) Identify one chemical property of iodine which confirms that it is a halogen and should be placed in group 7. (1 mark)

lodine (atoms) react in a 1:1 ratio with group one elements to form ionic iodides.

Question 26 (2 marks)

In the lab this semester, you decomposed copper(II) carbonate by strongly heating it. Write a (a) word equation and (b) a balanced formulae equation for the decomposition reaction.

► Assume the reactant is pure copper(II) carbonate.

- (a) copper(II) carbonate \rightarrow copper(II) oxide + carbon dioxide
- (b) $CuCO_{3(s)} \rightarrow CuO_{(s)} + CO_{2(g)}$
 - ► Correct formulae including phase label required for 1 mark.

Question 27 (2 marks)

The diagrams on the left show eight water molecules in the liquid state.

Complete the diagram boxes on the right, showing the arrangement of particles after all the water molecules have undergone the processes of boiling and electrolysis.

1 mark each for boiling and electrolysis
▶ Mass must be conserved in the transformation.

Question 28 (2 marks)

(a) Identify one metal and one non-metal. (1 mark)

metal e.g. copper non-metal e.g. helium

(b) Account for the use of *either* the metal *or* the non-metal you identified in terms of its *physical properties*. (1 mark)

Copper is used as electrical wire due to its good electrical conductivity and ductility.

Helium is used as a filler for balloons because of its low density.

DATA SHEET

Avogadro constant, N _A		$1.6.022 \times 10^{23} \text{ mol}^{-1}$
Volume of 1 mole ideal gas: at 1	100 kPa and	
	at 0°C (273.15 K)	. 22.71 L
;	at 25°C (298.15 K)	. 24.79 L
Ionisation constant for water at	25°C (298.15 K), K _w	1.0×10^{-14}
Specific heat capacity of water		$.4.18 \times 10^3 \text{ J kg}^{-1} \text{ K}^{-1}$

Some useful formulae

 $pH = -\log_{10}[H^+] \qquad \Delta H = -m C \Delta T$

Some standard potentials

$K^+ + e^-$	←	K(<i>s</i>)	-2.94 V
$Ba^{2+} + 2e^{-}$	\rightleftharpoons	Ba(s)	-2.91 V
$Ca^{2+} + 2e^{-}$	~`	Ca(s)	–2.87 V
$Na^+ + e^-$	~``	Na(s)	–2.71 V
$Mg^{2+} + 2e^{-}$	\leftarrow	Mg(s)	–2.36 V
$Al^{3+} + 3e^{-}$	\rightarrow	Al(s)	-1.68 V
$Mn^{2+} + 2e^{-}$	~``	Mn(s)	-1.18 V
$H_2O + e^-$	\rightleftharpoons	$\frac{1}{2}H_2(g) + OH^-$	-0.83 V
$Zn^{2+} + 2e^{-}$	\rightleftharpoons	Zn(s)	–0.76 V
$Fe^{2+} + 2e^{-}$	~	Fe(s)	-0.44 V
$Ni^{2+} + 2e^{-}$	\rightleftharpoons	Ni(s)	–0.24 V
$Sn^{2+} + 2e^{-}$	⇔	Sn(s)	-0.14 V
$Pb^{2+} + 2e^{-}$	\rightleftharpoons	Pb(s)	-0.13 V
$H^+ + e^-$	\rightleftharpoons	$\frac{1}{2}H_2(g)$	0.00 V
$SO_4^{2-} + 4H^+ + 2e^-$	~``	$SO_2(aq) + 2H_2O$	0.16 V
$Cu^{2+} + 2e^{-}$	\rightleftharpoons	Cu(s)	0.34 V
$\frac{1}{2}O_2(g) + H_2O + 2e^-$	\rightleftharpoons	20H ⁻	0.40 V
$Cu^+ + e^-$	←	Cu(s)	0.52 V
$\frac{1}{2}I_2(s) + e^-$	\rightleftharpoons	I-	0.54 V
$\frac{1}{2}I_2(aq) + e^-$	₽	I_	0.62 V
$Fe^{3+} + e^{-}$	\rightleftharpoons	Fe ²⁺	0.77 V
$Ag^+ + e^-$	\rightleftharpoons	Ag(s)	0.80 V
$\frac{1}{2}\mathrm{Br}_2(l) + \mathrm{e}^-$	~`	Br ⁻	1.08 V
$\frac{1}{2}$ Br ₂ (aq) + e ⁻	$\stackrel{\longrightarrow}{\leftarrow}$	Br ⁻	1.10 V
$\frac{1}{2}O_2(g) + 2H^+ + 2e^-$	~``	H ₂ O	1.23 V
$\frac{1}{2}$ Cl ₂ (g) + e ⁻	\rightleftharpoons	Cl⁻	1.36 V
$\frac{1}{2}$ Cr ₂ O ₇ ²⁻ + 7H ⁺ + 3e ⁻	\rightleftharpoons	$Cr^{3+} + \frac{7}{2}H_2O$	1.36 V
$\frac{1}{2}$ Cl ₂ (aq) + e ⁻	\rightleftharpoons	Cl⁻	1.40 V
$MnO_{4}^{-} + 8H^{+} + 5e^{-}$	\rightleftharpoons	$Mn^{2+} + 4H_2O$	1.51 V
$\frac{1}{2}F_2(g) + e^-$	~``	F ⁻	2.89 V

Aylward and Findlay, *SI Chemical Data* (5th Edition) is the principal source of data for this examination paper. Some data may have been modified for examination purposes.

ı bracke

			r		
	87 Fr [223.0] Francium	55 Cs 132.9 Caesium	K 39.10 ^{Potassium} 37 Rb 85.47 Rubidium	6.941 Lithium 11 Na 22.99 Sodium	1 H Hydrogen Li
	88 Ra [226.0] Radium	56 Ba 137.3 Barium	Ca 40.08 Calcium 38 Sr 87.62 Strontium	9.012 Beryllium 12 Mg 24.31 Magnesium 20	Be
Lanthanide 57 La 138.9 Lanthanum Actinides Actinides Actinides	89–103 Actinides	57–71 Lanthanides	Sc 44.96 Scandium 39 Y 88.91 Yttrium	21	
es 58 Ce 140.1 Cerium Cerium 90 Th 232.0 Thorium	104 Rf [261.1] Rutherfordium	72 Hf 178.5 Hafnium	Ti 47.87 Titanium 40 Zr 91.22 Zirconium	33	
59 Pr 140.9 Praseodymium 91 Pa 231.0 Protactinium	105 Db [262.1] Dubmium	73 Ta 180.9 Tantalum	V 50.94 Vanadium 41 Nb 92.91 Niobium	23	
60 Nd 144.2 Neodymium 92 U Uranium	106 Sg [263.1] Seaborgium	74 W 183.8 ^{Tungsten}	Cr 52.00 Chromium 42 Mo 95.94 Molybdenum	24	
61 Pm [146.9] Promethium Ng Ng Ng Ng Ng Ng Ng Ng Ng Ng Ng Ng Ng	107 Bh [264.1] Bohrium	75 Re 186.2 Rhenium	Min 54.94 Manganese 43 Tc [98.91] Technetium	25	PERIO
62 Sm 150.4 Samarium Samarium 94 Pu [239.1] Plutonium	108 Hs [265.1] Hassium	76 Os 190.2 ^{Osmium}	Fe 55.85 Iron 44 Ru 101.1 Ruthenium	tomic Weight	ODIC TA
63 Eu 152.0 Europium 95 Am [241.1] Americium	109 Mt [268] Meimerium	77 Ir 192.2 Iridium	Co 58.93 Cobalt 45 Rh 102.9 Rhodium	197.0 Gold	ABLE O KEY Au
64 Gd 157.3 Gadolinium [244.1] Curium	110 Uun Ununnilium	78 Pt 195.1 Platinum	Ni 58.69 Nickel 46 Pd 106.4 Palladium	Name of elemo	F THE
65 Tb 158.9 Terbium Terbium 97 Bk [249.1] Berkelium	111 Uuu — Unununium	79 Au 197.0 Gold	Cu 63.55 ^{Copper} 47 Ag 107.9 Silver	ent 29	ELEMI
66 Dy 162.5 Dysprosium Gf [252.1] Californium	112 Uub — Ununbium	80 Hg 200.6 Mercury	Zn 65.39 Zinc 48 Cd 112.4 Cadmium	30	ENTS
67 Ho 164.9 Holmium Holmium Einsteinium	113	81 TI 204.4 Thallium	Ga 69.72 ^{Gallium} 49 In 114.8 Indium	10.81 Boron 13 A1 26.98 Aluminium 31	αs
68 Er 167.3 Erbium Erbium [257.1] Fermium	114 Uuq — Ununquadium	82 Pb 207.2 Lead	Ge 72.61 Germanium 50 Sn 118.7 Th	12.01 Carbon 14 Si 28.09 Silicon 32	00
69 Tm 168.9 Thulium Md [258.1] Mendelevium	611	83 Bi 209.0 Bismuth	As 74.92 Arsenic 51 Sb 121.8 Antimony	14.01 Nitrogen 15 P 30.97 Phosphorus 33	ΓN
70 Yb 173.0 Yuerbium No [259.1] Nobelium	116 Uuh — Ununhexium	84 Po [210.0] Polonium	Se 78.96 Selenium 52 Te 127.6 Tellurium	16.00 Oxygen 16 S 32.07 Sulfur 34	O∞
71 Lu 175.0 Luetium 103 Lr [262.1] Lawrencium	117	85 At [210.0] Astatine	Br 79.90 Bromine 53 I 126.9 Iodine	19.00 Fluorine 17 C1 35.45 Chlorine 35	QЩ
	118 Uuo Ununoctium	86 Rn [222.0] Radon	Kr 83.80 Krypton 54 Xe 131.3 Xenon	20.18 Neon 18 Ar 39.95 Argon 36	2 He 4.003 ^{Helium} Ne

JRAHS Year 11 Chemistry Half-Yearly Test - 2004