SYDNEY GRAMMAR SCHOOL

2015FORM V HALF-YEARLY EXAMINATION 1:00pm 13 May 2015

Chemistry

Working time 2 Hours

General Instructions

- Working time 2 hours
- Board-approved calculators may be used
- Write using blue or black pen
- Draw diagrams using pencil
- A Data Sheet and Periodic Table are provided at the back of this paper
- Write your name and Master's initials at the top of the Multiple Choice Answer Sheet and the first page in Parts B to F

Collection

- **Remove central staple** and collect in ONE bundle
- Hand in **all** parts of the paper, including the multiple choice questions

Total marks (88)

This paper has six parts, Parts A to F

Part A

Total marks (18)

- Attempt ALL Questions
- Allow about 15 minutes for this Part.

Parts B to F

Total marks (70)

- Attempt ALL questions
- Allow about 1 hour and 45 minutes for this Part.

CHECKLIST	
Each boy should have the following:	
1 Question Paper	
1 Multiple Choice Answer Sheet	

5CY201 - AKBB	5CY202 - MRB	5CY203 - TW	5CY204 - ZI
5CY205 - EJS	5CY206 - CRMR	5CY207 - TW	

EXAMINERS: AKBB / CRMR / MRB / MTK/ TW

Part A Total marks (18) Attempt ALL Questions Allow about 15 minutes for this Part

Use the multiple-choice Answer Sheet.

Select the alternative A, B, C or D that best answers the question. Fill the response circle completely.

Sample 2 + 4 =

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word *correct* and drawing an arrow as follows.

1	Which	alternative most accurately lists metals in order of their discovery and use?
	(A)	aluminium, copper, iron, sodium
	(B) (C)	silver, silicon, sodium, gold gold, copper, iron, aluminium
	(D)	silver, magnesium, gold, iron
2	Which	of the following elements comprise a triad as observed by Döbereiner?
	(A)	Na, Mg, Al
	(B)	Ne, Ar ,Kr Mn, Fe, Co
	(C) (D)	Cl, Br, I
3		an unknown gas has the same mass as 0.5 L of bromine gas at the same
	temper	rature and pressure. What is the gas?
	(A)	CO_2
	(B)	Ne_2
	(C) (D)	F ₂ Ar
	,	
4		g from left to right across Period 3 of the Periodic Table, which of the ing does not increase?
	(A)	The number of electron shells
	(B)	The total number of electrons
	(C) (D)	The number of valence electrons The charge on the nucleus
	(2)	
5	Which	of the following elements has the highest electronegativity?
	(A)	helium
	(B)	francium
	(C) (D)	fluorine nitrogen

- 6 Which statements are correct for the alkali metals Li to Cs?
 - I Melting Point increases
 - II First ionisation energy decreases
 - III Ionic radius increases
 - (A) I only
 - (B) III only
 - (C) II and III only
 - (D) I, II and III
- Which of the following iron-containing minerals has the greatest percentage of iron by mass?
 - (A) magnetite, $Fe_3O_{4(s)}$
 - (B) hematite, $Fe_2O_{3(s)}$
 - (C) siderite, FeCO_{3(s)}
 - (D) goethite, FeO(OH)_(s)
- **8** Approximately how many atoms are there in 1.00 g of water?
 - (A) 3.34×10^{22}
 - (B) 1.00×10^{23}
 - (C) 6.02×10^{23}
 - (D) 1.81×10^{24}
- **9** Which of the following substances has the **smallest** molar mass?
 - (A) sodium oxide
 - (B) magnesium oxide
 - (C) potassium oxide
 - (D) calcium oxide
- 10 When comparing a more reactive metal with a less reactive metal:
 - (A) The less reactive metal is more likely to be found as an uncombined naturally occurring element.
 - (B) The more reactive metal is more spontaneous in losing electrons than is the less reactive metal.
 - (C) More energy is required to extract the less reactive metal from one of its compounds.
 - (D) More reactive metals absorb more heat than less reactive metals when they react.

- 11 What is the electrolysis of water?
 - (A) A physical process that separates hydrogen and oxygen molecules from water molecules.
 - (B) A physical process that weakens intermolecular forces releasing hydrogen and oxygen atoms.
 - (C) A chemical process that weakens intermolecular forces allowing the more volatile oxygen and hydrogen molecules to boil off.
 - (D) A chemical process that breaks covalent bonds within water molecules producing hydrogen and oxygen molecules.
- Nitrogen trifluoride can be decomposed to form nitrogen and fluorine gas. Which of the following balanced equations correctly represents this reaction?
 - (A) $NF_{3(g)} \rightarrow N_{(g)} + F_{3(g)}$
 - (B) $2N_3F_{3(g)} \rightarrow 3N_2F_{2(g)}$
 - (C) $2NF_{3(g)} \rightarrow N_{2(g)} + 3F_{2(g)}$
 - (D) $NF_{3(g)} \rightarrow N_{(g)} + 3F_{(g)}$
- Which of the following shows elements in increasing atomic mass?
 - (A) Cl, Ar, K, Ca,
 - (B) Zn, Cu, Ni, Co
 - (C) Cs, Rb, K, Na
 - (D) I, Te, Xe, Cs
- In which of the following substances do strong chemical bonds **NOT** extend throughout the crystal lattice in the **solid** state?
 - (A) mercury
 - (B) iodine
 - (C) silicon dioxide
 - (D) sodium chloride
- Using the solubility rules, determine which of the following combinations of solutions would form a precipitate.
 - (A) Magnesium sulfate and barium nitrate
 - (B) Barium chloride and sodium hydroxide
 - (C) Sodium carbonate and lithium nitrate
 - (D) Silver nitrate and potassium nitrate

- Which of the following contains the same number of ions as 1 mole of aluminium chloride?
 - (A) 3 mole of sodium hydroxide
 - (B) 2 mole of barium carbonate
 - (C) 1 mole of ammonium nitrate
 - (D) 0.5 mole of ammonium sulfate
- 17 Consider the following atom, ${}^{17}_{8}$ O. This atom contains:
 - (A) 8 protons, 8 electrons and 17 neutrons.
 - (B) 8 protons, 8 electrons and 9 neutrons.
 - (C) 9 protons, 9 electrons and 17 neutrons.
 - (D) 17 protons, 17 electrons and 8 neutrons.
- Which of the following is the correct IUPAC name for FeP?
 - (A) iron monophosphide
 - (B) iron monophosphate
 - (C) iron(III) phosphide
 - (D) iron(III) phosphate

Part B Total marks (19)	Master's initials
Attempt ALL Questions Write your name and your Master's initials in the space provi	Name Name
Answer the questions in the spaces provided. Show all relevant working in questions involving calculations.	
estion 19 (3 marks)	

Complete the following table.

Alloy	Use	Property related to use
Brass		
	Joining metals together	
		High tensile strength

Question 20 (3 marks)

Complete the table below, identifying from everyday life examples where heat, light and electricity are involved in chemical reactions. Indicate also whether the energy is released or absorbed by circling the appropriate response.

Energy type	Example of Everyday Reaction	Energy absorbed or released
Electricity		absorbed/released
Heat		absorbed/released
Light		absorbed/released

3

3

	n 21 (3 marks)		
rite ba	lanced chemical equations	s for the following reactions, i	ncluding states:
(a)	Magnesium oxide with	n hydrochloric acid.	
(b)	Sodium hydrogen carb	oonate with sulfuric acid.	
(c)	Sodium with water.		
estio	n 22 (3 marks)		
ntane	and water are immiscible	liquids that have the propertie Boiling Point (°C)	Density (g cm ⁻³)
	Pentane	36	0.6
	Water	100	1.0
	he relative suitability of opentane and water.	distillation or a separating fu	nnel as techniques to

	Master's initials
]	Name Marks

Question 23 (3 marks)

Complete the following table.

Name of Element or Ion	Protons	Charge	Electron Configuration
	12		2.8
Phosphorus		0	
		-1	2.8.8

3

Question 24 (4 marks)

Draw Lewis electron dot diagrams for the following materials.

H_2	O_2
H ₂ O	OH ⁻

2

Part C Total marks (18) Attempt ALL Questions Write your name and your Master's initials in the spa		the space provided abov	Name
iestio	on 25 (3 marks)		Marks
in a	sample of processed meat was placed in a con an oven until the mass no longer reduced. The the table below.		
	Item	Mass (g)	
	Container	21.3	
	Container and undried meat sample	24.2	
De	Container and dried meat sample termine the percentage water by mass in the container and dried meat sample	23.4 priginal sample of processed	d meat.
De			
			d meat.
	on 26 (3 marks)	riginal sample of processed	3

Reduction:

Oxidation:

Question 27 (4 marks)	Marks
Potassium is ductile while potassium chloride is brittle. Explain the difference in these properties in terms of the structure and bonding of the two materials.	
	4
Question 28 (2 marks)	

A pupil was given three metal samples (lead, silver and magnesium), but they forgot to label the samples. The pupil then conducted the following tests.

Metal	Reaction with H ₂ O	Reaction with acid	Reaction with
			oxygen
1	No Visible Reaction	No Visible	No Visible
		Reaction	Reaction
2	White coating formed in near-	Reacted vigorously	Burned readily as a
	boiling water	with cold H ₂ SO ₄	thin foil
3	No Visible Reaction	Reacted slowly	Formed a
		with warm H ₂ SO ₄	red/brown layer
			when heated in air

Ide	entify the metals 1, 2 and 3.			
M	etal 1:			2
M	etal 2:		 -	
M	etal 3:			

Master's initials
Name

Question 29 (6 marks)

Marks

Five **consecutive** elements in increasing atomic number have **first** ionisation energies as shown in the table below.

Element	W	V	X	Y	Z
First ionisation					
energy (kJ / mol)	1260	1520	418	590	632

ntify v	which element/(s) (W-Z) would be most likely to:	
(i)	be a noble gas.	
(ii)	form an ion with a 1+ charge.	
(iii)	be metals.	
(iv)	exist as a diatomic molecule.	
(v)	react most vigorously with dilute hydrochloric acid.	

Master's initials
Name

Part D Total marks (15) Attempt ALL Questions

Write your name and your Master's initials in the space provided above.

Question 30 (4 marks)	Marks
Explain why atomic radii decrease as you move along a Period of the Periodic Table but increase as you move down a Group.	
	4
- <u></u>	

Question 31 (3 marks)

Complete the table below by using the physical properties in the table to classify the following elements as metals, non-metals or semi-metals and solids, liquids or gases.

	Melting Point (°C)	Boiling Point (°C)	Density (g cm ⁻³)	Electrical conductivity (MS m ⁻¹)	Metal/Non- metal/Semi- metal	Solid/Liquid/ Gas at 300°C
A	63	760	0.86	14		
В	44	280	1.82	10 ⁻¹⁵		
С	-39	357	13.5	1.0		
D	937	2830	5.3	10 ⁻⁴		

Question 32	(5 marks))
-------------	-----------	---

Marks

A 31.08 g sample of lead was placed into a 100 mL solution containing 16.99 g silver nitrate and left until the reaction had gone to completion.

Complete the table. Show relevant calculations in the space below the table.

Chemical species	Pb ²⁺ (aq)	Pb _(s)	Ag ⁺ (aq)	$Ag_{(s)}$	NO ₃ (aq)
Moles in final mixture					
Balanced chemical equation					

Question 3	33 (3 marks)	Ma	ster's initial
Gaseous Su 2 volumes	hortly after Gay-Lussac published his "Memoir on the Combination abstances with Each Other", Jöns Jacob Berzelius published an accour of ammonia reacting with 2 volumes of oxygen to produce 3 volume ur and 1 volume of phlogisticated nitrous air.	nt of	
(a)	Write a balanced chemical equation for this reaction.		2
(b)	What is the IUPAC name for phlogisticated nitrous air?		1

Master's initials
 Vame

Part E

Total marks (3)

Attempt ALL Questions

Write your name and your Master's initials in the space provided above.

Question 34 (3 marks)

Marks

3

Discuss the advantages and limitations of the below model of calcite, CaF₂.

_

	Master's initials
Part F	Name
Total marks (15)	
Attempt ALL Questions	
Write your name and your Master's initials in the space prov	vided above.

Question 35 (7 marks)

Marks

Chromium is often found in the Earth's crust as chromite, FeCr₂O₄. The production of chromium metal from chromite involves a series of chemical reactions:

$$\begin{split} &4\;FeCr_{2}O_{4(s)}+8\;Na_{2}CO_{3(s)}+7\;O_{2(g)}\longrightarrow 8\;Na_{2}CrO_{4(s)}+2\;Fe_{2}O_{3(s)}+8\;CO_{2(g)}\\ &2\;Na_{2}CrO_{4(s)}+H_{2}SO_{4(aq)}\longrightarrow Na_{2}Cr_{2}O_{7(s)}+Na_{2}SO_{4(aq)}+H_{2}O_{(l)}\\ &Na_{2}Cr_{2}O_{7(s)}+2\;C_{(s)}\longrightarrow Cr_{2}O_{3(s)}+Na_{2}CO_{3(s)}+CO_{(g)}\\ &Cr_{2}O_{3(s)}+2\;Al_{(s)}\longrightarrow Al_{2}O_{3(s)}+2\;Cr_{(s)} \end{split}$$

A 210.0 g ore sample containing 75.40% chromite by mass is processed through this series of chemical reactions.

Question 35 continued on next page.

Question	35 continued.	M
(c)	Calculate the mass of chromium metal produced in this process using the 210.0 g sample.	
(d)	Calculate the number of aluminium atoms consumed in this process.	
Question	36 (3 marks)	
Journal of compound	ne synthesis of the first binary compound of a noble gas was reported in the first binary composition of this colourless solid was reported to give rise to 0.2507 g xenon and 0.1435 g fluorine by mass. the empirical formula of this compound.	
_		
_		
<u>-</u>		
_		

	Master's initials	
	waster 8 militars	
]	Name Marks	

5

Question 37 (5 marks)

Wegscheiderite is an evaporite mineral found at the Green River Formation in Wyoming, USA. Elemental analysis shows wegscheiderite to contain four different elements. When 10.000 g of wegscheiderite is treated with excess hydrochloric acid, 4.917 g of carbon dioxide is given off. In a separate experiment, 0.1000 g of wegscheiderite is dissolved in water and treated with a solution of uranyl zinc acetate. A precipitate of (UO₂)₃ZnNa(CH₃COO)₉·6H₂O with a molar mass 1537.9 g mol⁻¹ is produced which after purification has a mass of 2.148 g.

Calculate the empirical formula of wegscheiderite, showing all working and logic.

1	\mathcal{L}	,	\mathcal{L}	$\boldsymbol{\mathcal{C}}$	$\boldsymbol{\mathcal{C}}$
•					
					_
<u> </u>					
-					
•					
					

Chemistry

Data Sheet

Avogadro's constant, $N_A \dots$		 $6.022 \times 10^{23} \text{ mol}^{-1}$
Volume of 1 mole ideal gas:	at 100 kPa and	
	at 0 °C (273 K)	 22.71 L
	at 25 °C (298K)	 . 24.79 L
Ionisation constant for water	at 25°C (298 K), K _w .	 1.0×10^{-14}
Specific heat capacity of wat	er	 $4.18 \times 10^3 \text{ Jkg}^{-1}\text{K}^{-1}$

Some useful formulae

$$pH = -\log_{10}[H^{+}] \qquad q = mC\Delta T$$

Standard Potentials

$K^+ + e^-$	\rightleftharpoons	$K_{(s)}$	-2.94 V
$Ba^{2+} + 2e^{-}$	=	$Ba_{(s)}$	-2.91 V
$Ca^{2+} + 2e^{-}$	⇌	$Ca_{(s)}$	-2.87 V
$Na^+ + e^-$	=	Na _(s)	-2.71 V
$Mg^{2+} + 2e^{-}$	⇌	$Mg_{(s)}$	-2.36 V
$A1^{3+} + 3e^{-}$	=	$Al_{(s)}$	-1.68 V
$Mn^{2+} + 2e^{-}$	=	$Mn_{(s)}$	-1.18 V
$H_2O + e^-$	=	$^{1}/_{2}$ $H_{2(g)} + OH^{-}$	-0.83 V
$Zn^{2+} + 2e^{-}$	\rightleftharpoons	$Zn_{(s)}$	–0.76 V
$Fe^{2+} + 2e^{-}$	\rightleftharpoons	$Fe_{(s)}$	-0.44 V
$Ni^{2+} + 2e^{-}$	\rightleftharpoons	$Ni_{(s)}$	-0.24 V
$\mathrm{Sn}^{2+} + 2\mathrm{e}^{-}$	\rightleftharpoons	$Sn_{(s)}$	-0.14 V
$Pb^{2+} + 2e^{-}$	\rightleftharpoons	$Pb_{(s)}$	-0.13 V
$H^+ + e^-$	\rightleftharpoons	½ H _{2(g)}	$0.00 \mathrm{\ V}$
$SO_4^{2-} + 4H^+ + 2e^-$	\rightleftharpoons	$SO_{2(g)} + 2H_2O$	0.16 V
$Cu^{2+} + 2e^{-}$	\rightleftharpoons	$Cu_{(s)}$	0.34 V
$^{1}/_{2} O_{2(g)} + H_{2}O + 2e^{-}$	\rightleftharpoons	2OH ⁻	0.40 V
$Cu^+ + e^-$	\rightleftharpoons	$Cu_{(s)}$	0.52 V
$^{1}/_{2} I_{2(s)} + e^{-}$	\rightleftharpoons	I ⁻	0.54 V
$^{1}/_{2} I_{2(aq)} + e^{-}$	\rightleftharpoons	I ⁻	0.62 V
$Fe^{3+} + e^{-}$	\rightleftharpoons	Fe^{2+}	0.77 V
$Ag^+ + e^-$	\rightleftharpoons	$Ag_{(s)}$	0.80 V
$^{1}/_{2} Br_{2(1)} + e^{-}$	\rightleftharpoons	Br ⁻	1.08 V
$^{1}/_{2} Br_{2(aq)} + e^{-}$	\rightleftharpoons	Br ⁻	1.10 V
$\frac{1}{2}$ O ₂ + 2H ⁺ + 2e ⁻	\rightleftharpoons	H_2O	1.23 V
$^{1}/_{2} \operatorname{Cr_{2}O_{7}}^{2-} + 7\operatorname{H}^{+} + 3\operatorname{e}^{-}$	\rightleftharpoons	$Cr^{3+} + \frac{7}{2} H_2O$	1.36 V
$^{1}/_{2} \text{Cl}_{2(g)} + e^{-}$	\rightleftharpoons	Cl ⁻	1.36 V
$^{1}/_{2} \text{Cl}_{2(aq)} + e^{-}$	\rightleftharpoons	C1 ⁻	1.40 V
$MnO_4^- + 8H^+ + 5e^-$	⇒	$Mn^{2+} + 4H_2O$	1.51 V
$^{1}/_{2} F_{2(g)} + e^{-}$	\rightleftharpoons	F ⁻	2.89 V

Lr

No

Lu 75.0

Er 167.3 Erbium

Sm 150.4

Pm

Nd 44.2

La 138.9 Lanthanum

	,					PERIO	PERIODIC TABLE OF	BLE O		THE FLEMENTS	FNTS						
H 1.008 Hydrogen								KEY									2 He 4.003
3 Li 6.941 Lithium	4 Be 9.012 Beryllium					Al Standard A	Atomic Number Symbol Standard Atomic Weight Name	79 Au 197.0 Gold				5 B 10.81 Boron	6 C 12.01 Carbon	N 14.01 Nitrogen	8 O 16.00 Oxygen	9 F 19.00 Fluorine	10 Ne 20.18
Na 22.99 Sodium	12 Mg 24.31 Magnesium											13 A1 26.98	14 Si 28.09	15 P 30.97 Phosphorus	16 S 32.07 Sulfur	17 Cl 35.45 Chlorine	18 Ar 39.95
19 K 39.10 Potassium	20 Ca 40.08	21 Sc 44.96 Scandium	22 Ti 47.87 Titanium	23 V 50.94 Vanadium	24 Cr 52.00 Chromium	25 Mn 54.94 Manganese	26 Fe 55.85	27 Co 58.93 Cobalt	28 Ni 58.69 Nickel	29 Cu 63.55 Copper	30 Zn 65.38 Zinc	31 Ga 69.72 Gallium	32 Ge 72.64 Germanium	33 As 74.92 Arsenic	34 Se 78.96 Selenium	35 Br 79.90 Bromine	36 Kr 83.80 Krypton
37 Rb 85.47 Rubidium	38 Sr 87.61 Strontium	39 Y 88.91 Yttrium	40 Zr 91.22 Zirconium	A1 Nb 92.91 Niobium	42 Mo 95.96 Molybdenum	43 Tc	44 Ru 101.1 Ruthenium	45 Rh 102.9 Rhodium	46 Pd 106.4 Palladium	47 Ag 107.9 Silver	48 Cd 112.4 Cadmium	49 In 114.8 Indium	50 Sn 118.7	Sb 121.8 Antimony	52 Te 127.6 Tellurium	53 I 126.9 Iodine	54 Xe 131.3 xenon
SS Cs 132.9 Caesium	56 Ba 137.3 Barium	57-71 Lanthanoids	72 Hf 178.5 Hafnium	73 Ta 180.9		75 Re 186.2 Rhenium	76 Os 190.2 Osmium	77 Ir 192.2 Iridium	78 Pt 195.1 Platinum	79 Au 197.0 Gold	80 Hg 200.6 Mercury	81 T1 204.4 Thallium	82 Pb 207.2 Lead	83 Bi 209.0 Bismuth	84 Po	85 At Astatine	86 Rn Radon
87 Fr	88 Ra	89–103 Actinoids	104 Rf	105 Db	106 Sg Seaborgium	107 Bh	108 Hs	g	110 Ds	2	0						
		Lanthanoids	sp														

Md Fm Es £85 Bk Cm Cm Am Pu Np Pa 231.0 Th 232.0 Thorium Actinoids Ac

Elements with atomic numbers 112 and above have been reported but not fully authenticated.

Standard atomic weights are abridged to four significant figures.

Elements with no reported values in the table have no stable nuclides.

The International Union of Pure and Applied Chemistry Periodic Table of the Elements (February 2010 version) is the principal source of data. Some data may have been modified.

SYDNEY GRAMMAR SCHOOL

2015FORM V MAY EXAMINATION Wed 13th May 1.00 pm

General Instructions

- Write your Master's initials and Name in the space provided.
- Attempt all questions 1 18
- Use a blue or black pen
- Select the alternative A, B, C, or D that best answers the question.
- Fill in the response circle completely.

CHEMISTRY PART A ANSWER SHEET

Part B

Total marks (19)

Attempt ALL Questions

Master's initials

Write your name and your Master's initials in the space provided above.

Answer the questions in the spaces provided. Show all relevant working in questions involving calculations.

Question 19 (3 marks)

Marks

Complete the following table.

Alloy	Use	Property related to use
Brass	- Jewellerg - Instructs - machine parts	- hard - mediable - sonorous resonates - gold so ludre
Solder	Joining metals together	- You enalthy point - sticles well to oth meto - malleable who fulld.
Steel or Bronze	Steel = construction = building ete	High tensile strength

3

Question 20 (3 marks)

Complete the table below, identifying from everyday life examples where heat, light and electricity are involved in chemical reactions. Indicate also whether the energy is released or absorbed by circling the appropriate response.

Energy type	Example of Everyday Reaction	Energy absorbed or released
Electricity	eladory	absorbed/released
Heat	fix, gas stove	absorbed released
Light	glow sticks	absorbed released

for one mark - example and energy both correct.

3

Question	21	(3	marks)
A MCDCTOTT		10	ILLUITED

Marks

1

1

3

Write balanced chemical equations for the following reactions, including states:

One states mistake allowable it incorrect state given

(a) Magnesium oxide with hydrochloric acid.

(b) Sodium hydrogen carbonate with sulfuric acid.

(c) Sodium with water.

Question 22 (3 marks)

) I many said this formed Nazo.

Pentane and water are immiscible liquids that have the properties below.

	Boiling Point (°C)	Density (g cm ⁻³)
Pentane	36	0.6
Water	100	1.0

Assess the relative suitability of distillation or a separating funnel as techniques to separate pentane and water.

separate pentane and water.
inless (D = Why separating funnel would work regarded
you marked D= Why distillation would work
g. desilies (1) = assessmet statement. - Separating or distillation or both
separating or distillation or both but a reason.
Overall bholistically noted.

Master's initials
1
 λĭ
Name Marks

Question 23 (3 marks)

Complete the following table.

Name of Element or Ion	Protons	Charge	Electron Configuration
Magresim	12	+2	2.8
Phosphorus	15	0	2.8.5
chloring ion	いナ	-1	2.8.8

bright - 3 mots 4-5 right = 2 mots Question 24 (4 marks)

23 right = Imarks

Draw Lewis electron dot diagrams for the following materials.

H_2	O_2
H2H	*Ž**° Č*°
H ₂ O	OH-
H2000000000000000000000000000000000000	[80°2H]
· Boys should ma	ce certain electrons

o Mony had Keir on aforms too for apart.

3

2 Al + 3H, 80 -> Al (504) + 3H, States not required.	Name •		rt C al marks (18) empt ALL Questions ite your name and your Master's init	Cota Attei
Item Mass (g) Container 21.3 Container and undried meat sample 24.2 Container and dried meat sample 23.4 Stermine the percentage water by mass in the original sample of processed mass in the origin	:		n 25 (3 marks)	tion
Container 21.3 Container and undried meat sample 24.2 Container and dried meat sample 23.4 Extermine the percentage water by mass in the original sample of processed means are sample 24.2 - 23.4 - 0.8 - 24.2 - 21.3 - 2.9 - 2.9 - 2.9 - 2.9 - 2.9 - 2.6 % On 26 (3 marks) Write a balanced equation for the reaction of aluminium with sulfuric and additional department of the reaction of aluminium with sulfuric and side of the reac			n oven until the mass no longer reduced	n an
Container and undried meat sample Container and dried meat sample 23.4 Stermine the percentage water by mass in the original sample of processed means of the percentage water by mass in the original sample of processed means of the percentage water by mass in the original sample of processed means of the percentage water by mass in the original sample of processed means of the percentage water by mass in the original sample of processed means of the percentage water by mass in the original sample of processed means of the percentage water by mass in the original sample of processed means of the percentage water by mass in the original sample of processed means of the percentage water by mass in the original sample of processed means of the percentage water by mass in the original sample of processed means of the percentage water by mass in the original sample of processed means of the percentage water by mass in the original sample of processed means of the percentage water by mass in the original sample of processed means of the percentage water by mass in the original sample of processed means of the percentage water by mass in the original sample of processed means of the percentage water by mass in the original sample of processed means of the percentage water by mass in the original sample of processed means of the percentage water by mass in the original sample of processed means of the percentage water by mass in the original sample of processed means of the percentage water by mass in the original sample of processed means of the percentage water by mass in the original sample of processed means of the percentage water by mass in the original sample of processed means of the percentage water by mass in the original sample of processed means of the percentage water by mass in the original sample of processed means of the percentage water by mass in the original sample of processed means of the percentage water by mass in the original sample of processed means of the percentage water by mass in the or		Mass (g)	Item	
Container and dried meat sample 23.4 Stermine the percentage water by mass in the original sample of processed means and sample of processed means are sample of processed means and sample of processed means are sam		21.3	Container	
etermine the percentage water by mass in the original sample of processed m $ \begin{array}{cccccccccccccccccccccccccccccccccc$		le 24.2	Container and undried meat sample	
etermine the percentage water by mass in the original sample of processed m $ \begin{array}{cccccccccccccccccccccccccccccccccc$		23.4	Container and dried meat sample	
Write a balanced equation for the reaction of aluminium with sulfuric a 2 Al + 3 H So - Al (SO) + 3 H Solution Solution and oxidation half equations for the re-		6 %		=
Write and identify the reduction and oxidation half equations for the re-			n 26 (3 marks)	ion
	acid.	he reaction of aluminium with sulfuric acid	Write a balanced equation for the re-	a)
	2	-> Al (50)+34/2 V required.	2 Al + 3H, 50 -	
	eaction			o)
Reduction: 2H+ 2e-7 H2		2e -7 1/2	Reduction: 2H+2	

Page 11 of 26

Question 27 (4 marks)

Marks

Potassium is ductile while potassium chloride is brittle. Explain the difference in these properties in terms of the structure and bonding of the two materials.

	& Kis a metal mode of a 30 (allice of	4
p	Cations in a sea of delecalised elections	MS
1.3	+ When a metallic structure is distorted	
15	the talions are moref, & so the electrons flow	EF
100	in order Yo rentralise/stabilise the strender- 70	luctia.
	W 11/1 15 1 1 1 1 1 1 1 1 1 1	15
1	Carions Ramans	
pa	As you disvoy the street we the cations after suions with anions, I thus sope	1 10
1	align with Talions & the amous with anions, I thus refe	1 1K
	Question 28 (2 marks) The the	

A pupil was given three metal samples (lead, silver and magnesium), but they forgot to label the samples. The pupil then conducted the following tests.

Metal	Reaction with H ₂ O	Reaction with acid	Reaction with
			oxygen
1	No Visible Reaction	No Visible	No Visible
		Reaction	Reaction
2	White coating formed in near-	Reacted vigorously	Burned readily as a
	boiling water	with cold H ₂ SO ₄	thin foil
3	No Visible Reaction	Reacted slowly	Formed a
		with warm H ₂ SO ₄	red/brown layer
			when heated in air

	27	
Identify the metals 1, 2 and 3,		
Metal 1: Silver		2
Metal 2: Magne sim		
Metal 3: Lead:		

2015 Half-Yearly Examination

Master's initials

Question 29 (6 marks)

Marks

Five **consecutive** elements in increasing atomic number have **first** ionisation energies as shown in the table below.

Element	W	V	X	Y	Z
First ionisation					
energy (kJ / mol)	1260	1520	418	590	632

(a) Define First Ionisation Energy

The amount of	energy (ser mole) 1
(no (e-of-)-alow	en electron from an atom

(b) Identify which element/(s) (W-Z) would be most likely to:

(i)	be a noble gas.	1
(ii)	form an ion with a 1+ charge.	j
(iii)	be metals. $\times + \times + \times$	1
(iv)	exist as a diatomic molecule.	
(v)	react most vigorously with dilute hydrochloric acid.	1

CRIB - MTK

Part D

Total marks (15)

Attempt ALL Questions

Write your name and your Master's initials in the space provided above.

Question 30 (4 marks)

Marks

Explain why atomic radii decrease as you move along a Period of the Periodic Table but increase as you move down a Group.

Marks	Description
4	 Discusses that across a period: increased numbers of electrons go into same shell; more protons yet same shielding; hence smaller radius. Discusses that down group; new shell; even though more protons and electrons, also more electron shielding from inner shell electrons, hence larger radius, Gives logical, clear progression and uses good scientific language.
3	As per 4 marks, but with one item incorrect / missing
2	Provides 2 items listed for 1 mark
1	Mentions any chemistry principle correctly from 4 marks list.

Question 31 (3 marks)

Complete the table below by using the physical properties in the table to classify the following elements as metals, non-metals or semi-metals and solids, liquids or gases.

	Melting Point (°C)	Boiling Point (°C)	Density (g cm ⁻³)	Electrical conductivity (MS m ⁻¹)	Metal/Non- metal/Semi- metal	Solid/Liquid/ Gas at 300°C
A	63	760	0.86	14	M	L
В	44	280	1.82	10 ⁻¹⁵	NM	G
С	-39	357	13.5	1.0	SM or M	L
D	937	2830	5.3	10 ⁻⁴	SM	S

<4 -0 mark

⁴⁻⁵⁻¹ mark

⁶⁻⁷⁻² marks

^{8 - 3} marks

A 31.08 g sample of lead was placed into a 100 mL solution containing 16.99 g silver nitrate and left until the reaction had gone to completion.

Complete the table. Show relevant calculations in the space below the table.

Chemical species	Pb ²⁺ (aq)	$Pb_{(s)}$	Ag ⁺ (aq)	$Ag_{(s)}$	NO ₃ (aq)
Moles in final mixture	0.05	0.10	0	0.10	0.10

Equation

$$Pb_{(s)} + 2 AgNO_{3 (aq)} \rightarrow 2 Ag_{(s)} + Pb(NO_3)_{2 (aq)}$$

Working

Initial values:

n(Pb) = 31.08 / 207.2 = 0.15 moles

 $n(AgNO_3) = 16.99 / (107.9 + 14.01 + 3 \times 16) = 0.0999994 \text{ or } 0.10 \text{ moles}$

From equation, AgNO₃ is limiting as lead would require 0.3 moles.

Therefore after complete reaction:

 $n(Ag^+)=0$

As nitrate is spectator: 0.10 moles before and after.

From equation:

 $n(Ag) = initial \ n(Ag^{+}) = 0.10 \ moles$ $n(Pb^{2+}) = \frac{1}{2} \ x \ n(Ag^{+}) = 0.05 \ moles$

 $n(Pb) = 0.15 - \frac{1}{2} \times n(Ag^{+}) = 0.15 - 0.05 = 0.10 \text{ moles}$

OR:

	$Pb_{(s)}$	Ag^{+}	Ag	Pb^{2+}	NO_3
Initial	0.15	0.10	0	0	0.10
Change	-0.05	-0.10	+0.10	+0.05	0
End	0.10	0	0.10	0.05	0.10

NOTE: Ticks do not equal marks

Marks	Description				
5	 Calculates initial moles of lead as 0.15 and silver nitrate as 0.1 (or 0.09999) Provides a correct balanced chemical equation Determines that silver nitrate is the limiting reactant and sets Ag⁺ to zero. Recognises that nitrates are spectator ions and sets final concentration to 0.1 Calculates Pb_(s), Pb²⁺ and Ag_(s) correctly showing full, well set-out working. 				

4	• As per 5 marks, but with one item incorrect / missing. (Clear setting out must
	allow error to be tracked.)
	 Calculates initial moles of lead as 0.15 and silver nitrate as 0.1 (or 0.09999) Provides a correct balanced chemical equation
3	 Determines that silver nitrate is the limiting reactant and sets Ag⁺ to zero.
	OR
	• Recognises that nitrates are spectator ions and sets final concentration to 0.1
	OR
	 Provides working that can be followed to allow CE (carry error) marks.
2	Provides 2 items listed for 1 mark
	• Calculates initial moles of lead as 0.15
	OR
1	• Calculates silver nitrate as 0.1 (or 0.09999)
	OR
	Provides a correct balanced chemical equation
	OR
	• Determines that silver nitrate is the limiting reactant and sets Ag ⁺ to zero.

Question 33 (3 marks)

Marks

In 1813, shortly after Gay-Lussac published his "Memoir on the Combination of Gaseous Substances with Each Other", Jöns Jacob Berzelius published an account of 2 volumes of ammonia reacting with 2 volumes of oxygen to produce 3 volumes of water vapour and 1 volume of phlogisticated nitrous air.

(a) Write a balanced chemical equation for this reaction.

$$2\ NH_{3\ (g)} + 2O_{2\ (g)} \rightarrow 3\ H_2O_{(g)} + N_2O_{(g)}$$

2

2 marks - correct balanced equation

1 mark – recognises that gas volumes relate to molar quantities and writes a balanced chemical equation with the relevant molar quantities.

(b) What is the IUPAC name for phlogisticated nitrous air?

Dinitrogen monoxide - or CE from part (a)

1

Master's initials

Part E

Total marks (3)

Attempt ALL Questions

Write your name and your Master's initials in the space provided above.

Question 34 (3 marks)

Marks

Discuss the advantages and limitations of the below model of calcite, CaF_2 .

Master's initials

Name

Part F

Total marks (15)

Attempt ALL Questions

Write your name and your Master's initials in the space provided above.

Question 35 (7 marks)

Marks

3

Chromium is often found in the Earth's crust as chromite, FeCr₂O₄. The production of chromium metal from chromite involves a series of chemical reactions:

$$\begin{split} &4\;FeCr_2O_{4(s)}+8\;Na_2CO_{3(s)}+7\;O_{2(g)}\longrightarrow 8\;Na_2CrO_{4(s)}+2\;Fe_2O_{3(s)}+8\;CO_{2(g)}\\ &2\;Na_2CrO_{4(s)}+H_2SO_{4(aq)}\longrightarrow Na_2Cr_2O_{7(s)}+Na_2SO_{4(aq)}+H_2O_{(l)}\\ &Na_2Cr_2O_{7(s)}+2\;C_{(s)}\longrightarrow Cr_2O_{3(s)}+Na_2CO_{3(s)}+CO_{(g)}\\ &Cr_2O_{3(s)}+2\;Al_{(s)}\longrightarrow Al_2O_{3(s)}+2\;Cr_{(s)} \end{split}$$

A 210.0 g ore sample containing 75.40% chromite by mass is processed through this series of chemical reactions.

(a) Calculate the mass of chromite, FeCr₂O₄, present in the 210.0 g ore sample.

$$M(Fe(r_2)_4) = 210.0g \times \frac{75.40}{100.0} = 158.3g$$

(b) Calculate the mass of carbon dioxide gas produced when chromium is produced from the 210.0 g ore sample by this process.

$$n(Fe(r_2O_4) = \frac{158.39}{223.85 \text{ g mol}^{-1}} = 0.7073 \text{ mol} \text{ (I)}$$

$$\therefore n(O_2) = 1.415 \text{ mol} \text{ (I)}$$

$$\therefore m(O_2) = 1.415 \text{ mol} \times 444.01 \text{ g mol}^{-1}$$

$$= 62.26 \text{ (I)}$$

Question 35 continued on next page.

Question 35 continued.

Marks

1

(c) Calculate the mass of chromium metal produced in this process using the 210.0 g sample.

$$m(cr) = 158.3g \times \frac{2\times52.00}{223.85} = 73.56g$$

$$n(cr) = 2n(Fe(r_s)l_u) = 1.415 \text{ mol}$$

$$... m(cr) = 1.415 \text{ mol} \times 52.00g \text{ mol}^{-1} = 73.56g$$

(d) Calculate the number of aluminium atoms consumed in this process.

$$n(Al) = 1.415 \text{ mod}$$

 $i \neq Al atoms = 1.415 \text{ mod} \times 6.022 \times 10^{23} \text{ mol}^{-1}$
 $= 8.519 \times 10^{23}$.

Question 36 (3 marks)

In 1962, the synthesis of the first binary compound of a noble gas was reported in the Journal of the American Chemical Society. Decomposition of this colourless solid compound was reported to be give rise to 0.2507 g xenon and 0.1435 g fluorine by mass. Calculate the empirical formula of this compound.

$$n(Xe) = \frac{0.25079}{131.39 \text{ mol}^{-1}} = 1.909 \times 10^{-3} \text{ mol} \quad (1)$$
either $\begin{cases} n(F) = \frac{0.14359}{19.009 \text{ mol}^{-1}} = 7.553 \times 10^{-3} \text{ mol} \\ n(F_2) = \frac{0.14359}{38.009 \text{ mol}^{-1}} = 3.776 \times 10^{-3} \text{ mol} \end{cases}$
Then $n(F) = \frac{3.956}{38.009 \text{ mol}^{-1}} = \frac{1.978}{n(Xe)}$
i.e. $XeF_{4.65}$.

Ma	ster's initials
Name	Marks
	Ma Name

Question 37 (5 marks)

Wegscheiderite is an evaporite mineral found at the Green River Formation in Wyoming, USA. Elemental analysis shows wegscheiderite to contain four different elements. When 10.000 g of wegscheiderite is treated with excess hydrochloric acid, 4.917 g of carbon dioxide is given off. In a separate experiment, 0.1000 g of wegscheiderite is dissolved in water and treated with a solution of uranyl zinc acetate. A precipitate of $(UO_2)_3ZnNa(CH_3COO)_9\cdot 6H_2O$ with a molar mass 1537.9, is produced which upon filtration and drying has a mass of 2.148 g.

Calculate the empirical formula of wegscheiderite, showing all working and logic.

```
12.01+3x(6.00)
                   mails is constitled with
50 n(Na):n():n():
i.e. Nas(HW3)3 W3 (5)
                             Page 23 of 26
```