Sydney Grammar School

2015
 FORM V
 HALF-YEARLY EXAMINATION 1:00pm 13 May 2015

Chemistry

Working time 2 Hours

General Instructions

- Working time - 2 hours
- Board-approved calculators may be used
- Write using blue or black pen
- Draw diagrams using pencil
- A Data Sheet and Periodic Table are provided at the back of this paper
- Write your name and Master's initials at the top of the Multiple Choice Answer Sheet and the first page in Parts B to F

Collection

- Remove central staple and collect in ONE bundle
- Hand in all parts of the paper, including the multiple choice questions

Total marks (88)

This paper has six parts, Parts A to F

Part A

Total marks (18)

- Attempt ALL Questions
- Allow about 15 minutes for this Part.

Parts B to F

Total marks (70)

- Attempt ALL questions
- Allow about 1 hour and 45 minutes for this Part.

CHECKLIST

Each boy should have the following:
1 Question Paper
1 Multiple Choice Answer Sheet

5CY201 - AKBB	5CY202 - MRB	5CY203 - TW	5CY204 - ZI
5CY205 - EJS	5CY206 - CRMR	5CY207 - TW	

EXAMINERS: AKBB / CRMR / MRB / MTK/ TW

Part A

Total marks (18)

Attempt ALL Questions
Allow about 15 minutes for this Part

Use the multiple-choice Answer Sheet.
Select the alternative A, B, C or D that best answers the question. Fill the response circle completely.

$$
\text { Sample } 2+4=
$$

(A)
(B)
(C)
(D)

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
(A)

(D)

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word correct and drawing an arrow as follows.

1 Which alternative most accurately lists metals in order of their discovery and use?
(A) aluminium, copper, iron, sodium
(B) silver, silicon, sodium, gold
(C) gold, copper, iron, aluminium
(D) silver, magnesium, gold, iron

2 Which of the following elements comprise a triad as observed by Döbereiner?
(A) $\mathrm{Na}, \mathrm{Mg}, \mathrm{Al}$
(B) $\mathrm{Ne}, \mathrm{Ar}, \mathrm{Kr}$
(C) $\mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}$
(D) $\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$
$3 \quad 2 \mathrm{~L}$ of an unknown gas has the same mass as 0.5 L of bromine gas at the same temperature and pressure. What is the gas?
(A) CO_{2}
(B) Ne_{2}
(C) $\quad \mathrm{F}_{2}$
(D) Ar

4 Moving from left to right across Period 3 of the Periodic Table, which of the following does not increase?
(A) The number of electron shells
(B) The total number of electrons
(C) The number of valence electrons
(D) The charge on the nucleus

5 Which of the following elements has the highest electronegativity?
(A) helium
(B) francium
(C) fluorine
(D) nitrogen

6 Which statements are correct for the alkali metals Li to Cs ?
I Melting Point increases
II First ionisation energy decreases
III Ionic radius increases
(A) I only
(B) III only
(C) II and III only
(D) I, II and III

7 Which of the following iron-containing minerals has the greatest percentage of iron by mass?
(A) magnetite, $\mathrm{Fe}_{3} \mathrm{O}_{4(\mathrm{~s})}$
(B) hematite, $\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}$
(C) siderite, $\mathrm{FeCO}_{3(\mathrm{~s})}$
(D) goethite, $\mathrm{FeO}(\mathrm{OH})_{(\mathrm{s})}$

8 Approximately how many atoms are there in 1.00 g of water?
(A) 3.34×10^{22}
(B) 1.00×10^{23}
(C) 6.02×10^{23}
(D) 1.81×10^{24}
$9 \quad$ Which of the following substances has the smallest molar mass?
(A) sodium oxide
(B) magnesium oxide
(C) potassium oxide
(D) calcium oxide

10 When comparing a more reactive metal with a less reactive metal:
(A) The less reactive metal is more likely to be found as an uncombined naturally occurring element.
(B) The more reactive metal is more spontaneous in losing electrons than is the less reactive metal.
(C) More energy is required to extract the less reactive metal from one of its compounds.
(D) More reactive metals absorb more heat than less reactive metals when they react.

11 What is the electrolysis of water?
(A) A physical process that separates hydrogen and oxygen molecules from water molecules.
(B) A physical process that weakens intermolecular forces releasing hydrogen and oxygen atoms.
(C) A chemical process that weakens intermolecular forces allowing the more volatile oxygen and hydrogen molecules to boil off.
(D) A chemical process that breaks covalent bonds within water molecules producing hydrogen and oxygen molecules.

12 Nitrogen trifluoride can be decomposed to form nitrogen and fluorine gas. Which of the following balanced equations correctly represents this reaction?
(A) $\quad \mathrm{NF}_{3(\mathrm{~g})} \rightarrow \mathrm{N}_{(\mathrm{g})}+\mathrm{F}_{3(\mathrm{~g})}$
(B) $\quad 2 \mathrm{~N}_{3} \mathrm{~F}_{3(\mathrm{~g})} \rightarrow 3 \mathrm{~N}_{2} \mathrm{~F}_{2(\mathrm{~g})}$
(C) $\quad 2 \mathrm{NF}_{3(\mathrm{~g})} \rightarrow \mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{~F}_{2(\mathrm{~g})}$
(D) $\quad \mathrm{NF}_{3(\mathrm{~g})} \rightarrow \mathrm{N}_{(\mathrm{g})}+3 \mathrm{~F}_{(\mathrm{g})}$

13 Which of the following shows elements in increasing atomic mass?
(A) $\mathrm{Cl}, \mathrm{Ar}, \mathrm{K}, \mathrm{Ca}$,
(B) $\mathrm{Zn}, \mathrm{Cu}, \mathrm{Ni}, \mathrm{Co}$
(C) $\mathrm{Cs}, \mathrm{Rb}, \mathrm{K}, \mathrm{Na}$
(D) $\mathrm{I}, \mathrm{Te}, \mathrm{Xe}, \mathrm{Cs}$

14 In which of the following substances do strong chemical bonds NOT extend throughout the crystal lattice in the solid state?
(A) mercury
(B) iodine
(C) silicon dioxide
(D) sodium chloride

15 Using the solubility rules, determine which of the following combinations of solutions would form a precipitate.
(A) Magnesium sulfate and barium nitrate
(B) Barium chloride and sodium hydroxide
(C) Sodium carbonate and lithium nitrate
(D) Silver nitrate and potassium nitrate

16 Which of the following contains the same number of ions as 1 mole of aluminium chloride?
(A) 3 mole of sodium hydroxide
(B) 2 mole of barium carbonate
(C) 1 mole of ammonium nitrate
(D) 0.5 mole of ammonium sulfate

17 Consider the following atom, ${ }_{8}^{17} \mathrm{O}$. This atom contains:
(A) 8 protons, 8 electrons and 17 neutrons.
(B) 8 protons, 8 electrons and 9 neutrons.
(C) 9 protons, 9 electrons and 17 neutrons.
(D) 17 protons, 17 electrons and 8 neutrons.

18 Which of the following is the correct IUPAC name for FeP?
(A) iron monophosphide
(B) iron monophosphate
(C) iron(III) phosphide
(D) iron(III) phosphate

Part B
Total marks (19)
Attempt ALL Questions

Write your name and your Master's initials in the space provided above.
Answer the questions in the spaces provided.
Show all relevant working in questions involving calculations.
Question 19 (3 marks)
Marks

Complete the following table.

Alloy	Use	Property related to use
Brass		
	Joining metals together	
		High tensile strength

Question 20 (3 marks)

Complete the table below, identifying from everyday life examples where heat, light and electricity are involved in chemical reactions. Indicate also whether the energy is released or absorbed by circling the appropriate response.

Energy type	Example of Everyday Reaction	Energy absorbed or released
Electricity		absorbed/released
Heat		absorbed/released
Light		absorbed/released

Question 21 (3 marks)
Marks

Write balanced chemical equations for the following reactions, including states:
(a) Magnesium oxide with hydrochloric acid.
\qquad
(b) Sodium hydrogen carbonate with sulfuric acid.
\qquad
(c) Sodium with water.
\qquad

Question 22 (3 marks)

Pentane and water are immiscible liquids that have the properties below.

	Boiling Point $\left({ }^{\circ} \mathbf{C}\right)$	Density $\left(\mathbf{g ~ c m}^{-3}\right)$
Pentane	36	0.6
Water	100	1.0

Assess the relative suitability of distillation or a separating funnel as techniques to separate pentane and water.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 23 (3 marks)

Complete the following table.

Name of Element or Ion	Protons	Charge	Electron Configuration
	12		2.8
Phosphorus		0	
		-1	2.8 .8

Question 24 (4 marks)

Draw Lewis electron dot diagrams for the following materials.

H_{2}	O_{2}
$\mathrm{H}_{2} \mathrm{O}$	OH^{-}

BLANK PAGE

Part C

Total marks (18)

Attempt ALL Questions

Write your name and your Master's initials in the space provided above.

Question 25 (3 marks)
Marks

A sample of processed meat was placed in a container of known mass and dried in an oven until the mass no longer reduced. The various masses were recorded in the table below.

Item	Mass (g)
Container	21.3
Container and undried meat sample	24.2
Container and dried meat sample	23.4

Determine the percentage water by mass in the original sample of processed meat.
\qquad
\qquad
\qquad
\qquad

Question 26 (3 marks)
(a) Write a balanced equation for the reaction of aluminium with sulfuric acid.
\qquad

Oxidation: \qquad

Potassium is ductile while potassium chloride is brittle. Explain the difference in these properties in terms of the structure and bonding of the two materials.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 28 (2 marks)

A pupil was given three metal samples (lead, silver and magnesium), but they forgot to label the samples. The pupil then conducted the following tests.

Metal	Reaction with $\mathbf{H}_{2} \mathbf{O}$	Reaction with acid	Reaction with oxygen
1	No Visible Reaction	No Visible Reaction	No Visible Reaction
2	White coating formed in near- boiling water	Reacted vigorously with cold $\mathrm{H}_{2} \mathrm{SO}_{4}$	Burned readily as a thin foil
3	No Visible Reaction	Reacted slowly with warm $\mathrm{H}_{2} \mathrm{SO}_{4}$	Formed a red/brown layer when heated in air

Identify the metals 1,2 and 3 .
Metal 1:
Metal 2: \qquad
Metal 3: \qquad

Question 29 (6 marks)
Marks

Five consecutive elements in increasing atomic number have first ionisation energies as shown in the table below.

Element	W	V	X	Y	Z
First ionisation energy (kJ / mol)	1260	1520	418	590	632

(a) Define First Ionisation Energy
\qquad 1
(b) Identify which element/(s) (W-Z) would be most likely to:
(i) be a noble gas.
\qquad
(ii) form an ion with a 1+ charge.
\qquad
(iii) be metals.
\qquad
(iv) exist as a diatomic molecule.
\qquad
(v) react most vigorously with dilute hydrochloric acid.
\qquad

BLANK PAGE

Part D

Total marks (15)
Attempt ALL Questions
Write your name and your Master's initials in the space provided above.
Question 30 (4 marks)
Marks

Explain why atomic radii decrease as you move along a Period of the Periodic Table but increase as you move down a Group.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 31 (3 marks)

Complete the table below by using the physical properties in the table to classify the following elements as metals, non-metals or semi-metals and solids, liquids or gases.

	Melting Point $\left({ }^{\circ} \mathbf{C}\right)$	Boiling Point $\left({ }^{\circ} \mathbf{C}\right)$	Density $\left(\mathbf{g ~ c m}^{-3}\right)$	Electrical conductivity $\left(\mathbf{M S ~ m}^{-1}\right)$	Metal/Non- metal/Semi- metal	Solid/Liquid/ Gas at $\mathbf{3 0 0}^{\circ} \mathbf{C}$
A	63	760	0.86	14		
B	44	280	1.82	10^{-15}		
C	-39	357	13.5	1.0		
D	937	2830	5.3	10^{-4}		

Question 32 (5 marks)

A 31.08 g sample of lead was placed into a 100 mL solution containing 16.99 g silver nitrate and left until the reaction had gone to completion.

Complete the table. Show relevant calculations in the space below the table.

Chemical species	$\mathrm{Pb}^{2+}{ }_{\text {(aq) }}$	$\mathrm{Pb}_{(\mathrm{s})}$	$\mathrm{Ag}^{+}{ }_{\text {(aq) }}$	$\mathrm{Ag}_{(\mathrm{s})}$	$\mathrm{NO}_{3}^{-{ }_{(\text {(aq) }}}$
Moles in final mixture					
Balanced chemical equation					

\qquad

Question 33 (3 marks)

In 1813, shortly after Gay-Lussac published his "Memoir on the Combination of Gaseous Substances with Each Other", Jöns Jacob Berzelius published an account of 2 volumes of ammonia reacting with 2 volumes of oxygen to produce 3 volumes of water vapour and 1 volume of phlogisticated nitrous air.
(a) Write a balanced chemical equation for this reaction.
\qquad
(b) What is the IUPAC name for phlogisticated nitrous air?
\qquad
\qquad

BLANK PAGE

Part E
Total marks (3)
Attempt ALL Questions
Write your name and your Master's initials in the space provided above.

Question 34 (3 marks)
Marks

Discuss the advantages and limitations of the below model of calcite, CaF_{2}.

○Ca ○
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

BLANK PAGE

Part F

Chromium is often found in the Earth's crust as chromite, $\mathrm{FeCr}_{2} \mathrm{O}_{4}$. The production of chromium metal from chromite involves a series of chemical reactions:
$4 \mathrm{FeCr}_{2} \mathrm{O}_{4(\mathrm{~s})}+8 \mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{~s})}+7 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 8 \mathrm{Na}_{2} \mathrm{CrO}_{4(\mathrm{~s})}+2 \mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}+8 \mathrm{CO}_{2(\mathrm{~g})}$
$2 \mathrm{Na}_{2} \mathrm{CrO}_{4(\mathrm{~s})}+\mathrm{H}_{2} \mathrm{SO}_{4(\text { aq) }} \rightarrow \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7(\mathrm{~s})}+\mathrm{Na}_{2} \mathrm{SO}_{4(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
$\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7(\mathrm{~s})}+2 \mathrm{C}_{(\mathrm{s})} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{3(\mathrm{~s})}+\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{~s})}+\mathrm{CO}_{(\mathrm{g})}$
$\mathrm{Cr}_{2} \mathrm{O}_{3(\mathrm{~s})}+2 \mathrm{Al}_{(\mathrm{s})} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}+2 \mathrm{Cr}_{(\mathrm{s})}$

A 210.0 g ore sample containing 75.40% chromite by mass is processed through this series of chemical reactions.
(a) Calculate the mass of chromite, $\mathrm{FeCr}_{2} \mathrm{O}_{4}$, present in the 210.0 g ore sample.
\qquad
\qquad
(b) Calculate the mass of carbon dioxide gas produced when chromium is produced from the 210.0 g ore sample by this process.
\qquad 3
\qquad
\qquad
\qquad
\qquad
\qquad

Question 35 continued.

(c) Calculate the mass of chromium metal produced in this process using the 210.0 g sample.
\qquad
\qquad
\qquad
\qquad
(d) Calculate the number of aluminium atoms consumed in this process.
\qquad
\qquad

Question 36 (3 marks)

In 1962, the synthesis of the first binary compound of a noble gas was reported in the Journal of the American Chemical Society. Decomposition of this colourless solid compound was reported to give rise to 0.2507 g xenon and 0.1435 g fluorine by mass. Calculate the empirical formula of this compound.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 37 (5 marks)

Wegscheiderite is an evaporite mineral found at the Green River Formation in Wyoming, USA. Elemental analysis shows wegscheiderite to contain four different elements. When 10.000 g of wegscheiderite is treated with excess hydrochloric acid, 4.917 g of carbon dioxide is given off. In a separate experiment, 0.1000 g of wegscheiderite is dissolved in water and treated with a solution of uranyl zinc acetate. A precipitate of $\left(\mathrm{UO}_{2}\right)_{3} \mathrm{ZnNa}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{9} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ with a molar mass $1537.9 \mathrm{~g} \mathrm{~mol}^{-1}$ is produced which after purification has a mass of 2.148 g .

Calculate the empirical formula of wegscheiderite, showing all working and logic.
\qquad

BLANK PAGE

Chemistry

Data Sheet

Avogadro's constant, N_{A} \qquad $6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Volume of 1 mole ideal gas: at 100 kPa and
Ionisation constant for water at $25^{\circ} \mathrm{C}(298 \mathrm{~K}), K_{w} \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .1 .0 \times 10^{-14}$
Specific heat capacity of water $\ldots \ldots . . . \ldots \ldots . \ldots \ldots 0^{3} \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$

Some useful formulae

$$
\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right] \quad q=m C \Delta T
$$

Standard Potentials

$\mathrm{K}^{+}+\mathrm{e}^{-}$	$\stackrel{ }{2}$	$\mathrm{K}_{\text {(s) }}$	-2.94 V
$\mathrm{Ba}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Ba}_{(s)}$	-2.91 V
$\mathrm{Ca}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Ca}_{(\mathrm{s})}$	-2.87 V
$\mathrm{Na}^{+}+\mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Na}_{(\mathrm{s})}$	-2.71 V
$\mathrm{Mg}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Mg}_{(s)}$	-2.36 V
$\mathrm{Al}^{3+}+3 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Al}_{(\mathrm{s})}$	-1.68 V
$\mathrm{Mn}^{2+}+2 \mathrm{e}^{-}$	Р	$\mathrm{Mn}_{(\mathrm{s})}$	-1.18 V
$\mathrm{H}_{2} \mathrm{O}+\mathrm{e}^{-}$	Г	$1 / 2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{OH}^{-}$	$-0.83 \mathrm{~V}$
$\mathrm{Zn}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Zn}_{(\mathrm{s})}$	$-0.76 \mathrm{~V}$
$\mathrm{Fe}^{2+}+2 \mathrm{e}^{-}$	Г	$\mathrm{Fe}_{(\text {s }}$	-0.44 V
$\mathrm{Ni}^{2+}+2 \mathrm{e}^{-}$	Г	$\mathrm{Ni}_{(\mathrm{s})}$	-0.24 V
$\mathrm{Sn}^{2+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Sn}_{(\mathrm{s})}$	-0.14 V
$\mathrm{Pb}^{2+}+2 \mathrm{e}^{-}$	Р	$\mathrm{Pb}_{(\mathrm{s})}$	-0.13 V
$\mathrm{H}^{+}+\mathrm{e}^{-}$	\rightleftharpoons	$1 / 2 \mathrm{H}_{2(\mathrm{~g})}$	0.00 V
$\mathrm{SO}_{4}{ }^{-2}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	Р	$\mathrm{SO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}$	0.16 V
$\mathrm{Cu}^{2+}+2 \mathrm{e}^{-}$	Р	$\mathrm{Cu}_{(\mathrm{s})}$	0.34 V
$1 / 2 \mathrm{O}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}$	\rightleftharpoons	$2 \mathrm{OH}^{-}$	0.40 V
$\mathrm{Cu}^{+}+\mathrm{e}^{-}$	Г	$\mathrm{Cu}_{(\mathrm{s})}$	0.52 V
$1 / 2 \mathrm{I}_{2(\mathrm{~s})}+\mathrm{e}^{-}$	\rightleftharpoons	Γ^{-}	0.54 V
$1 / 2 \mathrm{I}_{2 \text { (aq) }}+\mathrm{e}^{-}$	${ }^{\sim}$	I^{-}	0.62 V
$\mathrm{Fe}^{3+}+\mathrm{e}^{-}$	Г	Fe^{2+}	0.77 V
$\mathrm{Ag}^{+}+\mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Ag}_{(s)}$	0.80 V
$1 / 2 \mathrm{Br}_{2(1)}+\mathrm{e}^{-}$	\rightleftharpoons	Br^{-}	1.08 V
1/2 $\mathrm{Br}_{2(\text { aq) }}+\mathrm{e}^{-}$	Р	Br^{-}	1.10 V
$1 / 2 \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{H}_{2} \mathrm{O}$	1.23 V
$1 / 2 \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+7 \mathrm{H}^{+}+3 \mathrm{e}^{-}$	\rightleftharpoons	$\mathrm{Cr}^{3+}+\frac{7}{2} \mathrm{H}_{2} \mathrm{O}$	1.36 V
$1 / 2 \mathrm{Cl}_{2(\mathrm{~g})}+\mathrm{e}^{-}$	\rightleftharpoons	Cl^{-}	1.36 V
$1 / 2 \mathrm{Cl}_{2 \text { (aq) }}+\mathrm{e}^{-}$	Г	Cl^{-}	1.40 V
$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-}$	Г	$\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$	1.51 V
$1 / 2 \mathrm{~F}_{2(\mathrm{~g})}+\mathrm{e}^{-}$	\rightleftharpoons	F^{-}	2.89 V

1 H 1.008 Hydrogen	KEY																$\begin{gathered} 2 \\ \stackrel{2}{\mathrm{He}} \\ 4.003 \\ \text { Helium } \end{gathered}$	
$\begin{gathered} 3 \\ \text { Li } \\ 6.941 \\ \text { Lithium } \end{gathered}$	$\begin{gathered} 4 \\ \mathrm{Be} \\ 9.012 \\ \text { Beyllium } \end{gathered}$					Alomic NumberSymbotSlandard Alomic WeightName		$\begin{gathered} 79 \\ \mathrm{Au} \\ 197.0 \\ \text { Gold } \\ \hline \end{gathered}$				5 B 10.81 Boron 13	$\begin{gathered} 6 \\ \mathrm{C} \\ 12.01 \\ \text { Carbon } \end{gathered}$	$\begin{gathered} 7 \\ \mathrm{~N} \\ 14.01 \\ \text { Nitrogen } \\ \hline \end{gathered}$	8 O 16.00 Oxygen	$\begin{gathered} 9 \\ \mathrm{~F} \\ 19.00 \\ \text { Fluorine } \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ \mathrm{Ne} \\ 20.18 \\ \text { Neon } \end{gathered}$	
$\begin{gathered} 11 \\ \mathrm{Na} \\ 22.99 \\ \text { Sodium } \end{gathered}$	$\begin{gathered} 12 \\ \mathrm{Mg} \\ 24.31 \\ \text { Magnesium } \end{gathered}$										$\begin{gathered} 13 \\ \mathrm{Al} \\ 26.98 \\ \text { Aluminium } \end{gathered}$	$\begin{gathered} 14 \\ \mathrm{Si} \\ 28.09 \\ \text { Silicon } \end{gathered}$	15 P 30.97 Phosphons	$\begin{gathered} 16 \\ \mathrm{~S} \\ 32.07 \\ \text { Sulfur } \end{gathered}$	$\begin{gathered} 17 \\ \mathrm{Cl} \\ 35.45 \\ \text { Chlorine } \end{gathered}$	$\begin{gathered} 18 \\ \mathrm{Ar} \\ 39.95 \\ \text { Argon } \\ \hline \end{gathered}$		
$\begin{gathered} 19 \\ \mathrm{~K} \\ 39.10 \\ \text { Potassium } \end{gathered}$	$\begin{gathered} 20 \\ \mathrm{Ca} \\ 40.08 \\ \text { Cakium } \end{gathered}$	21 Sc 44.96 Scandium	$\begin{gathered} 22 \\ \mathrm{Ti} \\ 47.87 \\ \text { Titanium } \end{gathered}$	$\begin{gathered} 23 \\ \mathrm{~V} \\ 50.94 \\ \text { vanadium } \end{gathered}$		$\begin{gathered} 24 \\ \mathrm{Cr} \\ 52.00 \\ \text { Chromium } \end{gathered}$	$\begin{gathered} 25 \\ \mathrm{Mn} \\ 54.94 \\ \text { Manganese } \end{gathered}$	$\begin{gathered} 26 \\ \mathrm{Fe} \\ 55.85 \\ \text { tron } \end{gathered}$	$\begin{gathered} \hline 27 \\ \mathrm{Co} \\ 58.93 \\ \text { Cobalt } \\ \hline \end{gathered}$	$\begin{gathered} \hline 28 \\ \mathrm{Ni} \\ 58.69 \\ \text { Nickel } \\ \hline \end{gathered}$	$\begin{gathered} 29 \\ \mathrm{Cu} \\ 63.55 \\ \text { Copper } \end{gathered}$	$\begin{gathered} 30 \\ \mathrm{Zn} \\ 65.38 \\ \text { Zinc } \\ \hline \end{gathered}$	$\begin{gathered} 31 \\ \mathrm{Ga} \\ 69.72 \\ \text { Gallium } \\ \hline \end{gathered}$	$\begin{gathered} 32 \\ \mathrm{Ge} \\ 72.64 \\ \text { Germanium } \end{gathered}$	$\begin{gathered} 33 \\ \mathrm{As} \\ 74.92 \\ \text { Arsenic } \\ \hline \end{gathered}$	$\begin{gathered} 34 \\ \mathrm{Se} \\ 78.96 \\ \text { Selenium } \\ \hline \end{gathered}$	$\begin{gathered} 35 \\ \mathrm{Br} \\ 79.90 \\ \text { Bromine } \\ \hline \end{gathered}$	36 Kr 83.80 Krypton
$\begin{gathered} 37 \\ \text { Rb } \\ 85.47 \\ \text { Rubidium } \end{gathered}$	$\begin{gathered} 38 \\ \mathrm{Sr} \\ 87.61 \\ \text { Strontium } \end{gathered}$	$\begin{gathered} 39 \\ \mathrm{Y} \\ 88.91 \\ \text { Y trrium } \end{gathered}$	$\begin{gathered} 40 \\ \mathrm{Zr} \\ 91.22 \\ \text { Zirconium } \end{gathered}$	$\begin{gathered} 41 \\ \mathrm{Nb} \\ 92.91 \\ \text { Niobium } \\ \hline \end{gathered}$	$\begin{gathered} 42 \\ \text { Mo } \\ 95.96 \\ \text { Molybdenum } \end{gathered}$	$\begin{aligned} & 43 \\ & \mathrm{Tc} \end{aligned}$ Technetium	$\begin{gathered} 44 \\ \mathrm{Ru} \\ 101.1 \\ \text { Ruthenium } \end{gathered}$	$\begin{gathered} 45 \\ \text { Rh } \\ 102.9 \\ \text { Rhodium } \end{gathered}$	$\begin{gathered} 46 \\ \text { Pd } \\ 106.4 \\ \text { Palladium } \end{gathered}$	$\begin{gathered} 47 \\ \mathrm{Ag} \\ 107.9 \\ \text { Silver } \end{gathered}$	$\begin{gathered} 48 \\ \mathrm{Cd} \\ 112.4 \\ \text { Cadmium } \end{gathered}$	$\begin{gathered} 49 \\ \text { In } \\ \text { I14.8 } \\ \text { Indium } \end{gathered}$	$\begin{gathered} 50 \\ \mathrm{Sn} \\ 118.7 \\ \text { Tin } \end{gathered}$	$\begin{gathered} 51 \\ \mathrm{Sb} \\ 121.8 \\ \text { Antimony } \end{gathered}$	$\begin{gathered} 52 \\ \mathrm{Te} \\ 127.6 \\ \text { Tellurium } \end{gathered}$	$\begin{gathered} 53 \\ I \\ 126.9 \\ \text { Iodine } \end{gathered}$	$\begin{gathered} 54 \\ \mathrm{Xe} \\ 131.3 \\ \text { Xenon } \\ \hline \end{gathered}$	
$\begin{gathered} 55 \\ \mathrm{C} \\ 132.9 \\ \text { Cacsium } \end{gathered}$	$\begin{gathered} 56 \\ \mathrm{Ba} \\ 137.3 \\ \text { Barium } \end{gathered}$	$\begin{aligned} & \text { 57-71 } \\ & \text { Lanhanoids } \end{aligned}$	$\begin{gathered} 72 \\ \mathrm{Hf} \\ 178.5 \\ \text { Hafnium } \end{gathered}$	$\begin{gathered} 73 \\ \mathrm{Ta} \\ 180.9 \\ \text { Tantalum } \end{gathered}$	$\begin{gathered} \hline 74 \\ \mathrm{~W} \\ 183.9 \\ \text { Tungsten } \end{gathered}$	$\begin{gathered} 75 \\ \text { Re } \\ 186.2 \\ \text { Rhenium } \end{gathered}$	$\begin{gathered} 76 \\ \text { Os } \\ 190.2 \\ \text { Osmium } \end{gathered}$	$\begin{gathered} 77 \\ \mathrm{Ir} \\ 192.2 \\ \text { Iridium } \end{gathered}$	$\begin{gathered} 78 \\ \mathrm{Pt} \\ 195.1 \\ \text { Platinum } \end{gathered}$	$\begin{gathered} 79 \\ \mathrm{Au} \\ 197.0 \\ \text { Gold } \end{gathered}$	$\begin{gathered} 80 \\ \mathrm{Hg} \\ 200.6 \\ \text { Mercury } \end{gathered}$	$\begin{gathered} 81 \\ \mathrm{TI} \\ 204.4 \\ \text { Thallium } \end{gathered}$	$\begin{gathered} 82 \\ \mathrm{~Pb} \\ 207.2 \\ \text { Lead } \\ \hline \end{gathered}$	$\begin{gathered} 83 \\ \mathrm{Bi} \\ 209.0 \\ \text { Bismuth } \end{gathered}$	84 Po Polonium	$\begin{gathered} 85 \\ \mathrm{At} \\ \text { Astatine } \end{gathered}$	$\begin{gathered} 86 \\ \mathrm{Rn} \\ \\ \text { Radon } \end{gathered}$	
$\begin{aligned} & 87 \\ & \mathrm{Fr} \end{aligned}$ Francium	$\begin{gathered} 88 \\ \mathrm{Ra} \\ \text { Radium } \end{gathered}$	$89-103$ Actinoids	104 Rf Rutherfordium Ruberorodium		106 Sg Seaborgium	107 Bh Bohrium	$\begin{gathered} 108 \\ \mathrm{Hs} \\ \text { Hassium } \end{gathered}$	$\begin{aligned} & 109 \\ & \mathrm{Mt} \end{aligned}$ Meitnerium		$\begin{aligned} & 111 \\ & \mathrm{Rg} \end{aligned}$ Roentgenium	$\begin{aligned} & 112 \\ & \mathrm{Cn} \end{aligned}$ Copernicium							
		Lanthanoi 57 La 138.9 Lanthanum	$\begin{gathered} 58 \\ \mathrm{Ce} \\ 140.1 \\ \text { Cerium } \end{gathered}$	$\begin{gathered} 59 \\ \mathrm{Pr} \\ 140.9 \\ \text { Prasedymium } \end{gathered}$	$\begin{gathered} 60 \\ \mathrm{Nd} \\ 144.2 \\ \text { Neodymium } \end{gathered}$	61 Pm Promechium	$\begin{gathered} 62 \\ \mathrm{Sm} \\ \text { 150.4 } \\ \text { Samarium } \end{gathered}$	$\begin{gathered} 63 \\ \text { Eu } \\ 152.0 \\ \text { Europium } \end{gathered}$	$\begin{gathered} 64 \\ \text { Gd } \\ 157.3 \\ \text { Gadolinium } \end{gathered}$	$\begin{gathered} 65 \\ \mathrm{~Tb} \\ 158.9 \\ \text { Terbium } \end{gathered}$	$\begin{gathered} 66 \\ \text { Dy } \\ 162.5 \\ \text { Dypprosium } \end{gathered}$	$\begin{gathered} 67 \\ \text { Ho } \\ 164.9 \\ \text { Holmium } \end{gathered}$	$\begin{gathered} 68 \\ \text { Er } \\ 167.3 \\ \text { Etbium } \end{gathered}$	$\begin{gathered} 69 \\ \mathrm{Tm} \\ 168.9 \\ \text { Thulium } \end{gathered}$	$\begin{gathered} 70 \\ \text { Yb } \\ 173.1 \\ \text { Yuctbium } \end{gathered}$	$\begin{gathered} 71 \\ \mathrm{Lu} \\ 175.0 \\ \text { Lutectiom } \end{gathered}$		

Elements with atomic numbers 112 and above have been reported but not fully authenticated.
Standard atomic weights are abridged to four significant figures.
Elements with no reported values in the table have no stable nuclides.
这

CHEMISTRY PART A ANSWER SHEET

General Instructions

- Write your Master's initials and Name in the space provided.
- Attempt all questions $1-18$
- Use a blue or black pen
- Select the alternative A, B, C, or D that best answers the question.
- Fill in the response circle completely.

Part B

Total marks (19)
Attempt ALL Questions

Name

Write your name and your Master's initials in the space provided above.
Answer the questions in the spaces provided.
Show all relevant working in questions involving calculations.

Question 19 (3 marks)
Marks

Complete the following table.

Question 20 (3 marks)

Complete the table below, identifying from everyday life examples where heat, light and electricity are involved in chemical reactions. Indicate also whether the energy is released or absorbed by circling the appropriate response.

had to have a everyday use

Write balanced chemical equations for the following reactions, including states:
Dee states mistake allowable if incorrect state given
(a) Magnesium oxide with hydrochloric acid.

$$
\mathrm{MgO}_{(s)}+2 \mathrm{HCl}_{(a q)} \rightarrow \mathrm{MgCl}_{2(\text { aq })}+\mathrm{H}_{2(g)}
$$

(b) Sodium hydrogen carbonate with sulfuric acid.

$$
\left.\underset{\text { \&aq }}{2 \mathrm{NaHCO}_{3(s)}}+\mathrm{H}_{2} \mathrm{SO}_{4(\text { aq })} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(a)+2 \mathrm{H}_{2} \mathrm{O}_{(1)}+2 \mathrm{CO}_{2(g)}\right)
$$

(c) Sodium with water.

$$
\begin{aligned}
& 2 \mathrm{Na}_{(3)}+2 \mathrm{H}_{2} \mathrm{O}_{(1)} \rightarrow 2 \mathrm{NaOH}_{(a y)}+\mathrm{H}_{2(g)} \\
& 22 \text { (3 marks) } \quad \uparrow_{\text {many said this farmed } \mathrm{Na}_{2} \mathrm{O}}
\end{aligned}
$$

Question 22 (3 marks)

Pentane and water are immiscible liquids that have the properties below.

	Boiling Point $\left({ }^{\mathbf{}} \mathbf{C}\right)$	Density $\left(\mathbf{g ~ c m}^{-3}\right)$
Pentane	36	0.6
Water	100	1.0

Assess the relative suitability of distillation or a separating funnel as techniques to separate pentane and water.
(1) = why distillation would ware
\qquad

- Separating or disifilation or both but a reason.

Question 23 (3 marks)

Complete the following table.

Name of Element or Ion	Protons	Charge	Electron Configuration
Magresim	12	+2	2.8
Phosphorus	15	0	2.8 .5
Chlorine ion chloride	17	-1	2.8 .8

$\begin{array}{ll}\text { bright }-3 \text { mots } & 23 \text { right }=1 \text { marks } \\ 4-5 \text { right }=2 \text { mots } & 0-1 \text { right }=0 \text { marks }\end{array}$
Question 24 (4 marks)

Draw Lewis electron dot diagrams for the following materials.

- Boys should make certain electron

Gre Clear and paired.

- Mong had Hear atoms too for aport.

BLANK PAGE

Part C

Total marks (18)

Name

Attempt ALL Questions
Write your name and your Master's initials in the space provided above.

Question 25 (3 marks)

A sample of processed meat was placed in a container of known mass and dried in an oven until the mass no longer reduced. The various masses were recorded in the table below.

Item	Mass (g)
Container	21.3
Container and undried meat sample	24.2
Container and dried meat sample	23.4

Determine the percentage water by mass in the original sample of processed meat.

Question 26 (3 marks)
(a) Write a balanced equation for the reaction of aluminium with sulfuric acid.

(b) Write and identify the reduction and oxidation half equations for the reaction of aluminium with sulfuric acid.

Reduction: \qquad
Oxidation:

Potassium is ductile while potassium chloride is brittle. Explain the difference in these properties in terms of the structure and bonding of the two materials.

A

\qquad

Question 28 (2 marks) \rightarrow Prithee

A pupil was given three metal samples (lead, silver and magnesium), but they forgot to label the samples. The pupil then conducted the following tests.

Metal	Reaction with $\mathbf{H}_{\mathbf{2}} \mathbf{O}$	Reaction with acid	Reaction with oxygen
1	No Visible Reaction	No Visible Reaction	No Visible Reaction
2	White coating formed in near- boiling water	Reacted vigorously with cold $\mathrm{H}_{2} \mathrm{SO}_{4}$	Burned readily as a thin foil
3	No Visible Reaction	Reacted slowly with warm $\mathrm{H}_{2} \mathrm{SO}_{4}$	Formed a red/brown layer when heated in air

Identify the metals 1,2 and 3 .
Metal 1: Si/uest
Metal 2: \qquad
Metal 3: \qquad

Question 29 (6 marks)
Marks

Five consecutive elements in increasing atomic number have first ionisation energies as shown in the table below.

Element	W	V	X	Y	Z
First ionisation energy (kJ /mol)	1260	1520	418	590	632

(a) Define First Ionisation Energy

(b) Identify which element/(s) (W-Z) would be most likely to:
(i) be a noble gas.
\qquad
(ii) form an ion with a $1+$ charge.

(iii) be metals.
\qquad
(iv) exist as a diatomic molecule.
\qquad
(v) react most vigorously with dilute hydrochloric acid.
\qquad

BLANK PAGE

CRIB - MTK

Part D

Total marks (15)
Attempt ALL Questions
Write your name and your Master's initials in the space provided above.
Question 30 (4 marks)
Marks

Explain why atomic radii decrease as you move along a Period of the Periodic Table but increase as you move down a Group.

Marks	Description
$\mathbf{4}$	- \quadDiscusses that across a period: increased numbers of electrons go into same shell; more protons yet same shielding; hence smaller radius. Discusses that down group; new shell; even though more protons and electrons, also more electron shielding from inner shell electrons, hence larger radius, Gives logical, clear progression and uses good scientific language.
$\mathbf{3}$	- As per 4 marks, but with one item incorrect / missing
$\mathbf{2}$	- \quad Provides 2 items listed for 1 mark
$\mathbf{1}$	- \quad Mentions any chemistry principle correctly from 4 marks list.

Question 31 (3 marks)

Complete the table below by using the physical properties in the table to classify the following elements as metals, non-metals or semi-metals and solids, liquids or gases.

	Melting Point $\left({ }^{\circ} \mathbf{C}\right)$	Boiling Point $\left({ }^{\circ} \mathbf{C}\right)$	Density $\left.\mathbf{(g ~ c m}^{-3}\right)$	Electrical conductivity $\left(\right.$ MS m $\left.^{-1}\right)$	Metal/Non- metal/Semi- metal	Solid/Liquid/ Gas at 300 $\mathbf{}^{\mathbf{0}} \mathbf{C}$
A	63	760	0.86	14	M	L
B	44	280	1.82	10^{-15}	$N M$	G
C	-39	357	13.5	1.0	$S M$ or M	L
D	937	2830	5.3	10^{-4}	$S M$	S

$<4-0$ mark
4-5-1 mark
6-7-2 marks
$8-3$ marks

A 31.08 g sample of lead was placed into a 100 mL solution containing 16.99 g silver nitrate and left until the reaction had gone to completion.

Complete the table. Show relevant calculations in the space below the table.

Chemical species	$\mathrm{Pb}^{2+}{ }_{(\mathrm{aq})}$	$\mathrm{Pb}_{(\mathrm{s})}$	$\mathrm{Ag}^{+}{ }_{(\mathrm{aq})}$	$\mathrm{Ag}_{(\mathrm{s})}$	$\mathrm{NO}_{3}{ }^{-{ }_{(a q)}}$
Moles in final mixture	0.05	0.10	0	0.10	0.10

Equation $\quad \mathrm{Pb}_{(s)}+2 \mathrm{AgNO}_{3(a q)} \rightarrow 2 \mathrm{Ag}_{(s)}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(a q)}$

Working

Initial values:
$n(P b)=31.08 / 207.2=0.15$ moles
$n\left(\mathrm{AgNO}_{3}\right)=16.99 /(107.9+14.01+3 \times 16)=0.099994$ or 0.10 moles
From equation, AgNO_{3} is limiting as lead would require 0.3 moles.
Therefore after complete reaction:
$n\left(A g^{+}\right)=0$
As nitrate is spectator: 0.10 moles before and after.
From equation:
$n(A g)=$ initial $n\left(A g^{+}\right)=0.10$ moles
$n\left(\mathrm{~Pb}^{2+}\right)=1 / 2 \times n\left(\mathrm{Ag}^{+}\right)=0.05$ moles
$n(P b)=0.15-1 / 2 \times n\left(\mathrm{Ag}^{+}\right)=0.15-0.05=0.10$ moles
OR:

	$\boldsymbol{P b}_{(s)}$	$\boldsymbol{A g}^{+}$	Ag	$\boldsymbol{P b}^{\mathbf{2 +}}$	$\mathrm{NO}_{\mathbf{3}}$
Initial	0.15	0.10	0	0	0.10
Change	-0.05	-0.10	+0.10	+0.05	0
End	0.10	0	0.10	0.05	0.10

NOTE: Ticks do not equal marks

Marks	Description
	- \quad Calculates initial moles of lead as 0.15 and silver nitrate as 0.1 (or 0.09999$)$
	- \quad Provides a correct balanced chemical equation
	- \quad Determines that silver nitrate is the limiting reactant and sets Ag^{+}to zero.
	- \quad Recognises that nitrates are spectator ions and sets final concentration to 0.1
- \quad Calculates $\mathrm{Pb}_{(s)}, \mathrm{Pb}^{2+}$ and $\mathrm{Ag}_{(s)}$ correctly showing full, well set-out working.	

4	- As per 5 marks, but with one item incorrect / missing. (Clear setting out must allow error to be tracked.)
3	- Calculates initial moles of lead as 0.15 and silver nitrate as 0.1 (or 0.09999) - Provides a correct balanced chemical equation - Determines that silver nitrate is the limiting reactant and sets Ag^{+}to zero. OR - Recognises that nitrates are spectator ions and sets final concentration to 0.1 OR - Provides working that can be followed to allow CE (carry error) marks.
2	- Provides 2 items listed for 1 mark
1	- Calculates initial moles of lead as 0.15 OR - Calculates silver nitrate as 0.1 (or 0.09999) OR - Provides a correct balanced chemical equation OR - Determines that silver nitrate is the limiting reactant and sets Ag^{+}to zero.

Question 33 (3 marks)

In 1813, shortly after Gay-Lussac published his "Memoir on the Combination of Gaseous Substances with Each Other", Jöns Jacob Berzelius published an account of 2 volumes of ammonia reacting with 2 volumes of oxygen to produce 3 volumes of water vapour and 1 volume of phlogisticated nitrous air.
(a) Write a balanced chemical equation for this reaction.

$$
2 \mathrm{NH}_{3(g)}+2 \mathrm{O}_{2(g)} \rightarrow 3 \mathrm{H}_{2} \mathrm{O}_{(g)}+\mathrm{N}_{2} \mathrm{O}_{(g)}
$$

2 marks - correct balanced equation

1 mark - recognises that gas volumes relate to molar quantities and writes a balanced chemical equation with the relevant molar quantities.
(b) What is the IUPAC name for phlogisticated nitrous air?

Part E

Total marks (3)
Attempt ALL Questions
Write your name and your Master's initials in the space provided above.

Question 34 (3 marks)
Marks

Discuss the advantages and limitations of the below model of calcite, CaF_{2}.

$0 C \mathrm{Ca} O F$
Disadvantage.
(Mork. Ions not indicated on Conic. compound.

2 marls An additional advantage and disadvantage.

BLANK PAGE

Part F

Total marks (15)
Attempt ALL Questions
Write your name and your Master's initials in the space provided above.

Question 35 (7 marks)
Marks

Chromium is often found in the Earth's crust as chromite, $\mathrm{FeCr}_{2} \mathrm{O}_{4}$. The production of chromium metal from chromite involves a series of chemical reactions:

$$
\begin{aligned}
& 4 \mathrm{FeCr}_{2} \mathrm{O}_{4(\mathrm{~s})}+8 \mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{~s})}+7 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 8 \mathrm{Na}_{2} \mathrm{CrO}_{4(\mathrm{~s})}+2 \mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}+8 \mathrm{CO}_{2(\mathrm{~g})} \\
& 2 \mathrm{Na}_{2} \mathrm{CrO}_{4(\mathrm{~s})}+\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})} \rightarrow \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7(\mathrm{~s})}+\mathrm{Na}_{2} \mathrm{SO}_{4(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \\
& \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7(\mathrm{~s})}+2 \mathrm{C}_{(\mathrm{s})} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{3(\mathrm{~s})}+\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{~s})}+\mathrm{CO}_{(\mathrm{g})} \\
& \mathrm{Cr}_{2} \mathrm{O}_{3(\mathrm{~s})}+2 \mathrm{Al}_{(\mathrm{s})} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}+2 \mathrm{Cr}_{(\mathrm{s})}
\end{aligned}
$$

A 210.0 g ore sample containing 75.40% chromite by mass is processed through this series of chemical reactions.
(a) Calculate the mass of chromite, $\mathrm{FeCr}_{2} \mathrm{O}_{4}$, present in the 210.0 g ore sample.

$$
m\left(\mathrm{~F}_{2}\left(r_{2} \mathrm{O}_{4}\right)=210.0 \mathrm{~g} \times \frac{75.40}{100.0}=158.3 \mathrm{~g}\right.
$$

(b) Calculate the mass of carbon dioxide gas produced when chromium is produced from the 210.0 g ore sample by this process.

$$
\begin{aligned}
& n\left(\mathrm{Fe}\left(\mathrm{r}_{2} \mathrm{O}_{4}\right)\right.=\frac{158.3 \mathrm{~g}}{223.85 \mathrm{gmo}^{-1}}=0.7073 \mathrm{~mol} \\
& \therefore n(1) \\
& \therefore m\left(\mathrm{O}_{2}\right)=1.415 \mathrm{~mol}(1) \\
& \therefore m\left(\mathrm{O}_{2}\right)=1.415 \mathrm{~mol} \times 44.01 \mathrm{~g} \mathrm{~mol}^{-1} \\
&=62.26 \mathrm{~g} \text { (1) }
\end{aligned}
$$

\qquad

Question 35 continued on next page.

Question 35 continued.
(c) Calculate the mass of chromium metal produced in this process using the 210.0 g sample.

$$
\begin{aligned}
& m(r)=158.3 \mathrm{~g} \times \frac{2 \times 5.00}{223.85}=73.56 \mathrm{~g} \\
& 0 R \\
& n(r)=2 n\left(F_{e}\left(r_{2}, l_{4}\right)=1.415 \mathrm{~mol}\right. \\
& \therefore m(r)=1.415 \mathrm{~mol} \times 52.0 \mathrm{gmd}=73.56 \mathrm{~g}
\end{aligned}
$$

(d) Calculate the number of aluminium atoms consumed in this process.

Question 36 (3 marks)

In 1962, the synthesis of the first binary compound of a noble gas was reported in the Journal of the American Chemical Society. Decomposition of this colourless solid compound was reported to be give rise to 0.2507 g xenon and 0.1435 g fluorine by mass. Calculate the empirical formula of this compound.

Question 37 (5 marks)

Wegscheiderite is an evaporite mineral found at the Green River Formation in Wyoming, USA. Elemental analysis shows wegscheiderite to contain four different elements. When 10.000 g of wegscheiderite is treated with excess hydrochloric acid, 4.917 g of carbon dioxide is given off. In a separate experiment, 0.1000 g of wegscheiderite is dissolved in water and treated with a solution of uranyl zinc acetate. A precipitate of $\left(\mathrm{UO}_{2}\right)_{3} \mathrm{ZnNa}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{9} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ with a molar mass 1537.9 , is produced which upon filtration and drying has a mass of 2.148 g .

Calculate the empirical formula of wegscheiderite, showing all working and logic.

$$
\begin{aligned}
& n\left(\left(\mathrm{CO}_{2}\right)=\frac{4.917 \mathrm{~g}}{44.0 \mathrm{gmand}}=0 \cdot 1117 \mathrm{~mol}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \therefore n\left(N_{a}^{+} \text {in } 0.1 \mathrm{~g} \text { Wegcheideite }\right)=1.397 \times 10^{-3} \mathrm{~mol} \\
& \therefore n\left(\mathrm{Na}_{a}^{+} \text {in } 10 \mathrm{~g} W_{\text {egscheiderte }}\right)=0.1397 \mathrm{~mol} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { This suggests, } 5 \mathrm{Na}^{+}: 4 \mathrm{CO}_{2} \text {. } 1 \mathrm{HCO}_{3}^{-} \text {reacting with a aid. } \\
& \text { To balance changes, need } 3 \times \mathrm{H}\left(\mathrm { O } _ { 3 } ^ { 3 } \text { s } 1 \left(\mathrm{Co}^{2} \text {) for } 5 \mathrm{Na}^{+}\right.\right. \text {. } \\
& \text { This can and shows be chevet d derived from mass dada: }
\end{aligned}
$$

$$
\begin{aligned}
& =3.211 \mathrm{~g} \\
& m\left({ } ^ { \prime \prime } \mathrm { CO } _ { 3 } ^ { \prime \prime } \rightarrow \operatorname { f r a n } \left(\mathrm{O}_{3}^{2-}+\mathrm{H}\left(\mathrm{CO}_{3}^{-}\right)=n\left(\mathrm{~N}_{2}\right) \times(12 \cdot 01+3 \times 1500)\right.\right. \\
& =6.705 \mathrm{~g} \\
& \therefore \text { Sm }(\text { remaining })=10.000 \mathrm{~g}-9.916 \mathrm{~g}=0.0844 \mathrm{~g} \text {. } \\
& \text { So } n(\mathrm{Na}): n(C): n(0): n(H) \rightarrow 5: 4: 8: 3 \\
& \text { ide. } \mathrm{Na}_{5}\left(\mathrm{HCO}_{3}\right)_{3} \mathrm{OO}_{3}(\mathrm{~s}) \text {. }
\end{aligned}
$$

BLANK PAGE

